Bagladi, Milán Zsolt (2025) Artificial Intelligence for interpreting static human arm signals Annales Mathematicae et Informaticae. 61. pp. 43-54. ISSN 1787-6117 (Online)
|
pdf
43_54_Bagladi.pdf Download (2MB) [error in script] |
Absztrakt (kivonat)
This paper presents a method for static arm signal recognition using OpenPose-based keypoint estimation, keypoint normalization, and two distinct classification approaches: K-means clustering and a neural network classifier. The system works with a simple camera setup and generalizes across users. A keypoint normalization technique is used to handle differences in body size and camera distance. To improve robustness against body rotation, we introduce a technique for generating artificially rotated training data using 3D keypoint reconstruction. The recognition models were trained and evaluated on a custom dataset of nine gestures, while rotation robustness was tested on a representative subset of three gestures. Results show that both models maintain high accuracy and efficiency even under moderate rotation.
| Mű típusa: | Folyóiratcikk - Journal article |
|---|---|
| Szerző: | Szerző neve Email MTMT azonosító ORCID azonosító Közreműködés Bagladi, Milán Zsolt NEM RÉSZLETEZETT NEM RÉSZLETEZETT NEM RÉSZLETEZETT Szerző |
| Kapcsolódó URL-ek: | |
| Kulcsszavak: | Arm Gesture Recognition, Static Gestures, OpenPose, Keypoint Normalization, K-means Clustering, Neural Networks, Data Augmentation, 3D Reconstruction, Human-Computer Interaction, Rotation Robustness |
| Folyóirat alcíme: | Selected papers of the International Conference on Formal Methods and Foundations of Artificial Intelligence |
| Nyelv: | angol |
| Kötetszám: | 61. |
| DOI azonosító: | 10.33039/ami.2025.10.005 |
| ISSN: | 1787-6117 (Online) |
| Felhasználó: | Tibor Gál |
| Dátum: | 29 Okt 2025 11:25 |
| Utolsó módosítás: | 29 Okt 2025 11:25 |
| URI: | http://publikacio.uni-eszterhazy.hu/id/eprint/8823 |
![]() |
Tétel nézet |
