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Abstract. In conventional supervised learning of neural networks, training
samples are selected either randomly or in a predefined order, assuming inde-
pendence across samples. This paper diverges from that setting by embedding
the learning process within a dynamic control system. Specifically, we con-
sider a discrete-time control system where the output is given by a nonlinear
mapping, that dynamically adjusts the number of virtual machines (VMs)
based on workload characteristics such as CPU, memory, and network usage.
The system’s output is determined by a neural network that estimates the
deviation from a target utilization profile.

In online supervised learning embedded in feedback control, data genera-
tion is shaped by model performance, leading to a narrowing of the observed
input distribution over time. This self-induced sampling bias may reduce
model robustness, stability and adaptability. We demonstrate that simple
periodic perturbations to the VM allocation process act as an effective form
of regularization, improving learning robustness without relying on exter-
nal reward or replay mechanisms. Unlike traditional approaches using fixed
training sets, in our formulation the system operates online where at each
time step, multiple candidate control inputs u[k] ∈ U are evaluated continu-
ously and each yielding a predicted output y[k] = f(x[k]). At each step, the
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controller selects the action that minimizes the predicted deviation from the
desired reference, which then determines the next state x[k + 1] and yields
the next training sample for the neural network. As a result the learning tra-
jectory is not predetermined but is dynamically created by the controller’s
actions, which depend on the network’s current predictions. We present how
this closed-loop interaction between prediction and sample selection influ-
ences learning stability, convergence, and input space coverage in an online
setting.

Keywords: online learning, closed-loop control, neural networks, cloud re-
source allocation, distributional shift, adaptive systems

1. Introduction
In real-time control systems, the quality of a neural network’s predictions depends
not only on its internal structure and learning parameters, but also on the data
it receives during training - by the trajectory of data it encounters - a trajectory
shaped dynamically by its own predictions.

Control decisions are made by evaluating future system states using the current
neural network model, thereby creating a prediction-driven data generation pro-
cess. This feedback loop between learning and decision-making creates a unique
situation where the data used for learning is not independent from the learning
itself. As the model improves and control stabilizes, the diversity of training sam-
ples naturally decreases. The learning agent spends more time in well-regulated
regimes, causing the network to adapt to a narrow region of the state space. This
effect, which we refer to as distributional narrowing, can reduce generalization and
lead the model fragile to noise, drift, or unexpected dynamics when conditions
change. This phenomenon can also be viewed as a case of closed-loop covariate
shift: predictions influence actions, actions influence state transitions, and the re-
sulting data distribution becomes endogenously biased by the controller’s current
policy. We adopt this term to emphasize that sample selection is not external, but
induced by the model-in-the-loop.

To illustrate this, we use a simulation where a system dynamically adjusts
the number of active virtual machines (VMs) in response to changing workload
conditions. The system receives inputs such as CPU utilization, RAM usage, and
network load, and uses a neural network to predict how many VMs are needed
to maintain balanced resource usage. Control decisions based on these predictions
directly influence future input states, thereby closing the loop between learning
and decision-making.

Our key observation is that this learning loop can be both a strength and a
weakness. On one hand, the model adapts to the system behavior it helps reg-
ulate. On the other hand, it may overfit to narrow workload patterns, leading
to unstable decisions under unexpected load changes. To address this, we test a
simple idea: periodically apply artificial perturbations to the VM allocation deci-
sions. These forced adjustments expose the system to underrepresented operating
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regimes, increasing data diversity and improving learning robustness.
To validate these ideas, we implement a simulated resource management task

in which a neural network regulates the number of virtual machines under time-
varying load conditions. The task involves tracking target utilization ranges while
adapting to workload dynamics. We evaluate how combinations of model complex-
ity and artificial exploration affect learning performance. Even in a fully determin-
istic environment, the system’s behavior varies widely depending on the diversity
of training experiences encountered during learning.

In adaptive control systems, the learning process and the controller’s decision-
making are often interdependent. While classical supervised models assume fixed
training data and offline learning, real-time systems operate under evolving con-
ditions that require continuous adaptation. In this study, we integrate online su-
pervised learning into a feedback-controlled system in which the learning model
directly influences, and is influenced by, system behavior. Specifically, we con-
sider a discrete-time nonlinear state-space system of the form: y[k] = f(x[k], u[k]),
where f(·) is a neural network approximator trained online. Unlike classical linear
systems expressed as y[k] = Cx[k] + Du[k], the output here is determined by a
learned nonlinear function of the current system state x[k]. At each time step, a
finite set of candidate control actions u ∈ U is evaluated. These candidates yield
different state transitions and predicted outputs. The controller selects the action
that minimizes the deviation from a predefined target yref[k]:

u∗[k] = arg min
u∈U
∥f(x[k]; u[k])− yref[k]∥.

This feedback mechanism works as the model’s current performance affects
which training data will be observed next, closing the loop between prediction and
future training input. The system is thus self-organizing in terms of data generation
and the network continuously adapts to the evolving input-output trajectory.

Through extensive simulations, we show that periodically forcing the agent into
previously unseen and suboptimal regions of the state space-rather than allowing
it to self-regulate exclusively based on its current policy can improve the learn-
ing process. This artificial perturbation mechanism cause greater sample diversity
which leads to more robust and generalizable neural network predictions in VM al-
location. We demonstrate that the same system, exposed to the same environment,
may yield lower cumulative tracking errors depending on the external perturbation
and exhibit more stable learning behavior compared to purely autonomous learn-
ing mechanism. As we later demonstrate, these results point to the importance
of actively managing the learning process state space exploration during learning.
In contrast to traditional approaches that focus on dynamic or adaptive hyperpa-
rameter optimization, we emphasize the role of sample diversity and input space
coverage as one of the key determinant of control performance.

2. Related work
Much prior work in supervised learning has investigated the effect of sample selec-
tion and ordering on convergence. Curriculum learning, hard negative mining, and
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stratified sampling methods are some well-known examples for these. But these
typically rely on predefined sampling strategies to improve convergence speed or
model robustness [1, 15]. Bouchard et al. introduce an online approach to dy-
namically select training examples based on the current model state, improving
learning efficiency in evolving data contexts [2], which is conceptually related to
our closed-loop sample selection.

General surveys such as Soviany et al. [11] provide a taxonomy of curriculum
learning methods, including self-paced and RL-guided curricula, while Narvekar et
al. [10] frame curriculum generation in reinforcement learning domains as a formal,
adaptive process suitable for sequential decision-making settings. The curriculum
learning paradigm itself has been more deeply explored in recent work. Hacohen
and Weinshall (2019) systematically examine how scoring and pacing strategies
affect deep network convergence, showing substantial gains in both accuracy and
training speed via curriculum schedules [6]. Graves et al. (2017) propose an auto-
mated curriculum learning framework where a multi-armed bandit selects training
samples to maximize learning progress, significantly accelerating learning in se-
quence modeling tasks [5]. Parallels our perturbation-based approach to diversify
training trajectories Liu et al. actively controls the sample order to improve con-
vergence of learning [8].

In online learning and streaming data settings, concept drift adaptation has
been extensively studied. Gama et al. presented a comprehensive survey on concept
drift adaptation methodologies, including ensemble and drift detection techniques
[4]. Elwell and Polikar proposed incremental ensemble methods for nonstationary
environments that dynamically adapt to drift [3]. Wang et al. explored mining
ensemble classifiers for evolving data streams in KDD-2003 [12]. Losing et al.
introduced a dual-memory architecture to manage diverse drift types in real-time
systems [9].

While reinforcement learning naturally addresses closed-loop feedback dynamics
and curriculum generation in RL domains has been formally framed as an adaptive
process suitable for sequential decision-making [10], fewer studies [11] consider
purely supervised settings where the training data distribution is influenced by
the model’s own predictions. Our work focuses on these feedback-coupled systems
without relying on reward signals or repeated training episodes. It aligns with
adaptive control and online learning under concept drift, but prioritizes one-pass
supervised updates in continuous feedback systems. These works support the view
that careful ordering of training examples can act as a powerful regularizer in
dynamic systems.

3. Motivation
Traditional supervised learning often assumes that samples are drawn i.i.d. from
a static distribution. However, in real-time systems where a model is embedded
within a controller, this assumption no longer holds. Here, the learning process
affects the system’s state evolution, and in turn, the system determines which
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samples the model sees next. In contrast, when a model is used within a control
loop, the input data becomes dependent on the model’s predictions. Each decision
influences the system’s next state, which in turn determines the next input to the
model.

This feedback-induced data generation process creates both a challenge and
an opportunity: model predictions directly influence control actions and resource
allocation, which in turn shapes future input observations such as CPU, RAM, and
network utilization. In other words, the model does not only passively receive and
learns from data but also actively contributes to generating it.

This feedback structure creates a coupling between the model’s estimation and
the trajectory of training samples. A sequence of high-error predictions can move
the system into rarely visited regions of the state space, where the model has
limited prior exposure. On the other hand, consistently low-error predictions may
constrain the system’s behavior to a limited subset of states. In both cases, the
data distribution becomes non-representative of the broader task space.

Over time, this interaction may cause the learning process to become biased
toward a narrow region of the state space, making the model fragile to sensor
drift, unexpected conditions, or shifts in workload dynamics. Since online learning
systems typically process each sample only once and offer no opportunity to reset
or rebalance the training sequence, such distributional biases cannot be corrected
retrospectively.

We propose to investigate whether artificially introducing diversity during train-
ing improves performance. By occasionally overriding the model’s predicted control
decision with a random alternative, the system is exposed to unfamiliar states that
would otherwise remain unvisited. This forced control input changes the system’s
trajectory and results in exposure to input regions that would otherwise be ex-
cluded. This forced exploration is expected to increase input coverage, potentially
improving stability and generalization, particularly in higher-capacity models. Our
goal is to evaluate how such a modification affects the convergence, generalization,
and stability of the learning process under different model capacities.

The central motivation of this work is to understand how this coupling influ-
ences: (1) the speed and stability of convergence, (2) the diversity of encountered
workload regimes, and (3) the robustness of learning under dynamically shifting
data distributions. Unlike curriculum learning or sample-weighting strategies that
assume external control over data order, our method embeds sampling decisions
within the system dynamics and controller behavior. This fully endogenous sample
selection process also presented by [14] illustrating the value of dynamic sampling
policies under evolving data distributions.

4. System model
To explore the learning dynamics discussed above, we employ a simplified sim-
ulation model which captures the essential features of real-time online learning
in control systems. We consider a discrete-time control system (in which) where
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an agent (e.g., a simplified autoscaler) dynamically adjusts the number of virtual
machines (VMs) in response to synthetic workload signals generated along a time-
varying pattern with increasing frequency and amplitude. The system dynamics
are modeled in two parts: a linear state transition model and a nonlinear output
approximation via a neural network. This workload stresses the spectral resolution
of the estimator. The smaller MLP (5, 3) tends to underfit higher-frequency com-
ponents, while the larger MLP (10, 5) has sufficient capacity to fit them but, in
autonomous mode, may over-specialize to frequently visited regimes. Periodic per-
turbation exposes rarer, high-frequency regions, improving coverage and stabilizing
learning, consistent with our capacity proxy 1012 vs. 422.

Let the state vector at time k be denoted as x[k] ∈ Rn, which consists of
the current sensor readings (e.g., CPU usage, RAM usage, Network usage). The
control input u[k] ∈ {−10,−9, . . . , 10} represents the agent’s discrete VM number
adjustment at each time step. The state transition is modeled by the linear system:

x[k + 1] = Ax[k] + Bu[k], (4.1)

where A ∈ Rn×n and B ∈ Rn are system matrices that approximate how the state
evolves based on previous measurements and applied input.

The output variable y[k] ∈ R represents the deviation of the current system load
state from the desired utilization target (e.g., balanced CPU and network usage),
it is estimated through a neural network mapping the predicted state to a scalar
value:

y[k] = f(x[k]; θ), (4.2)

where f(·; θ) is a fully connected feedforward neural network with parameters θ,
trained online using incoming sensor data and revealed ground truth offsets. The
primary goal of the control system is to maintain resource usage close to a pre-
defined reference profile, minimizing deviations from the target CPU and network
utilization levels. Both the neural network parameters θ as well as the linear tran-
sition matrices A and B are adapted continuously during execution. The matrices
A and B are estimated online using least-squares regression over observed pairs of
consecutive system states and applied control inputs.

At each time step, all possible control inputs u ∈ U = {−10, . . . , 10} are evalu-
ated by simulating the next state and passed through the neural network to predict
the resulting deviation. At each step, all possible actions are simulated using the
previously defined dynamics in equations (4.1) and (4.2), to evaluate the predicted
next state and output deviation. The control input u∗[k] is selected to minimize
the distance from the reference:

u∗[k] = arg min
u∈U
∥ỹ[k; u]− yref[k]∥. (4.3)

This makes the data-generating process dependent on the model’s own predic-
tions, creating a self-reinforcing learning trajectory. After each control decision,
the system also transitions to a new state x[k + 1], determined by the internal
dynamics (which is approximated), and a new data pair (x[k], y[k]) is added to the
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training set. After executing u∗[k], the true output error is revealed as the actual
deviation of the system from the target utilization, computed based on workload
indicators such as CPU or network saturation, denoted ytrue[k]. This value is used
to update the neural network via online stochastic gradient descent:

θ ← θ − η∇θL(f(x[k]; θ), ytrue[k]),
where θ are the neural network parameters, η is the learning rate set to 0.01, and
L is the loss function (in this case mean squared error).

As we can see this procedure sequence creates a unique learning loop. Model
predictions influence control actions, which influence state transitions, which then
determine future training data. The interplay of learning and control thus forms
an implicit curriculum, driven not by external design but by internal performance.

In this setup, the learning rate η is not tuned during operation and is fixed
throughout the entire run. Its value strongly affects both the convergence speed and
stability of the prediction model and indirectly, the control behavior of the agent.
Since no replay buffer or offline tuning is available, the system’s learning trajectory
is entirely shaped by the chosen hyperparameters at initialization. But this study
does not aim to optimize learning rate dynamics. Once a suitable learning rate was
empirically selected, it remained fixed throughout all training runs, allowing us to
isolate the effect of perturbations and model capacity on learning behavior.

We investigate: 1. How this learning process converges toward an optimal
solution over time. 2. Whether it enables more efficient exploration of the state
space. 3. The trade-offs between control accuracy and learning robustness under
online adaptation. 4. Whether the learning process becomes more stable when the
agent is periodically forced into previously unseen states. For example by artificially
perturbing the VM scaling decisions at regular intervals to improve generalization

5. Methods

5.1. Simulation environment
To investigate the online learning behavior of a closed-loop neural controller, we
developed a simulation environment in Python using the Pytorch framework. The
environment models a simplified cloud infrastructure where a controller dynami-
cally adjusts the number of active virtual machines (VMs) in response to changing
resource demands. The simulated system operates under a synthetic workload pat-
tern that varies over time, mimicking real-world fluctuations in service usage. At
each discrete time step k, the agent observes current resource utilization and selects
a control input u[k] ∈ {−10, ..., 10}, which corresponds to scaling the VM pool up
or down by discrete steps. At every time step, the agent receives three resource
utilization metrics: CPU utilization percentage, RAM (memory) utilization per-
centage and Network bandwidth usage. These readings are normalized and form
the input state vector:

x[k] =
[
CPU[k] RAM[k] NET[k]

]⊤
,
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which serves as input both for the control dynamics (see Equation (4.1)) and the
neural network output estimation (see Equation (4.2)).

5.2. Training procedure
At each time step, the control loop proceeds as follows:

1. The current state vector x[k] is recorded from system metrics.
2. For each candidate scaling action u ∈ U :

(a) Simulate the next system state x̃[k + 1; u] = Ax[k] + Bu, reflecting how
scaling the VM pool affects resource usage.

(b) Estimate the deviation from the target operational balance via y =
f(x̃[k + 1; u]).

3. Choose u∗[k] that minimizes the deviation from the desired output yref = 0.
4. Apply u∗[k], observe the resulting true deviation ytrue[k], and transition to

the next state x[k + 1].
5. Update the neural network via online stochastic gradient descent. The linear

dynamics matrices A and B are also updated using least-squares regression
to approximate the effect of control actions on future state transitions.

The neural network function f(·) is modeled as a fully connected feedforward
neural network with hyperbolic tangent activations. It maps the current three-
dimensional system state x[k] to a scalar estimate of the deviation from balanced
resource usage y. For a two-hidden-layer MLP with hidden sizes (h1, h2), input
dimension d = 3, and scalar output m = 1, the number of trainable parameters is
W = dh1+h1 + h1h2 + h2 + h2m + m. In our two configurations this gives: (10,
5) → W = 101; (5, 3) → W = 42. For smooth activations such as tanh, classical
VC/pseudodimension bounds scale polynomially in W ; in practice we report W 2 as
a coarse capacity proxy: 1012 =10,201 vs. 422 =1,764. We use these values only to
compare relative capacity between settings and capacity alone does not guarantee
online generalization in closed-loop learning. The loss is defined as the squared error
between predicted and true deviation: L(f(x[k]), ytrue[k]) = (f(x[k])− ytrue[k])2.

Learning occurs online – one sample at a time – without replay buffers or mini-
batching. The system operates under a one-pass constraint, reflecting real-world
adaptive control environments where replay is infeasible.

6. Experiments
As defined in Equation (4.3) in our simulated environment, the system adjusts
the number of active virtual machines (VMs) based on current workload indica-
tors: CPU utilization, RAM usage, and network traffic. At each time step, several
candidate VM counts u[k] ∈ U are evaluated using the neural network model
f(x[k], u[k]), which predicts the deviation from a target utilization profile. The
system selects the VM count that minimizes this predicted deviation (see Equa-
tion (4.3)).
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To investigate the role of extra perturbation, we conduct multiple simulation
runs with different random seeds across identical environments. The primary con-
trol objective is to maintain a balanced utilization profile across CPU and network
resources. The true deviation from this balance is denoted by ytrue[k], which reflects
the difference between observed and target utilization ratios. To evaluate learning
performance, we conducted multiple simulation runs under each experimental con-
dition and measured cumulative tracking error, the sum of absolute deviations from
the target resource utilization profile over time. At each timestep k, the agent’s
distance from the optimal trajectory is measured and added to the total error. We
report both the mean and standard deviation of this metric across runs. Formally,
this is defined as E

(i)
track = sumT

k=1

∣∣∣y(i)
true[k]− yref[k]

∣∣∣, and the summary statistics
are computed as

µtrack = 1
N

N∑
i=1

E
(i)
track and σtrack =

√√√√ 1
N − 1

N∑
i=1

(
E

(i)
track − µtrack

)2
.

These metrics provide insight into both the control accuracy (via tracking error)
and the learning performance of the model (via prediction error), enabling a robust
comparison between the perturbed and non-perturbed training regimes.

7. Results
To further investigate the interplay between model complexity and input space di-
versity in online neural control, we conducted a set of four experiments combining
two architectural settings and two training modes. The neural network used to
estimate the system’s deviation from target resource balance was configured with
either a smaller MLP (5, 3) or a larger MLP (10, 5) structure. Each configuration
was trained under one of two regimes. (A.) Autonomous control, where the agent al-
ways selected the action predicted to be optimal. (B.) Artificially disturbed control,
where every third decision step (from time 0 to 1500) was randomly overridden with
a uniformly sampled control value from [-10, +10], while all other steps followed the
prediction-based policy. We study pre/during/post phases to assess degradation
after perturbation removal. Beyond "every 3 steps (0–1500)", we evaluate schedules
with periods {2, 5} and truncated windows [0, T0] with T0 ∈ {800, 1200}. Denser
schedules increase coverage but may introduce short-term bias; sparser schedules
yield smaller bias but less variance reduction. We report median/mean cumulative
error and failure rate across seeds to locate a practical trade-off.

This 2×2 setup allowed us to test the following hypotheses: (1.) The smaller
network (5,3) will underperform in tracking accuracy regardless of disturbance,
due to limited expressive power. (2.) The larger model (10,5) will achieve better
accuracy but may exhibit instability and divergence during training. (3.) Artifi-
cial perturbation will not help the smaller network due to its limited capacity, and
might degrade convergence. (4.) Larger models would benefit from exploration,
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improving stability and generalization. Each experimental condition was evaluated
over 100 independent simulation runs, with only the random initialization of net-
work weights varied. The results summarize the cumulative tracking error during
the test sequence. For better understanding first we present the comparision of
Configuration 3 and Configuration 4 results. Instead of visualizing each trajectory
individually of each run, we show the mean resource adjustment trajectory along
with one standard deviation over time, providing an aggregated view of tracking
performance and learning stability.

Figure 1 shows the agent’s deviation from the desired operational target across
multiple independent simulation runs. The results demonstrate that artificial ex-
ploration reduces variance and improves stability, especially for larger models. In
contrast, autonomous learning without perturbation leads to greater performance
divergence. Smaller networks show capacity limitations in all scenarios.

Figure 1. Error Deviation over Time for Configurations 3 and 4.

Figure 2 shows the cumulative tracking error over time on a log-scale for all four
configurations. The curves are plotted on a log scale due to the large variance be-
tween successful and failed runs. In each subplot, individual runs are represented
as light blue lines, with bold lines indicating the median and average trajecto-
ries. The left subplots show the cases where the agent learned and operated fully
autonomously, always selecting the action deemed optimal by the model at that
moment. The right subplots show the outcomes when the agent was artificially
perturbed every 3 steps by forcing it into a less familiar region of the state space.

We can interpret our results as follows: Without perturbation in Configura-
tion 1. (5,3 no perturbation) high error variance, frequent failure cases, unstable
convergence occured. The network quickly overfits to a narrow input regime and
fails to recover from errors. The same has happened in Configuration 3. when
perturbation was not applied. Configuration 2. (5,3 + perturbation): Slight im-
provement in median performance, but lower failure rate even during the training.
Configuration 4. (10,5 + perturbation): The larger network benefited the most
from the perturbation showed better performance right after the training phase,
but the performace graudally degrade again if perturbation is not applied further-
more as it can see on the bottom right plot after the 400th timestep. Cumulative
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Figure 2. Cumulative error over test sequence under two type of
training. Left: autonomous control with no intervention. Right:

periodic perturbation to increase state-space diversity.

tracking error was recorded over time for all runs. Additionally, we defined a simple
failure condition: a run was considered failed if, by the final timestep, the agent’s
deviation from the operational target exceeded a critical threshold. A run was
classified as a failure if its final cumulative tracking error exceeded 20 000. This
threshold was chosen empirically by observing that successful runs typically re-
mained below 10 000 at the final timestep, while unstable runs accumulated errors
an order of magnitude larger. Thus, the threshold reliably separates stable from
divergent trajectories. This indicated that the agent entered an unstable resource
state from which it could not recover. This indicated that the agent entered an
unstable resource state from which it could not recover. The following failure rates
were observed: Configuration 1 (5, 3, no perturbation): 21 / 100, Configuration 2
(5, 3, with perturbation): 8 / 100, Configuration 3 (10, 5, no perturbation): 26 /
100, Configuration 4 (10, 5, with perturbation): 13 / 100. The comparison shows
that the perturbation strategy led to more consistent behavior and reduced the
variance in deviations across different runs. These results indicate that the per-
turbed learning process achieved more robust generalization and improved stability
over time.
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8. Discussion and conclusion
This paper examines the effect of this self-induced sampling bias on learning ro-
bustness and looks into a simple but useful countermeasure, which is periodic
artificial perturbation of the control decisions. By occasionally forcing the system
into suboptimal or rarely visited states, we aim to reintroduce input diversity and
stabilize the learning trajectory. Our hypothesis just as suggested by [7] is that
such artificial exploration acts as an implicit regularizer, particularly beneficial in
high-capacity models prone to overfitting and instability. Intuitively, the pertur-
bations enlarge the effective sample size in the relevant regions of the state space,
counteracting endogenous sampling bias and delaying premature consolidation to
a narrow operating regime. Based on our experiments, models trained with this
perturbation approach reach more stable convergence and show lower long-term
variance in prediction and control error. This supports the idea that periodic and
focused exploration, even in supervised control systems, can work as a regularizer
that helps with generalization and stability.

In this study, we have identified a structural limitation of online supervised
learning when embedded in closed-loop control systems. As the model gets better at
keeping the system near optimal state, the diversity of its training data inherently
shrinks. Over time, this feedback loop causes the input data to become more
uniform, leading to self-induced overfitting to a narrow and stable operating regime.
This distributional narrowing reduces the model’s ability to generalize, and makes
it more vulnerable to unexpected changes or unmodeled noise, a challenge also
observed in semi-supervised one-pass learning under distribution shift [13].

We showed through extensive simulations that periodic artificial perturbation,
without reward, curriculum design, or replay, improves the stability of the learning
trajectory. This intervention can act as a form of implicit regularization, main-
taining diversity in the input space and reducing run-to-run variance in control
performance, including improved stability in VM allocation tasks. These findings
suggest that in feedback-coupled supervised systems, where the learner influences
its own data stream, exploration could be valuable and advantageous.

As a next step, we consider that such a control mechanism would be worth
studying and applying not only in simulation but also in real-world cloud infras-
tructure, where incoming workload and task profiles change continuously, requiring
adaptive strategies that preserve robustness and optimize energy efficiency under
nonstationary conditions.
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