An LSTM approach for fault prediction

Hornyák, Olivér (2025) An LSTM approach for fault prediction In: Proceedings of the International Conference on Formal Methods and Foundations of Artificial Intelligence. Eger, Eszterházy Károly Catholic University. pp. 90-101.

[thumbnail of fmfai2025_pp090-101.pdf] pdf
fmfai2025_pp090-101.pdf

Download (824kB) [error in script]
Hivatalos webcím (URL): https://doi.org/10.17048/fmfai.2025.90

Absztrakt (kivonat)

Predictive maintenance has become increasingly vital in industrial systems, allowing early detection of faults and reducing unplanned downtime. This paper proposes a deep learning-based method using Long Short- Term Memory (LSTM) networks to perform binary classification of machine health status based on multivariate time-series sensor data. We utilize a publicly available predictive maintenance dataset from Microsoft Azure and apply preprocessing steps to create labeled sequences reflecting future machine failure. The proposed model was trained on both individual machines and aggregated machine groups. Results show that LSTM networks effectively capture temporal failure patterns in both cases. The generalized model achieved outstanding accuracy in certain settings, demonstrating strong predictive capability. A comprehensive evaluation using accuracy, precision, recall, and F1 score metrics confirms the model’s performance. Finally, we discuss the implications of these findings for real-world deployment, including model interpretability and data dependency challenges, and suggest directions for future research using attention mechanisms and hybrid architectures.

Mű típusa: Könyvrészlet - Book section
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
Hornyák, Olivér
oliver.hornyak@uni-miskolc.hu
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Megjegyzés: This project was implemented with the support of the National Research, Development and Innovation Office under grant number 2020-1.1.2-PIACI-KFI-2020-00147.
Kapcsolódó URL-ek:
Kulcsszavak: predictive maintenance, fault prediction, Long Short-Term Memory (LSTM), time-series analysis; Remaining Useful Life (RUL)
Nyelv: angol
DOI azonosító: 10.17048/fmfai.2025.90
Felhasználó: Tibor Gál
Dátum: 28 Okt 2025 10:09
Utolsó módosítás: 28 Okt 2025 10:10
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/8805
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet