A representation of the natural numbers by means of cycle-numbers, with consequences in number theory

Turner, John C., Rogers, William J. (2013) A representation of the natural numbers by means of cycle-numbers, with consequences in number theory Annales Mathematicae et Informaticae. 41 pp. 235-254. ISSN 1787-5021 (Print), 1787-6117 (Online)

[thumbnail of AMI_41_from235to254.pdf] pdf
AMI_41_from235to254.pdf

Download (897kB) [error in script]

Absztrakt (kivonat)

In this paper we give rules for creating a number triangle T in a manner analogous to that for producing Pascal’s arithmetic triangle; but all of its elements belong to {0, 1}, and cycling of its rows is involved in the creation. The method of construction of any one row of T from its preceding rows will be defined, and that, together with starting and boundary conditions, will suffice to define the whole triangle, by sequential continuation. We shall use this triangle in order to define the so-called cycle-numbers, which can be mapped to the natural numbers. T will be called the ‘cyclenumber triangle’. First we shall give some theorems about relationships between the cyclenumbers and the natural numbers, and discuss the cycling of patterns within the triangle’s rows and diagonals. We then begin a study of figures (i.e. (0,1)patterns, found on lines, triangles and squares, etc.) within T. In particular, we shall seek relationships which tell us something about the prime numbers. For our later studies, we turn the triangle onto its side and work with a doubly-infinite matrix C. We shall find that a great deal of cycling of figures occurs within T and C, and we exploit this fact whenever we can. The phenomenon of cycling patterns leads us to muse upon a ‘music of the integers’, indeed a ‘symphony of the integers’, being played out on the cycle-number triangle or on C. Like Pythagoras and his ‘music of the spheres’, we may well be the only persons capable of hearing it! Keywords: cycle-number triangle, cycle-number, prime cycle-numbers

Mű típusa: Folyóiratcikk - Journal article
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
Turner, John C.
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Rogers, William J.
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Megjegyzés: Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications Institute of Mathematics and Informatics Eszterházy Károly College, Eger, Hungary (June 25–30, 2012)
Kapcsolódó URL-ek:
Nyelv: angol
Kötetszám: 41
ISSN: 1787-5021 (Print), 1787-6117 (Online)
Felhasználó: Tibor Gál
Dátum: 24 Feb 2019 09:54
Utolsó módosítás: 24 Feb 2019 09:54
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/2733
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet