Fundamental limitations of online supervised learning in dynamic control loops

Pintye, István, Kovács, József, Lovas, Róbert (2025) Fundamental limitations of online supervised learning in dynamic control loops In: Proceedings of the International Conference on Formal Methods and Foundations of Artificial Intelligence. Eger, Eszterházy Károly Catholic University. pp. 161-173.

[thumbnail of fmfai2025_pp161-173.pdf] pdf
fmfai2025_pp161-173.pdf

Download (1MB) [error in script]
Hivatalos webcím (URL): https://doi.org/10.17048/fmfai.2025.161

Absztrakt (kivonat)

In conventional supervised learning of neural networks, training samples are selected either randomly or in a predefined order, assuming independence across samples. This paper diverges from that setting by embedding the learning process within a dynamic control system. Specifically, we consider a discrete-time control system where the output is given by a nonlinear mapping, that dynamically adjusts the number of virtual machines (VMs) based on workload characteristics such as CPU, memory, and network usage. The system’s output is determined by a neural network that estimates the deviation from a target utilization profile. In online supervised learning embedded in feedback control, data generation is shaped by model performance, leading to a narrowing of the observed input distribution over time. This self-induced sampling bias may reduce model robustness, stability and adaptability. We demonstrate that simple periodic perturbations to the VM allocation process act as an effective form of regularization, improving learning robustness without relying on external reward or replay mechanisms. Unlike traditional approaches using fixed training sets, in our formulation the system operates online where at each time step, multiple candidate control inputs u[k] ∈ U are evaluated continuously and each yielding a predicted output y[k] = f(x[k]). At each step, the controller selects the action that minimizes the predicted deviation from the desired reference, which then determines the next state x[k + 1] and yields the next training sample for the neural network. As a result the learning trajectory is not predetermined but is dynamically created by the controller’s actions, which depend on the network’s current predictions. We present how this closed-loop interaction between prediction and sample selection influences learning stability, convergence, and input space coverage in an online setting.

Mű típusa: Könyvrészlet - Book section
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
Pintye, István
istvan.pintye@sztaki.hun-ren.hu
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Kovács, József
robert.lovas@sztaki.hun-ren.hu
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Lovas, Róbert
jozsef.kovacs@sztaki.hun-ren.hu
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Megjegyzés: The research leading to these results has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No. 101131207 (GreenDIGIT). This work is partially funded by the Hungarian Ministry of Innovation and Technology NRDI Office within the framework of the Artificial Intelligence National Laboratory Program.
Kapcsolódó URL-ek:
Kulcsszavak: online learning, closed-loop control, neural networks, cloud resource allocation, distributional shift, adaptive systems
Nyelv: angol
DOI azonosító: 10.17048/fmfai.2025.161
Felhasználó: Tibor Gál
Dátum: 28 Okt 2025 10:37
Utolsó módosítás: 28 Okt 2025 10:37
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/8812
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet