On the shape modification of parametric cubic arcs.

Juhász, Imre (1999) On the shape modification of parametric cubic arcs. Az Eszterházy Károly Tanárképző Főiskola tudományos közleményei (Új sorozat 26. köt.). Tanulmányok a matematikai tudományok köréből = Acta Academiae Paedagogicae Agriensis. Sectio Mathematicae. pp. 81-86.

[thumbnail of Juhasz_81-86.pdf] pdf
Juhasz_81-86.pdf

Download (384kB) [error in script]

Absztrakt (kivonat)

A standard specification of cubic parametric arcs is the Hermite form, when the arc is given by its end-points and tangent vectors (derivatives with respect to the parameter) at them. At first, we examine how the points of an arc change their positions if we scale the end-tangents, then we show how one can achieve prescribed shape modification by means of the alteration of the length of the end-tangents or the parameter range. By prescribed shape modification we mean such an alteration when a chosen point of the arc is carried into a predefined point.

Mű típusa: Folyóiratcikk - Journal article
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
Juhász, Imre
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Nyelv: angol
Felhasználó: Olga Fenyvesi
Dátum: 29 Máj 2020 12:43
Utolsó módosítás: 29 Máj 2020 12:43
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/4142
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet