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Abstract: Artificial intelligence (AI) including machine learning (ML), and deep learning (DL) models have 

become powerful tools for analyzing genomics data in recent years. These models can process large amounts of 

data and identify complex patterns that may not be apparent through traditional statistical methods. ML and DL 

models have been used for a wide range of genomics applications, including gene expression analysis, variant 

detection, and drug discovery. 

One popular approach for using ML and DL models in genomics is to train these models on large datasets of 

genomic information. These datasets may include information on gene expression levels, DNA sequences, and 

epigenetic modifications. By training these models on large datasets, researchers can identify patterns and corre-

lations that may be used to predict disease risk, identify potential drug targets, and develop personalized treatments. 

Generally, the use of different AI models in genomics has the potential to transform the field by enabling more 

accurate and personalized medical treatments. As these models continue to evolve and improve, researchers will 

be able to extract even more information from genomic data and accelerate the pace of discovery in genomics. 

1. Introduction 

Artificial intelligence (AI) is a rapidly growing area of research in bioinformatics, which is the application of 

computational methods to biological data. AI techniques can be used to analyze and interpret large and complex 

biological datasets, such as genomic and proteomic data, to gain insights into biological processes and disease 

mechanisms [1].  

One common application of AI in bioinformatics is in the field of protein structure prediction. There are many 

AI-based methods for predicting protein structure, including deep learning approaches such as convolutional neu-

ral networks (CNNs) and recurrent neural networks (RNNs). These methods use large amounts of protein sequence 

and structural data to train models that can predict the 3D structure of a protein from its amino acid sequence [2]. 

Another area where AI is being used in bioinformatics is in drug discovery. AI techniques can be used to 

predict the interactions between molecules, which can help identify potential drug candidates. For example, ma-

chine learning algorithms can be trained on large databases of known drug-protein interactions to predict the ac-

tivity of new compounds against specific targets [3]. 

AI is also being used to analyze large-scale genomic data, such as gene expression data and DNA sequence 

data. For example, AI techniques can be used to identify patterns in gene expression data that are associated with 

specific diseases or physiological conditions. This can help researchers identify new drug targets or biomarkers 

for disease diagnosis and treatment [4][5]. 

Here are some additional examples of how AI is being used in genomics: 

1. Genome assembly: AI can be used to help assemble genomes from DNA sequencing data. Genome 

assembly involves piecing together short fragments of DNA into longer sequences to create a com-

plete genome. This can be a computationally intensive process, but AI techniques such as deep learn-

ing can help speed up the process and improve accuracy [6]. 
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2. Gene editing: AI can be used to help design and optimize gene editing tools such as CRISPR, which 

are used to make precise changes to the DNA sequence of organisms. By analyzing large-scale ge-

nomic datasets, AI can help identify the most effective targets for gene editing and optimize the design 

of the gene editing tools themselves [7]. 

3. Personalized medicine: AI can be used to help develop personalized medicine approaches based on 

an individual's genetic profile. By analyzing an individual's genetic data, AI can identify genetic var-

iations that may be associated with an increased risk of certain diseases or a poor response to certain 

drugs. This information can be used to develop personalized treatment plans that are tailored to an 

individual's unique genetic makeup [6]. 

4. Drug discovery: AI can be used to help identify novel drug targets and design new drugs. By analyzing 

large-scale genomic datasets, AI can help identify genetic mutations that are associated with specific 

diseases and develop new drugs that target these mutations. 

5. Genome annotation: AI can be used to help annotate genomes, which involves identifying the location 

and function of genes within the genome. By analyzing large-scale genomic datasets, AI can help 

identify new genes and predict their function, which can provide insights into the genetic basis of 

diseases [7]. 

6. Cancer genomics: AI can be used to analyze genomic data from cancer cells to identify genetic mu-

tations that are driving the growth of tumors. By identifying these mutations, researchers can de-

velop targeted therapies that are tailored to the specific genetic makeup of the tumor [4]. 

7. Metagenomics: AI can be used to analyze the genetic material from entire microbial communities, 

such as those found in the human gut. By analyzing this data, researchers can gain insights into the 

microbiome and its role in human health and disease [15]. 

8. Epigenetics: AI can be used to analyze epigenetic data, which involves changes to the DNA mole-

cule that do not alter the underlying genetic sequence. By analyzing epigenetic data, researchers can 

gain insights into how genes are regulated and how changes in gene expression can contribute to dis-

ease [3]. 

9. Functional genomics: AI can be used to analyze the function of genes within the context of the entire 

genome. By analyzing large-scale genomic datasets, researchers can identify the interactions between 

genes and how they contribute to biological processes [14]. 

10. Clinical genomics: AI can be used to analyze genomic data from patients to help diagnose genetic 

diseases and develop personalized treatment plans. By analyzing an individual's genetic data, AI can 

help identify genetic mutations that are associated with specific diseases and develop treatment strat-

egies that are tailored to the individual's unique genetic makeup [5]. 

11. Single-cell genomics: AI can be used to analyze the genetic material from individual cells, allowing 

researchers to study cellular diversity and identify rare cell types. By analyzing single-cell genomic 

data, researchers can gain insights into how individual cells contribute to biological processes and 

disease [6]. 

12. Multi-omics integration: AI can be used to integrate data from multiple "omics" technologies, such as 

genomics, proteomics, and metabolomics. By combining data from these different technologies, re-

searchers can gain a more comprehensive understanding of biological processes and diseases. 

13. Evolutionary genomics: AI can be used to analyze the evolution of genomes over time, helping re-

searchers understand how genetic variation contributes to species diversity and adaptation [8]. 

14. Synthetic biology: AI can be used to design and optimize synthetic biological systems, such as engi-

neered cells or organisms. By leveraging AI techniques, researchers can design biological sys-

tems that are more efficient, robust, and effective [9]. 

15. Data sharing and collaboration: AI can be used to facilitate data sharing and collaboration within the 

genomics community. By developing tools that can analyze and integrate data from multiple sources, 



ESZTERHÁZY KÁROLY KATOLIKUS EGYETEM 

INFORMATIKA KAR • DIGITÁLIS TECHNOLÓGIA INTÉZET 

AGRIA MÉDIA KONFERENCIA 2023 

 

136 

 

AI can help researchers work together more effectively and accelerate the pace of scientific discovery 

[10]. 

16. Genomic data privacy: AI can be used to protect the privacy of genomic data by developing tools that 

can analyze genomic data without revealing sensitive information about individuals. By using AI to 

develop privacy-preserving data analysis methods, researchers can ensure that genomic data remains 

secure and confidential [16]. 

17. Quality control: AI can be used to identify errors and inconsistencies in genomic data, helping to 

ensure that data is accurate and reliable. By developing quality control methods that leverage AI tech-

niques, researchers can improve the quality of genomic data and reduce the risk of false findings. 

18. Natural language processing: AI can be used to analyze scientific literature and extract information 

about genes, proteins, and other biological entities. By developing natural language processing 

tools that can analyze large volumes of scientific literature, researchers can gain insights into the func-

tion and regulation of genes and proteins [15]. 

19. Genomic medicine: AI can be used to develop new diagnostic and therapeutic approaches based on 

an individual's genomic data. By analyzing an individual's genetic makeup, AI can help identify the 

underlying causes of disease and develop personalized treatment plans that are tailored to the individ-

ual's unique genetic profile [11]. 

20. Education and outreach: AI can be used to develop educational resources and outreach programs that 

help to promote genomics literacy and engage the public in scientific research. By leveraging AI to 

develop interactive learning tools and engaging outreach programs, researchers can help to bridge the 

gap between the scientific community and the general public [12]. 

Overall, the use of AI in bioinformatics is a rapidly evolving field that holds great promise for advancing our 

understanding of biological systems and developing new treatments for diseases. 

2. A Primer on Genomics Data and AI Applications  

2.1 Genome Assembly 

Genome assembly is the process of reconstructing the complete DNA sequence of an organism from a large 

number of short DNA fragments. This process is necessary because the DNA sequence of most organisms is too 

large to be sequenced in a single read. Instead, the genome is broken up into many small fragments, which are 

sequenced separately using high-throughput sequencing technologies. 

The process of genome assembly involves several steps, including sequencing, quality control, read trimming, 

and genome assembly algorithms. The first step in genome assembly is to generate a large number of DNA se-

quences, known as reads, using high-throughput sequencing technologies such as Illumina or PacBio. These reads 

are then subjected to quality control to remove any low-quality reads or contaminants. 

The next step is to trim the reads to remove any regions with poor sequencing quality or adapter sequences. 

This is followed by genome assembly algorithms, which use computational methods to align the reads and assem-

ble them into contigs, which are longer contiguous stretches of DNA sequence. The contigs are then further as-

sembled into larger scaffolds, which are ordered and oriented to produce the final genome assembly. This process 

is summarized in Figure (1). 

The quality of the genome assembly depends on the quality and quantity of the reads, the accuracy of the 

genome assembly algorithms, and the size and complexity of the genome being assembled. Genome assembly is 

an important step in genomics research, as it provides a complete sequence of an organism's DNA and can help 

identify genetic variations that are associated with diseases or other phenotypic traits [15][16]. 
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AI roles in genome assembly: 

Overall, the use of AI in genome assembly can help improve the accuracy and efficiency of the process, allow-

ing researchers to assemble more complete and accurate genomes. This can lead to new insights into the genetic 

basis of diseases and the development of personalized medicine. AI can help in genome assembly in several ways: 

1. Error correction: One of the main challenges in genome assembly is correcting errors that can arise 

during the sequencing process. AI can be used to identify and correct these errors in sequencing data, 

which can improve the accuracy of the final genome assembly. 

2. De novo assembly: AI can be used to assist with de novo assembly, which involves assembling a 

genome from scratch without the use of a reference genome. AI techniques such as deep learning can 

help speed up the process and improve the accuracy of de novo assembly. 

3. Hybrid assembly: AI can be used to assist with hybrid assembly, which involves combining data 

from multiple sequencing technologies to assemble a genome. By analyzing large-scale genomic da-

tasets, AI can help identify the most effective combination of sequencing technologies for a given ge-

nome assembly project. 

4. Genome annotation: AI can be used to assist with genome annotation, which involves identifying the 

location and function of genes within the genome. By analyzing large-scale genomic datasets, AI can 

help identify new genes and predict their function, which can provide insights into the genetic basis 

of diseases [17][18]. 

2.2 Gene editing 

Gene editing is a process by which DNA sequences can be precisely modified, added, or removed from the 

genome of an organism. This is accomplished by using molecular tools that can target specific DNA sequences 

and make precise cuts in the DNA, which can then be repaired by the cell's natural DNA repair mechanisms. 

One of the most commonly used gene editing tools is CRISPR-Cas9, which is a system that can be programmed 

to target specific DNA sequences using guide RNAs. The Cas9 enzyme then cuts the DNA at the targeted site, 

which can be repaired by the cell's natural DNA repair mechanisms as shown in Figure (2). This process can be 

used to modify specific genes or regulatory regions of the genome, which can have a variety of applications in 

research and medicine [19]. 
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Gene editing can be used to study the function of specific genes by creating mutations that disrupt their func-

tion. This can help researchers understand the role of specific genes in biological processes and disease. 

 

AI roles in Gene Editing: 

The use of AI in gene editing is an exciting area of research that holds great promise for improving the effi-

ciency, accuracy, and safety of gene editing techniques. AI can play several roles in gene editing, including: 

1. Designing guide RNAs: One of the key steps in gene editing is designing guide RNAs that target specific 

DNA sequences. AI can be used to design more efficient and specific guide RNAs by analyzing large-scale ge-

nomic datasets to identify optimal target sites. 

2. Predicting off-target effects: One of the potential risks of gene editing is off-target effects, where the Cas9 

enzyme cuts DNA at unintended locations. AI can be used to predict the likelihood of off-target effects by analyz-

ing large-scale genomic datasets and simulating the effects of Cas9 cuts on the genome. 

3. Optimizing delivery methods: Gene editing tools such as CRISPR-Cas9 need to be delivered to the target 

cells in order to be effective. AI can be used to optimize delivery methods by analyzing large-scale genomic da-

tasets to identify the most effective delivery methods for specific cell types. 

4. Identifying potential disease targets: AI can be used to analyze large-scale genomic datasets to identify 

potential disease targets for gene editing. By identifying genetic mutations that are associated with specific dis-

eases, AI can help identify genes or regulatory regions that may be suitable targets for gene editing. 

5. Developing new gene editing tools: AI can be used to develop new gene editing tools by simulating the 

effects of different molecular structures and testing their efficacy in silico. This can help researchers design more 

efficient and specific gene editing tools [20][21]. 

2.3 Personalized Medicine 

Personalized medicine is an approach to medical treatment that takes into account an individual's unique ge-

netic, environmental, and lifestyle factors to develop more targeted and effective treatment plans. Rather than 

relying on a "one-size-fits-all" approach to medical treatment, personalized medicine seeks to tailor treatments to 

the individual needs of each patient, this scenario is called multi model data integration as shown in Figure (3) 

[22].  
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One of the key drivers of personalized medicine is advances in genomics research, which has led to a better 

understanding of the genetic basis of many diseases. By analyzing an individual's genetic information, clinicians 

can identify genetic variations that are associated with disease risk or treatment response. This information can be 

used to develop more personalized treatment plans that take into account an individual's genetic makeup [23]. 

Other factors that can be taken into account in personalized medicine include an individual's environment, 

lifestyle, and medical history. For example, a personalized medicine approach to cancer treatment may involve 

analyzing a patient's tumor DNA to identify mutations that are driving the growth of cancer, as well as taking into 

account factors such as the patient's age, overall health, and treatment preferences [24]. 

AI roles in Personalized Medicine: 

AI is playing an increasingly important role in personalized medicine, an approach to medical treatment that 

considers an individual's unique genetic, environmental, and lifestyle factors to develop more targeted and effec-

tive treatment plans. 

AI can play several essential roles in personalized medicine, including: 

1. Prediction and diagnosis: AI algorithms can be used to analyze large-scale datasets of patient data, including 

genomics, medical imaging, and electronic health records, to predict disease risk and diagnose diseases at an earlier 

stage. By analyzing patterns in the data, AI can help identify patients who are most at risk of developing certain 

diseases or who have undiagnosed conditions. 

2. Treatment planning and decision-making: Once a diagnosis has been made, AI can be used to develop per-

sonalized treatment plans that consider an individual's unique characteristics. By analyzing large-scale datasets of 

patient data, AI can help identify the most effective treatments for specific patient populations based on factors 

such as genetic makeup, medical history, and lifestyle. 

3. Drug discovery and development: AI can be used to accelerate the drug discovery and development process 

by analyzing large-scale datasets of biological and chemical data to identify new drug targets and predict the 

efficacy of new drug candidates. This can help reduce the time and cost required to develop new treatments [25]. 

4. Precision drug delivery: AI can be used to optimize drug delivery by analyzing patient data to identify the 

most effective dosages and delivery methods for specific patient populations. This can help improve treatment 

outcomes and reduce side effects. 

5. Monitoring and follow-up: AI can be used to monitor patient outcomes and adjust treatment plans in real-

time based on changes in patient data. This can help ensure that patients receive the most effective treatments, and 

can also help reduce healthcare costs by avoiding unnecessary interventions [26][27].  
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2.4 Drug discovery 

Drug discovery is the process of identifying new compounds or molecules that can potentially treat or cure 

diseases. The goal of drug discovery is to identify compounds that can selectively target disease-causing molecules 

or pathways while minimizing side effects and toxicity to healthy cells [28]. 

The drug discovery process typically involves several stages, including: 

1. Target identification: The first step in drug discovery is to identify a specific molecular target that is involved 

in the disease process. This could be a protein, enzyme, or other molecule that is essential for the disease to develop 

or progress. 

2. Lead discovery: Once a molecular target has been identified, the next step is to search for compounds or 

molecules that can interact with the target. This involves screening large libraries of compounds to identify those 

that have the potential to selectively bind to the target molecule. 

3. Lead optimization: After identifying lead compounds that have the potential to interact with the target mol-

ecule, the next step is to optimize these compounds to improve their potency, selectivity, and safety profile. This 

involves chemical modifications to the lead compounds to improve their drug-like properties. 

4. Preclinical testing: Once lead compounds have been optimized, they undergo preclinical testing to evaluate 

their efficacy and safety in animal models. This involves testing the compounds for their ability to treat the disease 

in animal models, as well as assessing their toxicity and potential side effects. 

5. Clinical testing: If a lead compound shows promise in preclinical testing, it can move on to clinical testing 

in humans. Clinical testing involves several phases of trials to evaluate the safety and efficacy of the drug in 

humans. 

6. Regulatory approval: Once a drug has successfully completed clinical testing and has been shown to be safe 

and effective, it can be submitted for regulatory approval. Regulatory agencies such as the FDA evaluate the safety 

and efficacy of the drug before approving it for use in the general population. Figure (4) displays the timeline and 

the stages for drug development, beginning with discovery through clinical trials and ending with post-market 

monitoring [29][30].  

 

Overall, drug discovery is a complex and time-consuming process that can take many years and cost billions 

of dollars. However, it is essential to develop new treatments for a wide range of diseases, and it has the potential 

to improve patient outcomes and quality of life.  

AI roles in Drug Discovery: 

AI is playing an increasingly important role in drug discovery, which is the process of identifying new com-

pounds or molecules that have the potential to treat or cure diseases. AI can be applied to various stages of the 
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drug discovery process to help accelerate the development of new treatments and reduce the time and cost required 

to bring them to market. Here are some of the key roles of AI in drug discovery: 

1. Target identification: AI algorithms can be used to analyze large-scale datasets of biological and che-

mical data to identify molecules or pathways that are involved in specific disease processes. This can 

help accelerate the drug discovery process by identifying new targets that may be suitable for drug 

development. Figure (5) presents an example of a biomedical knowledge graph. 

2. Lead discovery and optimization: AI algorithms can be used to analyze large-scale datasets of chemi-

cal and biological data to identify compounds or molecules that have the potential to interact with a 

specific target. By analyzing the chemical structures of these compounds, AI can also help optimize 

them to improve their potency, selectivity, and safety profile. 

3. Prediction of efficacy and safety: AI algorithms can be used to simulate the effects of drugs on bio-

logical systems, and to predict their efficacy and potential side effects. This can help identify promi-

sing drug candidates and reduce the time and cost required for preclinical and clinical testing. 

4. Clinical trial optimization: AI algorithms can be used to analyze large-scale datasets of patient data to 

identify patient populations that are most likely to respond to a particular treatment, and to identify 

potential side effects or adverse events. This can help optimize trial design and reduce the time and 

cost required for clinical testing. 

5. Drug repurposing: AI can be used to analyze existing drugs to identify new applications and potential 

new therapeutic uses. By analyzing large-scale datasets of biological and chemical data, AI can help 

identify drugs that may be effective for treating diseases that they were not originally developed for 

[31][32]. 

 
 

2.5 Genome annotation 

Genome annotation is the process of identifying the functional elements and features within a genome se-

quence, such as genes, regulatory regions, and non-coding regions. The genome annotation process involves ana-

lyzing the DNA sequence to identify features such as open reading frames (ORFs), introns, exons, promoter re-

gions, and regulatory regions [33]. 

The process of genome annotation typically involves several steps, including: 

1. Gene prediction: This involves using computational algorithms to identify potential genes within the genome 

sequence. These algorithms may look for features such as ORFs, splice sites, and codon usage bias to identify 

potential coding regions. 

2. Functional annotation: This involves assigning functions to the predicted genes based on similarity to known 

genes or functional domains. This can be done using databases such as Gene Ontology or by comparing the pre-

dicted proteins to known proteins in other organisms. 
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3. Regulatory annotation: This involves identifying regulatory regions within the genome sequence, such as 

promoter regions and enhancer regions. This can be done using computational algorithms that look for features 

such as transcription factor binding sites and histone modifications. 

4. Structural annotation: This involves identifying non-coding regions within the genome sequence, such as 

introns and intergenic regions. This can be done using computational algorithms that look for features such as 

repetitive sequences and transposable elements [34][35]. 

The genome annotation process is an important step in understanding the function and organization of a ge-

nome, and can provide insights into the genetic basis of diseases and other biological phenomena. Genome anno-

tation is an ongoing process, as new genomic data becomes available and new computational methods are devel-

oped. 

AI roles in Genome annotation: 

AI plays an important role in genome annotation, which is the process of identifying the functional elements 

and features within a genome sequence, such as genes, regulatory regions, and non-coding regions. AI can be 

applied to various stages of the genome annotation process to help accelerate the analysis of genomic data and 

improve the accuracy of annotations. Here are some of the key roles of AI in genome annotation [36][37]: 

1. Gene prediction: AI algorithms can be used to analyze genomic data and identify potential coding regions, 

such as open reading frames (ORFs) and splice sites. Machine learning algorithms can be trained on large datasets 

of annotated genes to improve the accuracy of gene predictions. 

2. Functional annotation: AI algorithms can be used to predict the functions of predicted genes based on simi-

larity to known genes or functional domains. Machine learning algorithms can be trained on large datasets of 

annotated genes to improve the accuracy of functional annotations. 

3. Regulatory annotation: AI algorithms can be used to identify regulatory regions within the genome sequence, 

such as promoter regions and enhancer regions. Machine learning algorithms can be trained on large datasets of 

known regulatory regions to improve the accuracy of regulatory annotations. 

4. Structural annotation: AI algorithms can be used to identify non-coding regions within the genome sequence, 

such as introns and intergenic regions. Machine learning algorithms can be trained on large datasets of annotated 

genomic data to improve the accuracy of structural annotations. 

2. Variant annotation: AI can be used to predict the functional impact of genetic variants, such as single nucle-

otide polymorphisms (SNPs), and identify variants that are associated with diseases or other traits. 

3. Integration of multi-omics data: AI can be used to integrate data from different types of genomic experi-

ments, such as transcriptomics, proteomics, and epigenomics, to provide a more comprehensive view of gene 

expression and regulation. 

4. Quality control: AI algorithms can be used to identify and remove low-quality genomic data, such as se-

quencing errors or regions of low coverage, which can improve the accuracy of genome annotation. 

5. Comparative genomics: AI can be used to compare the genomes of different species and identify conserved 

regions that are likely to be functional, such as regulatory elements or protein-coding genes. 

2.6 Cancer Genomics 

Cancer genomics is the field of study that focuses on the genomic alterations that drive the development and 

progression of cancer. Cancer is a genetic disease that arises from alterations in the DNA sequence of cells, and 

cancer genomics seeks to identify these alterations and understand their functional impact. One of the critical goals 

of cancer genomics is to identify the genomic alterations that are specific to different types of cancer, as well as 

the genomic alterations that are shared across different types of cancer. This can help identify potential drug targets 

and develop more personalized treatment options for cancer patients [38]. 

Cancer genomics also plays an important role in developing biomarkers, which are measurable indicators of 

disease that can be used to predict patient outcomes or response to treatment. By analyzing genomic data from 

cancer patients, researchers can identify genomic alterations associated with specific clinical outcomes, such as 



ESZTERHÁZY KÁROLY KATOLIKUS EGYETEM 

INFORMATIKA KAR • DIGITÁLIS TECHNOLÓGIA INTÉZET 

AGRIA MÉDIA KONFERENCIA 2023 

 

143 

 

response to treatment or survival. Another critical area of cancer genomics is the study of cancer evolution, which 

refers to the process by which cancer cells acquire additional genomic alterations over time. By analyzing genomic 

data from different stages of cancer progression, researchers can identify the genomic alterations responsible for 

disease progression and develop more effective treatment strategies [39]. 

AI roles in Cancer Genomics: 

AI is helping to accelerate cancer genomics research and improve cancer diagnosis, treatment, and prevention 

by analyzing large amounts of genomic and clinical data and identifying patterns and associations that would be 

difficult or impossible to identify using traditional methods. AI’s role in cancer genomics can be summarized in 

the following areas [40][41]: 

1. Diagnosis and prognosis: AI algorithms can be trained to analyze patient data, such as genomic and clinical 

data, to predict the risk of developing cancer, the likelihood of cancer recurrence, and the response to different 

treatments. 

2. Drug discovery: AI can be used to identify new drug targets and design more effective drugs based on 

genomic data. For example, AI can be used to identify genomic alterations that are specific to certain types of 

cancer and design drugs to target those alterations. 

3. Genomic profiling: AI can be used to analyze large-scale genomic data from cancer patients to identify 

patterns and associations between genomic alterations and clinical outcomes. This can help identify biomarkers 

and personalized treatment options. 

4. Image analysis: AI can be used to analyze medical images, such as CT scans and MRIs, to identify features 

that are characteristic of different types of cancer. This can help improve cancer diagnosis and treatment planning. 

5. Clinical trial design: AI can identify patients most likely to benefit from a particular treatment and design 

clinical trials with more targeted patient populations [42]. 

3. Genomics Databases 

Genomics data refers to the large amounts of data generated by analyzing genomic material, such as DNA or 

RNA. The specific name of genomics data can vary depending on the type of analysis being performed, but some 

common types of genomics data include [43]: 

Whole genome sequencing data refers to the data generated by sequencing an individual's entire genome. 

Transcriptome data refers to the data generated through the sequencing of an individual's RNA, which can 

provide information about gene expression and regulation. 

Epigenomic data: This refers to the data generated through the analysis of modifications to DNA, such as DNA 

methylation or histone modifications, which can affect gene expression and regulation. 

Metagenomic data refers to data generated through the sequencing of microbial communities, such as those 

found in the gut or soil. 

Proteomic data refers to data generated through the analysis of an individual's proteins, which can provide 

information about protein function and interactions.  

Genomics data represents a vast and complex set of information that requires specialized tools and expertise 

to analyze and interpret. Genomic databases are collections of genomic data that are organized and stored in a 

structured format for easy access and analysis. These databases are essential resources for researchers in genomics, 

bioinformatics, and related fields, as they provide a wealth of information about genes, genetic variations, and 

other genomic features. Some of the most commonly used genomic databases include GenBank, Ensembl, dbSNP, 

The Cancer Genome Atlas (TCGA), the Human Genome Variation Database (HGVD), and the Exome Aggrega-

tion Consortium (ExAC) [44]. Table (1) summarizes some of the popular genome databases. 
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Database 

Name 
Description 

Species Cov-

ered 
Website 

GenBank 
A public database of DNA 

and RNA sequences 

Wide range of 

organisms 

https://www.ncbi.nlm.nih.gov/gen-

bank/  

Ensembl 

A genome 

browser and annotation 

database 

Wide range of 

organisms 
https://www.ensembl.org/  

dbSNP 
A database of genetic var-

iations, including SNPs 

Wide range of 

organisms 
https://www.ncbi.nlm.nih.gov/snp/  

The Cancer 

Genome At-

las (TCGA) 

A database of genomic, 

transcriptomic, and epige-

nomic data from cancer 

patients 

Human 

https://www.cancer.gov/about-

nci/organization/ccg/research/struc-

tural-genomics/tcga  

The Human 

Genome Var-

iation Data-

base (HGVD) 

A database of genetic var-

iations found in the Japa-

nese population 

Human (Japa-

nese population) 

http://www.genome.med.kyoto-

u.ac.jp/SnpDB/  

ExAC 

A database of genetic var-

iations identified in over 

60,000 exomes from di-

verse populations 

Wide range of 

organisms 
http://exac.broadinstitute.org/  

NCBI Gene 

A database of genomic lo-

cation, function, and se-

quence of genes 

Wide range of 

organisms 
https://www.ncbi.nlm.nih.gov/gene/  

UCSC Ge-

nome 

Browser 

A genome browser with 

access to a wide range of 

genomic data 

Wide range of 

organisms 
https://genome.ucsc.edu/ 

GTEx Portal 

A database of tran-

scriptomic data from mul-

tiple human tissues 

Human https://gtexportal.org/home/ 

ENCODE 

A project to identify and 

annotate all functional ele-

ments in the human ge-

nome 

Human https://www.encodeproject.org/ 

dbGaP 

A database of genotypic 

and phenotypic data from 

human studies 

Human https://www.ncbi.nlm.nih.gov/gap/  

FlyBase 

A database of genetic and 

genomic data for Dro-

sophila melanogaster 

Fruit fly (Dro-

sophila melano-

gaster) 

https://flybase.org/  
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4. Machine learning and deep learning models for genomics applications 

Machine learning (ML) and deep learning (DL) are two powerful approaches in artificial intelligence that have 

been widely used in genomics applications to analyze and interpret large-scale genomic data. Here are some ex-

amples of ML and DL models for genomics applications [45-52]: 

Random Forest: Random Forest is an ML algorithm that can be used for classification and regression tasks. It 

has been used to classify cancer subtypes based on gene expression data and to predict the functional effects of 

genetic variants. 

Support Vector Machines (SVMs): SVMs are another ML algorithm that can be used for classification tasks. 

They have been used to predict the impact of genetic variants on protein function and to classify patients based on 

gene expression data. 

Convolutional Neural Networks (CNNs): CNNs are a type of DL algorithm that has been used for image and 

sequence analysis. In genomics, CNNs have been used to predict DNA-protein binding sites and to classify DNA 

sequences based on their function. 

Recurrent Neural Networks (RNNs): RNNs are a type of DL algorithm that can model sequential data, such 

as gene expression time series data. They have been used to predict gene expression levels and to identify novel 

regulatory elements. 

Generative Adversarial Networks (GANs): GANs are a type of DL algorithm that can generate realistic syn-

thetic data. In genomics, GANs have been used to generate synthetic DNA sequences and predict genetic variants' 

effects on protein structure. 

Autoencoders: Autoencoders are a type of deep learning algorithm that can be used for unsupervised learning. 

They work by compressing input data into a lower-dimensional representation and then reconstructing the original 

data from the compressed representation. In genomics, autoencoders have been used to identify patterns in gene 

expression data, to cluster genes based on their expression profiles, and to predict gene expression levels. 

Transfer Learning: Transfer learning is a technique that involves training a deep learning model on one task 

and then using the learned features to solve a different but related task. In genomics, transfer learning has been 

used to improve the performance of gene expression classification tasks by pre-training the model on related tasks, 

such as predicting protein-protein interactions. 

Deep Reinforcement Learning: Deep reinforcement learning is a type of deep learning algorithm that can 

learn to make decisions based on rewards or penalties. In genomics, deep reinforcement learning has been used to 

design DNA sequences that have desired properties, such as high gene expression levels or low off-target effects. 

Graph Neural Networks: Graph neural networks are a type of deep learning algorithm that can operate on 

graph data, such as protein-protein interaction networks or gene co-expression networks. They work by propagat-

ing information between nodes in the graph and updating node features based on that information. In genomics, 

graph neural networks have been used to predict gene functions, identify disease-associated genes, and classify 

cancer subtypes based on gene expression networks. 

Bayesian Networks: Bayesian networks are a type of probabilistic graphical model that can be used to represent 

and reason about uncertainty in complex systems. In genomics, Bayesian networks have been used to model gene 

regulatory networks, identify disease-associated genes, and predict the effects of genetic variants on gene expres-

sion. 

Literature review on applying machine and deep learning models for genomics applications 

Several research scholars have applied machine and deep learning algorithms in the field of genomics applica-

tions. For example, a study published in Nature in 2018 used random forest to classify breast cancer subtypes based 

on DNA methylation data. The model accurately distinguished between different subtypes and identified novel 

subtype-specific biomarkers. Another example is a study published in Nature in 2015 that used a CNN to predict 

the DNA-binding specificities of transcription factors. The model was trained on a large dataset of DNA sequences 

and their corresponding transcription factor binding affinities and was able to predict the binding specificity of 

new transcription factors accurately. This approach has the potential to improve our understanding of gene regu-

lation greatly and to aid in the development of new therapies. In 2016, a study published in Cell used an RNN to 
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predict the expression levels of genes in response to different stimuli. The model was trained on a dataset of time-

series gene expression data and could accurately predict the expression levels of genes in response to new stimuli. 

GNN is another machine learning algorithm used in a study published in Nature Genetics in 2019 to predict the 

effects of genetic variants on gene expression. The model was trained on a dataset of genetic variants and their 

impact on gene expression levels and could accurately predict the effects of new variants on gene expression. 

In 2018, a study that used an LSTM to predict the binding of transcription factors to DNA sequences was published 

in Genome Research. The model was trained on a dataset of DNA sequences and their corresponding transcription 

factor binding affinities and was able to accurately predict the binding of new transcription factors to DNA se-

quences. Variational Autoencoders (VAEs): VAEs are a type of generative model that can be used for unsuper-

vised learning and dimensionality reduction. It has been used to analyze single-cell RNA sequencing data and to 

identify rare cell types in the mouse brain. The model was able to identify previously unknown cell types and to 

generate synthetic data that could be used to improve the accuracy of cell type classification. This study was pub-

lished in Nature Communications in 2020. These are just a few more examples of the many machine learning and 

deep learning models applied in genomics research. As the field continues to evolve, new models and algorithms 

will likely be developed to address the unique challenges and opportunities of genomic data analysis. Table (2) 

summarizes some of the machine learning and deep learning models applied in genomics research. 

 

Model Type Application Year 

Convolutional Neural 

Networks (CNNs) 

Deep Learn-

ing 

Prediction of gene expression levels, identification 

of regulatory regions, detection of genetic variants 
2015 

Recurrent Neural 

Networks (RNNs) 

Deep Learn-

ing 

Prediction of gene expression levels, identification 

of cis-regulatory elements, analysis of epigenetic 

data 

2016 

Autoencoders 
Deep Learn-

ing 

Unsupervised learning, dimensionality reduction, 

identification of patterns and features in the data 
2018 

Graph Neural Net-

works (GNNs) 

Deep Learn-

ing 

Prediction of the effects of genetic variants on gene 

expression, analysis of gene regulatory networks and 

protein-protein interaction networks 

2019 

Long Short-Term 

Memory (LSTM) 

Networks 

Deep Learn-

ing 

Prediction of gene expression levels, identification 

of cis-regulatory elements, analysis of epigenetic 

data 

2018 

Generative Adversar-

ial Networks (GANs) 

Deep Learn-

ing 

Generative modeling, unsupervised learning, gener-

ation of synthetic data for training machine learning 

models 

2018 

Attention Mecha-

nisms 

Deep Learn-

ing 

Prediction of gene expression levels, identification 

of splicing events, analysis of epigenetic data 
2019 

Variational Autoen-

coders (VAEs) 

Deep Learn-

ing 

Unsupervised learning, dimensionality reduction, 

generation of synthetic data for training machine 

learning models 

2020 

Graph Convolutional 

Networks (GCNs) 

Deep Learn-

ing 

Prediction of the effects of genetic variants on gene 

expression, analysis of gene regulatory networks and 

protein-protein interaction networks 

2019 
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Model Type Application Year 

Transformer Net-

works 

Deep Learn-

ing 

Prediction of gene expression levels, identification 

of regulatory regions, analysis of epigenetic data, 

prediction of protein structure from amino acid se-

quences 

2021 

Capsule Networks 
Deep Learn-

ing 

Analysis of single-cell RNA sequencing data, identi-

fication of rare cell types in the human brain 
2018 

Deep Belief Net-

works (DBNs) 

Deep Learn-

ing 

Analysis of gene expression data, identification of 

subtypes of breast cancer with different clinical out-

comes 

2014 

Siamese Networks 
Deep Learn-

ing 

Prediction of the effects of genetic variants on pro-

tein function 
2019 

 

5. Challenges in analyzing and interpreting genomics data using machine 

learning and deep learning. 

Despite the many successes of machine learning and deep learning in genomics, there are still some challenges 

in analyzing and interpreting genomics data using these approaches. Here are a few: 

1. Data Quality: Genomics data is often noisy, incomplete, and subject to batch effects, which can make 

it challenging to analyze and interpret. Machine learning and deep learning models are sensitive 

to data quality, so it is crucial to carefully preprocess and clean the data before training the models. 

2. Interpretability: Many machine learning and deep learning models are black boxes, meaning it can be 

challenging to understand how they make predictions or which features are most important for the 

predictions. This can make interpreting the results challenging and developing biological insights. 

3. Sample Size: Some genomics datasets, such as single-cell RNA sequencing data, may have a small 

sample size, which can make it challenging to train and validate machine learning and deep learning 

models. Small sample sizes can also increase the risk of overfitting and reduce the generalizability of 

the results. 

4. Missing Data: Genomics data may have missing values, which can complicate the analysis and inter-

pretation. Imputation techniques can be used to fill in missing values, but these techniques may intro-

duce bias or reduce the accuracy of the models. 

5. Generalizability: Machine learning and deep learning models that are trained on one dataset may not 

generalize well to new datasets or populations. This is particularly challenging in genomics, where 

genetic and environmental factors vary widely across populations. 

6. Dimensionality: Genomics data is high-dimensional, meaning that it has many features or variables. 

This can make it challenging to train machine learning and deep learning models, as the number of 

features may exceed the number of samples. Feature selection techniques can be used to reduce the 

dimensionality of the data, but these techniques may also introduce bias or reduce the accuracy of the 

models. 

7. Class Imbalance: In genomics, some classes of samples or features may be much rarer than others, 

creating a class imbalance in the data. Machine learning and deep learning models may struggle to 

accurately predict the minority classes, as they may be underrepresented in the training data. Class 

balancing techniques, such as oversampling or undersampling, can be used to address this issue, but 

they may also introduce bias or reduce the accuracy of the models. 



ESZTERHÁZY KÁROLY KATOLIKUS EGYETEM 

INFORMATIKA KAR • DIGITÁLIS TECHNOLÓGIA INTÉZET 

AGRIA MÉDIA KONFERENCIA 2023 

 

148 

 

8. Reproducibility: Machine learning and deep learning models are highly dependent on the choice of 

hyperparameters, model architecture, and training data. This can make it difficult to reproduce the 

results or compare different models' performance. Standardized protocols and benchmarks can help 

to improve reproducibility and facilitate comparisons between models. 

9. Validation: Validating machine learning and deep learning models in genomics can be challenging, 

as it may be difficult to obtain independent validation datasets or to perform functional experiments to 

confirm the results. Cross-validation and permutation testing can be used to estimate the performance 

of the models, but they may not always accurately reflect the real-world performance. 

10. Integration: Genomics data is often integrated with other types of data, such as clinical data, imaging 

data, or environmental data. Integrating multiple data types can be challenging, as different types of 

data may have different scales, units, or distributions. Machine learning and deep learning models that 

can handle multiple data types, such as multi-modal neural networks, may be needed to effectively 

integrate these data types. 

11. Ethical Concerns: There are also ethical concerns around the use of machine learning and deep learn-

ing in genomics, such as privacy concerns around the sharing of genomic data and the potential for al-

gorithmic bias in the analysis and interpretation of the data. 

These are just a few more examples of the challenges of using machine learning and deep learning in genomics. 

Addressing these challenges will require ongoing research and development of new methods, algorithms, and tools 

that can effectively analyze and interpret complex and heterogeneous genomics data. 
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