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Abstract. This paper presents a method for static arm signal recognition
using OpenPose-based keypoint estimation, keypoint normalization, and two
distinct classification approaches: K-means clustering and a neural network
classifier. The system works with a simple camera setup and generalizes
across users. A keypoint normalization technique is used to handle differ-
ences in body size and camera distance. To improve robustness against body
rotation, we introduce a technique for generating artificially rotated training
data using 3D keypoint reconstruction. The recognition models were trained
and evaluated on a custom dataset of nine gestures, while rotation robust-
ness was tested on a representative subset of three gestures. Results show
that both models maintain high accuracy and efficiency even under moderate
rotation.
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1. Introduction

Human arm gestures are a natural and intuitive means of communication, fre-
quently used in everyday situations ranging from traffic control to human-robot
interaction. While easily interpreted by humans, the automatic recognition of such
gestures remains a challenging task for computer systems due to the variability in
body types, camera perspectives, and environmental conditions.
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A particularly important class of gestures is static arm signals, in which the
meaning is conveyed by a single body pose, independent of motion or temporal
context. These static signals are prevalent in domains such as traffic management,
where police officers use arm positions to direct vehicles, or in aviation, where
ground crews communicate using standardized poses. In such safety-critical appli-
cations, accurate and real-time recognition is essential.

Recent advances in computer vision, especially in human pose estimation, have
made it possible to extract structural information about the human body from im-
ages. However, interpreting this data for gesture classification still requires robust
and efficient algorithms. Many existing solutions rely on expensive hardware or are
sensitive to variations in camera angles and user appearances.

In this paper, we propose a lightweight, camera-based solution for recognizing
static human arm gestures. Our approach uses OpenPose for keypoint extraction,
followed by normalization to handle variations in camera distance and body propor-
tions. We explore both unsupervised (K-means clustering) and supervised (neural
network) classification methods. To improve robustness against changes in camera
orientation, we introduce a novel data augmentation technique using artificially ro-
tated skeletons. The methods were evaluated on a custom dataset of nine gestures
from multiple individuals, with rotation robustness tested on a subset of three ges-
tures rotated up to 45◦. The results demonstrate that both classification models
achieve high accuracy and fast inference even under moderate rotation, validating
the practicality of our approach.

2. Problem statement
The primary objective of this work is to develop a robust and efficient system for
recognizing a predefined set of static human arm signals from a single 2D image.
Such a system is essential for applications in traffic control, logistics, and human-
robot interaction, where clear and immediate interpretation of human signals is
critical.

The core technical challenge is to create a classifier that is invariant to several
factors:

• Viewpoint Variation: The system must reliably identify gestures even
when the person is not directly facing the camera. A key goal is to maintain
high accuracy under moderate body rotations (e.g., up to 45◦).

• User-Specific Differences: The model must generalize across individuals
with different body proportions, sizes, and minor variations in gesture exe-
cution.

• Scale and Position: Recognition should be independent of the person’s
distance from the camera and their position within the frame.

Furthermore, the solution must be practical, operating in real-time with a stan-
dard monocular camera, without specialized hardware. This paper addresses these
challenges by leveraging 2D pose keypoints and techniques for robustness and gen-
eralization.
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3. Related work

The field of gesture recognition has seen significant advancement in recent years,
particularly through the integration of pose estimation and machine learning tech-
niques.

An early approach to arm gesture recognition using convolutional neural net-
works was proposed by Mathe et al. [8], where gestures were classified based on
key features extracted from depth and color images. Their work demonstrated the
feasibility of using CNNs for classifying human arm gestures with reasonable accu-
racy, though it primarily focused on dynamic inputs and required more constrained
settings.

A major breakthrough in human pose estimation came with the introduction of
OpenPose [2], an open-source framework capable of real-time multi-person 2D pose
detection using part affinity fields. OpenPose enables reliable extraction of body
keypoints from standard camera footage without depth sensors or markers, making
it a foundational tool for gesture-based applications. An alternative to OpenPose is
Google’s MediaPipe [6], which also provides real-time pose estimation. While both
are highly capable, OpenPose was chosen for this work due to its widespread use
in academic research and its BODY-25 model, which offers a rich set of keypoints
suitable for detailed pose analysis.

In a related domain, He et al. [4] explored the recognition of traffic police
gestures using a combination of convolutional pose machines and handcrafted spa-
tial features. Their method also incorporated LSTM networks to model temporal
patterns. While their focus was on dynamic gesture sequences, their integration of
pose-based features laid important groundwork for gesture interpretation in safety-
critical contexts.

Several other studies have leveraged keypoint extraction and deep learning for
gesture recognition. Liu et al. [5] employed a Spatio-Temporal Graph Convolutional
Network (ST-GCN) with attention mechanisms to achieve high accuracy on a large
dataset of police gestures. Similarly, Ma et al. [7] developed a real-time ST-CNN
using Kinect data, demonstrating strong performance in virtual city environments.
Sathya et al. [10] used cumulative frame differences and a Random Forest classifier
for static gesture recognition. Mishra et al. [9] focused on recognizing authorized
traffic controllers by first detecting them with an object detector, then reconstruct-
ing 3D hand models for gesture classification with a CNN. A related approach for
dynamic gesture recognition was proposed by Bagladi et al. [1].

While our work focuses on 2D pose estimation for simplicity and efficiency, 3D
pose estimation offers a more direct solution to viewpoint variations. For instance,
Fóthi et al. [3] proposed a method for multi-view, multi-body 3D pose estimation
that does not require camera calibration. Such methods can inherently handle
rotation but often demand more complex models and multiple camera setups, which
contrasts with our goal of a lightweight, single-camera system.

Building upon these works, our method targets the recognition of static arm
signals using only pose keypoints, without temporal modeling, and emphasizes
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robustness against viewpoint variations.

4. The proposed pipeline
The proposed system recognizes static human arm signals through a multi-stage
pipeline, as depicted in Figure 1. The process consists of the following main stages:

1. We take 2D pictures of the person giving the static human arm signal.

2. Performing 2D keypoint estimation using the OpenPose BODY-25 model.

3. Normalization of the OpenPose keypoints for scale and position invariance.

4. Classification using a gesture recognition model (see Section 5).

Figure 1. Pipeline for static arm gesture recognition.

The initial stages of the pipeline – image capture, keypoint estimation, and
normalization – are detailed in the following subsections.

4.1. Image capture
The process starts with capturing a 2D image of the person performing the gesture
using a simple webcamera. This approach requires no additional depth sensors or
specialized hardware. To ensure reliable keypoint detection, the person’s upper
body must be fully visible in the frame.

4.2. Keypoint estimation
The captured image is processed using the OpenPose framework [2] to extract
2D keypoints. We utilize the BODY-25 model to obtain the coordinates of 25
anatomical points, which provides a structured representation of the person’s pose
for the subsequent steps.

4.3. Normalization
The raw keypoint coordinates from OpenPose are not directly suitable for gesture
classification because they are sensitive to the person’s position, distance from the
camera, and individual body proportions. To address this, we apply a normaliza-
tion step.
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The skeleton is transformed to fit within a unit square, with the neck keypoint
(ID 1) serving as the new origin (0, 0). This process of translation and uniform scal-
ing makes the gesture representation independent of the person’s size or position in
the frame. By removing this variability, the normalization allows the classification
models to focus purely on the pose itself.

5. Recognition models

The recognition of static arm gestures in this study is approached using two fun-
damentally different machine learning paradigms. The first is an unsupervised
method based on the K-means clustering algorithm, while the second utilizes a
supervised neural network classifier. Both methods operate on normalized 2D key-
point vectors produced by the pose estimation pipeline described in Section 4, and
are designed to assign the input pose to one of a finite number of predefined gesture
categories.

This subsection focuses on the K-means clustering approach, detailing the con-
figuration phase, distance metrics, evaluation process, and practical considerations
of using this method for real-time gesture classification.

5.1. K-means clustering for gesture classification

K-means is an unsupervised learning algorithm widely used for partitioning data
into K distinct clusters based on geometric similarity. In the context of gesture
recognition, each cluster corresponds to a specific arm pose, and the centroid of
that cluster serves as its representative gesture template.

5.1.1. K-means algorithm overview

The standard K-means algorithm proceeds through the following steps:
1. Initialization: K cluster centroids are initialized from representative sam-

ples.
2. Assignment: Each input data point (normalized pose vector) is assigned to

the closest centroid using a chosen distance metric.
3. Update: New centroids are computed by taking the mean of all vectors

assigned to each cluster.
4. Iteration: Steps 2 and 3 are repeated until the centroids stabilize.
Once configured, the resulting centroids can be stored and used for efficient

classification of unseen samples by identifying the nearest cluster representative,
which is called centroid.

Typically, 10-20 samples per gesture were sufficient in my experiments to yield
stable and accurate centroids.
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5.1.2. Pose representation and distance metrics

Each normalized pose is represented as a 50-dimensional real-valued vector formed
by concatenating the (x, y) coordinates of 25 BODY-25 keypoints. Classification
is performed by computing the distance between this input vector and each of the
K centroids. The sample is assigned to the class of the closest centroid.

We explored multiple distance metrics:
• Euclidean distance, calculated over all keypoints,
• Weighted distance, where each keypoint contributes with a custom weight

to emphasize informative keypoints.
The weighted distance is defined as:

ρ(A, B) =

√√√√ 50∑
i=1

wi · (Ai − Bi)2

where A, B ∈ R50 are the input vectors, and w ∈ R50 is a manually constructed
weight vector. Higher weights are typically assigned to the elbows and wrists,
which are key to distinguishing gestures. The Euclidean distance is a special case
of this formula where all weights wi are equal to 1.

5.2. Neural network-based classification
In addition to the unsupervised K-means clustering method, we also implemented
a supervised neural network approach for static arm gesture classification.

5.2.1. Neural network architecture

The classification model is a feedforward neural network composed of fully con-
nected (linear) layers interleaved with ReLU activation functions. The input layer
receives the 50-dimensional normalized pose vector, and the output layer produces
class scores for the 9 gesture categories. Several configurations were tested; a typ-
ical architecture that achieved high accuracy was as follows:

• Input: 50 features (normalized keypoints)
• Hidden layers: [1024, 512, 256] neurons with ReLU activation
• Output layer: 9 neurons (gesture classes) with softmax activation

5.2.2. Training and validation

The labeled dataset was split into training, validation, and test sets in a 60–10–
30% ratio. The model was trained using the Adam optimizer with a batch size of
4096. Training was performed for multiple epochs, with early stopping based on
validation accuracy. The stopping threshold was set to 99.5% validation accuracy.

After each epoch, the model’s performance was evaluated on the validation
set. If the model surpassed the accuracy threshold, training was halted to avoid
overfitting.
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6. Dataset
To evaluate the proposed recognition methods, we recorded a custom dataset of
static human arm signals using a standard webcamera. No special hardware was
used, ensuring that the system remains cost-effective and widely deployable.

6.1. Data collection procedure
The dataset was recorded using a standard webcam setup. Images were extracted
from videos and then processed through the OpenPose framework to extract 2D
pose keypoints.

To ensure robustness and variability, multiple individuals were involved in the
data collection process. While the majority of the samples were performed by the
author, three additional participants were recruited to enrich the dataset. These
contributors received brief verbal instructions about the arm signals but were not
trained in any standardized way, resulting in natural variation in gesture execution.
This diversity helps the models generalize across different body types and styles of
gesture performance.

6.2. Recorded signals
We defined a total of nine distinct static arm signals, inspired by standardized
traffic control and hand signaling conventions. These are:

Each sample in the dataset was manually labeled according to one of the cate-
gories above. Participants held the same arm position with minor natural variation
for several seconds, from which frames were extracted to increase the sample count.

A total of 53000 labeled samples were collected for the full dataset.

6.3. Rotated dataset
In practical applications, it is common for the individual giving a signal not to be
directly facing the camera (Figure 3), which may result in reduced accuracy. This
paper presents various approaches to address the problem of rotated signals. One
solution involves artificially generating rotated data by estimating the depth of the
keypoints from the data captured facing the camera, producing a 3D skeleton that
can be rotated in 3D space before being projected back onto a 2D plane. Since only
the data captured facing the camera is required for this process, there is no need
to create additional datasets, making the solution both convenient and easy to use.
For the K-means algorithm, the centroids are augmented with this synthetic data
after the initial configuration phase. Similarly, this artificially generated training
data can also be employed in training the neural network.

To test the robustness of the system against moderate body rotation, we also
recorded a second, smaller dataset focusing on rotated poses. For this purpose,
a custom-printed circular rotation guide (Figure 4) was placed on the floor to
allow consistent measurement of the body’s rotation angle relative to the camera.
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leftup neutral rightup

leftstraight straightstraight rightstraight

leftshoulder shouldershoulder rightshoulder

Figure 2. The nine static arm signals in the dataset.

(a) 45◦ to the left (b) Facing the camera (c) 45◦ to the right

Figure 3. Examples of rotated static arm signals.
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Each subject stood on the guide and performed the signal while rotated by specific
angles. This setup ensured that the rotated dataset was captured with high angular
precision.

Figure 4. Custom-made rotation guide for precise data collection.

We selected a representative subset of three arm signals for rotation: neutral,
rightshoulder, and rightup. These were recorded at rotation angles of 15◦, 30◦,
and 45◦ both to the left and right relative to the frontal view. This setup enabled
controlled testing of the recognition system using real-world data. The rotated
dataset consists of over 17,000 front-facing samples and over 34,000 rotated samples.
Our results show that these solutions robustly handle rotated hand signals up to
45◦ with respect to the ideal case of facing the camera, while maintaining benefits
like speed and accuracy in recognition (Figure 7).

7. Results
The performance of the proposed gesture recognition methods was evaluated on
both the full dataset of nine static arm signals and the rotated subset of three
gestures. The results are summarized in this section.

7.1. Full dataset results
The K-means clustering approach demonstrated high accuracy in classifying the
nine static arm signals. As shown by the confusion matrices in Figure 5, both the
standard Euclidean distance and the weighted distance metric yielded excellent
results with minimal confusion between gestures. The weighted distance, which
emphasizes keypoints on the arms and hands, provided a marginal improvement,
confirming the effectiveness of this simple, unsupervised method for pose classifi-
cation.

Similarly, the neural network classifier achieved outstanding performance on
the full dataset. The confusion matrix in Figure 6 illustrates that the model cor-
rectly classified nearly all test samples, demonstrating its capacity to learn robust
representations of the gestures. Both methods proved to be accurate and effective
for recognizing the defined set of static arm signals.
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(a) K-means clustering results on the full
dataset (Euclidean distance).

(b) K-means clustering results on the full
dataset (weighted distance).

Figure 5. Confusion matrices for K-means clustering on the full
dataset.

Figure 6. Neural network classifier results on the full dataset.
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7.2. Rotated dataset results
The robustness of both the K-means and neural network models against body rota-
tion was evaluated using the rotated dataset. The results, summarized in Figure 7,
demonstrate that both methods maintain high recognition accuracy even when the
subject is rotated up to 45◦ from the frontal view. While minor misclassifications
occur at larger rotation angles, particularly for the K-means model, the overall per-
formance is highly successful. This confirms that our approach, including the use
of artificially generated rotated data for training, effectively solves the challenge of
viewpoint variation in static gesture recognition.

(a) K-means clustering results on rotated
dataset.

(b) Neural network results on rotated
dataset.

Figure 7. Confusion matrices of K-means and neural network on
the rotated dataset.

8. Conclusions
This paper presented a method for recognizing static human arm signals using 2D
keypoint estimation and machine learning classification. The approach is based
on OpenPose for keypoint extraction, followed by normalization and classification
using K-means clustering or a neural network. A novel aspect of the work is the
generation of artificially rotated data to augment the training set, improving the
model’s robustness to changes in body orientation. The methods were evaluated on
a custom dataset of nine gestures, with results showing high accuracy and efficiency
even with body rotations of up to 45 degrees, indicating the potential for practical
applications in real-time gesture recognition using standard camera equipment.
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