Petz, Dénes (2005) Means of positive matrices : Geometry and a conjecture. Annales Mathematicae et Informaticae. 32. pp. 129-139. ISSN 1787-6117
pdf
AMI_32_from129to139.pdf Download (574kB) [error in script] |
Absztrakt (kivonat)
Means of positive numbers are well-know but the theory of matrix means due to Kubo and Ando is less known. The lecture gives a short introduction to means, the emphasis is on matrices. It is shown that any two-variablemean of matrices can be extended to more variables. The n-variable-mean M ) is defined by a symmetrization procedure when the ntuple (A n (A 1 ; A 1 2 ; : : : ; A ; A 2 n ) is ordered, it is continuous and monotone in each variable. The geometric mean of matrices has a nice interpretation in terms of an information geometry and the ordering of the n-tuple is not necessary for the definition. It is conjectured that this strong condition might be weakened for some other means, too. Key Words: operator means, information geometry, logarithmic mean, geometric mean, positive matrices. AMS Classification Number: 47A64 (15A48, 47A63)
Mű típusa: | Folyóiratcikk - Journal article |
---|---|
Szerző: | Szerző neve Email MTMT azonosító ORCID azonosító Közreműködés Petz, Dénes NEM RÉSZLETEZETT NEM RÉSZLETEZETT NEM RÉSZLETEZETT Szerző |
Kapcsolódó URL-ek: | |
Nyelv: | angol |
Kötetszám: | 32. |
ISSN: | 1787-6117 |
Felhasználó: | Tibor Gál |
Dátum: | 10 Feb 2019 15:43 |
Utolsó módosítás: | 10 Feb 2019 15:43 |
URI: | http://publikacio.uni-eszterhazy.hu/id/eprint/2644 |
Tétel nézet |