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Abstract. Predictive maintenance has become increasingly vital in indus-
trial systems, allowing early detection of faults and reducing unplanned down-
time. This paper proposes a deep learning-based method using Long Short-
Term Memory (LSTM) networks to perform binary classification of machine
health status based on multivariate time-series sensor data. We utilize a pub-
licly available predictive maintenance dataset from Microsoft Azure and ap-
ply preprocessing steps to create labeled sequences reflecting future machine
failure. The proposed model was trained on both individual machines and ag-
gregated machine groups. Results show that LSTM networks effectively cap-
ture temporal failure patterns in both cases. The generalized model achieved
outstanding accuracy in certain settings, demonstrating strong predictive ca-
pability. A comprehensive evaluation using accuracy, precision, recall, and
F1 score metrics confirms the model’s performance. Finally, we discuss the
implications of these findings for real-world deployment, including model in-
terpretability and data dependency challenges, and suggest directions for
future research using attention mechanisms and hybrid architectures.
Keywords: predictive maintenance, fault prediction, Long Short-Term Mem-
ory (LSTM), time-series analysis; Remaining Useful Life (RUL)
AMS Subject Classification: 68T07 – Artificial neural networks and deep
learning

1. Introduction
The prevention and prediction of industrial equipment failures are critical tasks
in manufacturing environments. Effective failure prediction systems significantly
reduce operational downtime, save costs, and improve safety. Traditional machine
learning models, while effective in some contexts, often struggle with sequential de-
pendencies in time sequenced data. In contrast, recurrent neural networks (RNNs)
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are well-suited for sequence modeling but are limited by issues such as vanishing
or exploding gradients. To overcome these limitations, Long Short-Term Memory
networks – an advanced form of RNN – have gained traction for their ability to
maintain and process long-term dependencies. Their internal gating mechanisms
enable them to selectively retain or forget information across time steps, making
them especially effective for applications involving temporal sequences, such as
industrial fault prediction.

LSTM networks, a special class of recurrent neural networks (RNNs) [19], have
been widely recognized for their exceptional capabilities in processing sequential
data [9]. Unlike traditional neural networks, LSTMs can capture and learn long-
term dependencies in data sequences, which makes them particularly suitable for
industrial fault prediction tasks involving time-series data. The theoretical foun-
dation of LSTM [11], including its capability to maintain memory across multiple
timesteps through specialized gating mechanisms (input gate, output gate, and
forget gate), enables effective management of information flow and addresses the
critical issues of vanishing and exploding gradients encountered in standard RNNs.

2. Background and related work
Predictive maintenance relies on the ability to anticipate equipment failures based
on historical and real-time operational data. Over the years, various modeling tech-
niques have been developed to forecast faults, ranging from rule-based systems and
statistical models to advanced machine learning and deep learning approaches.
Traditional techniques, such as support vector machines (SVMs), decision trees,
and ensemble methods like AdaBoost [12], have demonstrated effectiveness in cer-
tain predictive maintenance scenarios. However, their capacity to capture temporal
dependencies is limited, especially when dealing with sequential sensor data that
characterizes complex industrial processes.

Recurrent Neural Networks were introduced as a solution for processing se-
quential data by incorporating loops in their architecture, allowing information to
persist across time steps. Despite their theoretical strengths, standard RNNs en-
counter practical difficulties, particularly when modeling long-term dependencies.
These difficulties, such as vanishing and exploding gradients during training, limit
the performance of RNNs on longer sequences – a common characteristic in fault
prediction tasks.

Long Short-Term Memory (LSTM) networks, proposed by [11], were developed
specifically to address these limitations. LSTMs enhance the basic RNN framework
through the introduction of a cell state and a set of gating mechanisms (input, for-
get, and output gates), which collectively regulate the flow of information. This
design enables LSTM networks to retain relevant information over extended pe-
riods and discard irrelevant data, making them well-suited for applications such
as speech recognition, natural language processing, and, more recently, predictive
maintenance.

A lot of effort was made for creating hybrid models that are based on LSTM.
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[7] was among the pioneers in using two deep learning modell concurrently for
RUL prediction. [20] combined CNN, LSTM and Deep Neural Network (DNN)
achieving better result than a single model, while [16] used a CNN-LSTM mod-
ell with transfer learning. [13] used a binary Health Indicator and investigated
different AI approaches, such as Multilayer perceptron, Support vector regression,
Convolutional Neural Network, LSTM.

Within the field of industrial fault prediction, LSTMs have been successfully
applied to tasks such as anomaly detection[15] and time-series classification [9].
These models are particularly useful when input data includes sequences of mul-
tivariate measurements recorded from equipment sensors. Studies like those by
Graves [10] and Sherstinsky [19] have further validated the effectiveness of LSTM
architectures in sequence modeling, including bidirectional variants that can con-
sider both past and future contexts in time-series analysis. However, challenges
still exist. For instance, [3] highlighted the difficulty of learning long-term depen-
dencies even with enhanced architectures. Moreover, when the amount of labeled
fault data is limited, LSTM models may suffer from overfitting. In such cases, sim-
pler models like AdaBoost [12] may outperform deep learning methods by making
stronger assumptions and better generalizing from small datasets. This trade-off
necessitates a careful evaluation of model architecture, dataset characteristics, and
prediction goals.

Research goal
This paper presents a practical investigation into the application of LSTM neural
networks for industrial equipment fault prediction. Unlike many previous studies
that focus solely on binary fault classification, this research explores a transition
from binary classification to Remaining Useful Life (RUL) estimation. The motiva-
tion behind this shift is to improve model generalizability and predictive accuracy,
particularly in scenarios where limited fault data increases the risk of overfitting.
The proposed methodology involves preprocessing raw sensor data, constructing a
multi-layer LSTM model, and evaluating its performance in both binary classifica-
tion and RUL prediction settings. The study highlights not only the advantages
of LSTM networks – such as their temporal modeling capabilities – but also their
limitations, including sensitivity to dataset size and configuration. In doing so,
it aims to provide insights into how LSTM-based architectures can be effectively
deployed for predictive maintenance in real-world industrial environments. This
paper presents an examination of Long Short-Term Memory [11] neural networks
applied specifically to industrial fault prediction [15] through sequential data anal-
ysis.

3. Model development process
The development process of an LSTM-based prediction model begun with data
compilation and preparation. An appropriate dataset must include comprehensive
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operational parameters and labeled fault occurrences, structured chronologically to
accurately reflect pre- and post-failure states. Subsequent steps involve data clean-
ing, normalization, and segmentation into training and validation datasets. Proper
sequencing is critical [10], necessitating precise construction of temporal data win-
dows and clear separation between input parameters and target prediction outputs
[8]. The construction of the LSTM predictive model assumes the creation of an ar-
chitecture that uses multiple LSTM layers capable of modeling complex temporal
dependencies in industrial datasets. The model architecture involves input lay-
ers representing environment parameters, intermediate LSTM layers designed for
temporal analysis, and output layers to deliver predictive features. Training and
validation procedures aim to optimize predictive accuracy through iterative refine-
ment and hyperparameter tuning, including adjustments of hidden layers, epochs,
and learning rates. Model validation phase investigated the performance based on
data representation.

Initially, a binary classification (fault vs. no fault)model was implemented,
which showed limitations in predictive accuracy due to overfitting (see Figure 1),
especially with smaller datasets. Recognizing this, the binary classification ap-
proach was subsequently transformed into a Remaining Useful Life (RUL) pre-
diction model [6] using a linear approximation. This shift significantly improved
the accuracy and reliability of predictions this give promise of the LSTM model.
The capability of LSTM models to effectively predict equipment failures through
sequence analysis positions them as powerful tools in reducing downtime and en-
hancing operational efficiency in industrial environments. [3] emphasizes both the
strengths and limitations of LSTM networks. While their advanced memory han-
dling and temporal sequence modeling capabilities represent significant advantages
over other predictive models, challenges such as overfitting and the “constant er-
ror carousel” [11] phenomenon require careful management. These issues can be
eliminated through refined model design, hyperparameter adjustments, and data
preprocessing strategies.

4. Dataset and preprocessing
To evaluate the performance of the proposed LSTM-based fault prediction model,
we utilized the publicly available Microsoft Azure Predictive Maintenance dataset [4].
This dataset contains machine sensor data in a manufacturing context and in-
cludes measurements related to equipment operation, failure types, and mainte-
nance events. It is commonly used for benchmarking predictive maintenance mod-
els due to its well-structured and time-dependent nature.

The dataset comprises telemetry data from four different machines, each with
multiple sensor readings such as voltage, rotation, pressure, and vibration, recorded
over time. Additionally, it includes error logs, maintenance records, and machine
metadata. These attributes enable the creation of supervised learning models for
both classification and regression tasks.

For this study, we focused on the telemetry and failure data to build a time-series
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model for Remaining Useful Life (RUL) estimation. The preprocessing pipeline
included several key steps:

1. Data Integration and Cleaning: Sensor readings and failure labels were
merged based on timestamps and machine IDs. Missing or anomalous values
were handled through interpolation or removal, depending on frequency and
impact.

2. Normalization: All numeric features were scaled to a common range using
min-max normalization to ensure training efficiency and prevent any feature
from dominating due to scale differences.

3. Windowing: To provide sequential input to the LSTM model, the data
was segmented into fixed-size sliding windows. Each window contained a
sequence of sensor readings (e.g., 50 time steps) and a corresponding target
label – either binary fault status or a numerical RUL value.

4. Label Engineering: For RUL prediction, the time remaining until the next
failure event was computed for each data window. A maximum RUL cap was
imposed where appropriate to avoid bias from distant future events.

5. Dataset Splitting: The dataset was divided into training and validation sets
using a time-aware strategy to prevent data leakage. Entire machines were
assigned to either the training or validation set while preserving temporal
order.

This structured preprocessing ensured that temporal dependencies were main-
tained, and the resulting sequences were suitable for LSTM-based modeling in
both classification and regression tasks. For single-machine models, the teleme-
try windows of each machine were divided chronologically into training (80%) and
validation (20%) sets, ensuring that future data never leaked into past training seg-
ments. For the generalized model, training was performed on aggregated telemetry
windows from multiple machines while preserving their temporal order. Validation
was then carried out on held-out segments representing the final 2000 operating
hours of each machine, which were never seen during training. This setup ensured
that the model was tested both on unseen time periods and, in some cases, on
machines not included in the training pool.

5. Methodology
The input to the model consists of multivariate time-series data extracted from
the telemetry logs of each machine. Each training example is represented as a
matrix X ∈ RT ×F , where T is the number of time steps (i.e., the window size),
and F is the number of sensor features. In our implementation, we use T = 50 and
F = 4, based on the available telemetry signals: vibration, rotation, pressure, and
voltage. Each input sequence X is associated with a binary label y ∈ {0, 1}, where
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y = 1 indicates that a machine failure occurs within the prediction horizon (e.g.,
within the next 24 hours), and y = 0 otherwise. This labeling strategy transforms
the task into a binary classification problem where the model learns to discriminate
between normal and pre-failure operational states. The architecture of the network
comprises two stacked LSTM layers followed by a dense output layer with a sigmoid
activation function. The first LSTM layer processes the input sequence and returns
the full output sequence, enabling the second LSTM layer to capture more abstract
temporal dependencies. The final dense layer computes the probability ŷ ∈ [0, 1]
of the potential failure.

To train the model, we minimize the Binary Cross-Entropy (BCE) loss function,
defined as:

LBCE = − 1
N

N∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)],

where N is the number of training samples, yi is the true label, and ŷi is the
predicted probability for the i-th sample.

Model performance is evaluated using standard classification metrics: accuracy,
precision, recall, and F1-score. These are defined as follows:

Accuracy = TP + TN

TP + TN + FP + FN
,

Precision = TP

TP + FP
,

Recall = TP

TP + FN
,

F1-score = 2 · Precision · Recall
Precision + Recall ,

where TP , TN , FP , and FN represent the number of true positives, true nega-
tives, false positives, and false negatives, respectively. The model is implemented
using TensorFlow and trained with the Adam optimizer. Dropout layers are ap-
plied between LSTM layers to reduce overfitting, and early stopping is employed
to prevent unnecessary training once the validation loss plateaus. Hyperparame-
ters such as the learning rate, number of LSTM units, batch size, and number of
epochs are selected through cross-validation. This methodology enables the LSTM
network to learn temporal patterns that distinguish between healthy and failure-
prone equipment behavior, providing an effective tool for predictive maintenance
in industrial settings.

6. Experiments and results
Figure 1 shows the binary classification, where the pins indicate that a failure
happened within a certain time frame in the future (called the prediction window).
For Remaining Useful Life (RUL) prediction see Figure 2 , the labels may represent
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how many time steps are left before the next failure. To avoid large label values
for distant failures, a maximum limit (cap) was used to smooth those targets.

Figure 1. Binary fault prediction with LSTM. Red pins mark
failure events within the prediction horizon.

Figure 2. Remaining Useful Life (RUL) regression with capped
targets. Solid line: prediction; dashed line: ground truth.

To evaluate the performance of the proposed LSTM-based fault prediction
model, a series of experiments were conducted using the Microsoft Azure Predic-
tive Maintenance dataset [4]. The goal was to assess the model’s ability to perform
binary classification of machine faults based on temporal sensor data. Two experi-
mental settings were implemented: (1) training and testing on individual machines,
and (2) a generalized model trained across multiple machine types.

6.1. Experiment setup
Each training sample was composed of a fixed-size time window of 50 time steps,
encompassing four sensor features: voltage, rotation, pressure, and vibration. The
LSTM model consisted of two stacked layers, with 700 and 200 hidden units respec-
tively in separate configurations. Experiments were implemented in Python 3.9.5
with TensorFlow, and executed on a GPU-enabled computing environment. The
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training set included 80% of the sequences while the remaining 20% were used for
validation. Training was performed for 30 epochs, and early stopping was applied
based on validation loss.

6.2. Individual machine training
In the first scenario, separate models were trained for each machine. For example,
model model1/31.csv achieved a validation accuracy of 98.13% and validation
loss as low as 0.0201. The training converged after approximately 37 seconds (see
Figure 3). The high accuracy and low loss indicate that the LSTM model effectively
learned failure patterns for that specific machine.

Figure 3. Training and validation loss/accuracy for model1/31.csv.

Prediction plots confirmed the model’s capacity to anticipate failures with high
fidelity, where the predicted signal closely tracked the actual machine status.

6.3. Generalized training across machines
The second set of experiments aimed to create a generalized model by training on
multiple machine instances grouped by type. Automatic hyperparameter optimiza-
tion was applied to select optimal settings, including LSTM cell size (200 units)
and a broader range of window sizes (e.g., 8, 16, 24, 48, and 168 time steps). The
model was validated on the final 2000 hours of operating data for each machine.

The generalized model showed strong performance, especially in machine 98,
where validation accuracy reached 100% and final loss dropped to 0.0269 after 30
epochs (Figure 4). This result demonstrates the LSTM model’s ability to generalize
from mixed machine types when trained on well-preprocessed data.
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Figure 4. Training and validation loss/accuracy for model2/98.csv.

6.4. Training summary
Table 1 provides a comparative summary of the LSTM model performance for
two representative experiments: one trained on a single machine and the other
on a generalized model trained across multiple machines (model1/31.csv and
model2/98.csv respectively). Both models were trained for 30 epochs with early
stopping disabled to analyze full convergence.

Table 1. Summary of LSTM model training results.

Model Final Val Accuracy Final Val Loss Training Time (s)
model1/31.csv 0.9789 0.0201 36.87
model2/98.csv 1.0000 0.0269 40.21

The validation accuracy for both models was remarkably high, with the gen-
eralized model achieving a perfect 100% classification rate and a slightly higher
final validation loss than the single-machine model. The training durations were
comparable, with both experiments completing in under 45 seconds on a non GPU-
enabled environment.

Table 2 presents the classification performance of the two LSTM models eval-
uated on their respective validation datasets. The model trained specifically on a
single machine (model1/31.csv) achieved an accuracy of 90%, with a perfect recall
of 1.00 and a precision of 0.83. This indicates that the model was highly sensitive
to failure events, correctly identifying all actual positives, but produced a small
number of false positives.

In contrast, the generalized model (model2/98.csv) reached perfect scores
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Table 2. Evaluation metrics of LSTM models on the validation set.

Model Accuracy Precision Recall F1 Score
model1/31.csv 0.90 0.83 1.00 0.91
model2/98.csv 1.00 1.00 1.00 1.00

across all evaluation metrics, including 100% accuracy, precision, recall, and F1
score. While this suggests outstanding performance, it is important to interpret
these results with caution and verify that they are not the result of overfitting or
data leakage. Nevertheless, the consistency across all metrics highlights the LSTM
model’s strong ability to learn and generalize failure patterns from temporal data.

Our results are comparable to high-performing models on turbofan RUL Data [2].
To quantify the performance of the LSTM models in the Remaining Useful Life
(RUL) setting, we evaluated them using standard regression metrics: Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of deter-
mination (R2). Table 3 summarizes the results. The generalized (model2/98.csv)
model achieved lower error values and higher R2 compared to the single-machine
model, indicating stronger capability in capturing temporal degradation trends
across machines. These findings suggest that the LSTM approach is not only ef-
fective for binary fault prediction but also promising for RUL estimation.

Table 3. RUL regression evaluation.

Model RMSE MAE R2

model1/31.csv 5.42 3.87 0.91
model2/98.csv 4.18 2.95 0.94

7. Discussion
The results suggest that LSTM networks are capable of learning both machine-
specific and generalized patterns of failure. While individual training yielded
slightly better performance, the generalized models are more practical in large-scale
industrial systems where maintaining per-machine models is infeasible. Moreover,
manually tuned models showed marginally better convergence than those with au-
tomatic hyperparameter selection, albeit at the cost of expert time.

Despite the high performance, a key limitation is the sensitivity of the model
to the quality and volume of training data. Overfitting remains a risk, particu-
larly for smaller datasets. Future improvements may include augmenting the data,
regularization, or exploring hybrid architectures that combine LSTM layers with
attention mechanisms or convolutional layers for more robust feature extraction.
Recent hybrid CNN–LSTM architectures have achieved state-of-the-art accuracy in
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RUL estimation benchmarks [1, 17]. Self-attention and degradation-feature-based
networks have further advanced interpretability and performance [14, 18].

Another important consideration is the interpretability of LSTM models in pro-
duction environments. In industrial settings, maintenance decisions often require
justification. Therefore, integrating explainability methods – such as SHAP values
or attention-based visualization – could help increase trust in predictions and sup-
port human-in-the-loop decision-making. CNN–LSTM–attention architectures for
enhanced fault detection in industrial equipment [5]. Attention mechanisms may
also improve explainability through feature weighting [14].

As shown in Table 2, the generalized (model2/98.csv) model achieved perfect
precision, recall, and F1 score. While this indicates exceptional predictive capa-
bility, it also warrants caution. Such results may reflect highly structured data
or potential dataset leakage, which should be explicitly ruled out through cross-
validation, unseen machine testing, or data sanitization techniques.

Finally, for broader applicability, models should be validated on datasets col-
lected under different operational conditions, sensor configurations, or machine
types. Incorporating domain adaptation or transfer learning techniques could fur-
ther improve generalization to new environments without requiring complete re-
training.
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