A new approach for smart attendance system based on improved video facial recognition technology for smart university

El-Mashad, Yehia, Ali, Hesham A. (2024) A new approach for smart attendance system based on improved video facial recognition technology for smart university In: Agria Média 2023. Eger, Eszterházy Károly Katolikus Egyetem Líceum Kiadó. pp. 75-93.

A teljes szöveg nem érhető el a repozitóriumban. [error in script]
Hivatalos webcím (URL): https://doi.org/10.17048/AM.2023.75

Absztrakt (kivonat)

Since entering the information age, there have been considerable developments in the methods of managing the various learning processes, so there is no need to rely on a large amount of human resources to collect and analyze data. Many technologies have emerged that are capable of analyzing different types of data and providing interdependence and movement to data effectively. So, it can be said that digital transformation has played a decisive role in developing management systems in smart universities. Attendance systems through facial recognition may be considered the most important operation in the smart university. The main objective of this paper is to introduce the attendance system through a new methodology for detecting and identifying faces through video cameras based on artificial intelligence techniques to predict the face and match it with what is in the database. By developing a robust attendance system using video facial recognition technology, the proposed methodology in this paper aims to improve the accuracy, efficiency, and safety of attendance tracking in smart universities. To achieve the proposed goal, this paper will focus on developing a facial recognition algorithm that can accurately identify individuals under varying lighting conditions and facial expressions. The proposed system can provide real-time attendance information, allowing for timely interventions and support for students who may need it. Moreover, the use of video facial recognition technology can help reduce the workload for teachers and administrators. The proposed algorithm is tested, and the experimental results prove that, due to minimal error, better classification accuracy and high confidence value are achieved.

Mű típusa: Könyvrészlet - Book section
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
El-Mashad, Yehia
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Ali, Hesham A.
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Kapcsolódó URL-ek:
Kulcsszavak: Smart university, attendance system, Facial recognition, smart system
Nyelv: angol
DOI azonosító: 10.17048/AM.2023.75
Felhasználó: Tibor Gál
Dátum: 24 Szep 2024 11:23
Utolsó módosítás: 24 Szep 2024 11:23
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/8195
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet