El-Attar, Noha E., El-Mashad, Yehia A. (2024) Artificial intelligence models for genomics analysis: review article In: Agria Média 2023. Eger, Eszterházy Károly Katolikus Egyetem Líceum Kiadó. pp. 134-150.
pdf
134_El Attar.pdf Download (593kB) [error in script] |
Absztrakt (kivonat)
Artificial intelligence (AI) including machine learning (ML), and deep learning (DL) models have become powerful tools for analyzing genomics data in recent years. These models can process large amounts of data and identify complex patterns that may not be apparent through traditional statistical methods. ML and DL models have been used for a wide range of genomics applications, including gene expression analysis, variant detection, and drug discovery. One popular approach for using ML and DL models in genomics is to train these models on large datasets of genomic information. These datasets may include information on gene expression levels, DNA sequences, and epigenetic modifications. By training these models on large datasets, researchers can identify patterns and correlations that may be used to predict disease risk, identify potential drug targets, and develop personalized treatments. Generally, the use of different AI models in genomics has the potential to transform the field by enabling more accurate and personalized medical treatments. As these models continue to evolve and improve, researchers will be able to extract even more information from genomic data and accelerate the pace of discovery in genomics.
Mű típusa: | Könyvrészlet - Book section |
---|---|
Szerző: | Szerző neve Email MTMT azonosító ORCID azonosító Közreműködés El-Attar, Noha E. NEM RÉSZLETEZETT NEM RÉSZLETEZETT NEM RÉSZLETEZETT Szerző El-Mashad, Yehia A. NEM RÉSZLETEZETT NEM RÉSZLETEZETT NEM RÉSZLETEZETT Szerző |
Kapcsolódó URL-ek: | |
Nyelv: | angol |
DOI azonosító: | 10.17048/AM.2023.134 |
Felhasználó: | Tibor Gál |
Dátum: | 24 Szep 2024 11:56 |
Utolsó módosítás: | 29 Nov 2024 08:21 |
URI: | http://publikacio.uni-eszterhazy.hu/id/eprint/8198 |
Tétel nézet |