Syntactic comparison of human and AI-written scientific texts

B. Varga, Erika, Baksa, Attila (2025) Syntactic comparison of human and AI-written scientific texts Annales Mathematicae et Informaticae. 61. pp. 248-260. ISSN 1787-6117 (Online)

[thumbnail of 248_260_varga.pdf] pdf
248_260_varga.pdf

Download (3MB) [error in script]
Hivatalos webcím (URL): https://doi.org/10.33039/ami.2025.10.013

Absztrakt (kivonat)

The spread of large language models (LLMs) has transformed scientific writing, enabling the generation of fluent and convincing text with minimal human input. This development poses significant challenges for authorship verification, especially when AI-generated or AI-assisted content is embedded in academic manuscripts. While most existing detection approaches rely on surface-level lexical features or stylometric clues, our study proposes a novel syntactic-level method to distinguish between human-authored, translated, and AI-generated scientific texts. We constructed a controlled corpus of 24 scientific articles in the field of computer science, divided into four categories: native-authored, human-translated, ChatGPT 4.0-generated, and ChatGPT 4o-generated with deep research. Each corpus was processed using part-of-speech (POS) and dependency parsing, followed by statistical profiling and sentence-structure discovery via process mining. Our results reveal that AI-generated texts differ significantly in their use of modal verbs, participles, coordination, and syntactic complexity. We demonstrate that process-mined graphs of syntactic transitions provide an interpretable and robust fingerprint of authorship, enabling us to detect AI-generated patterns and differentiate them from translated or native writing. The proposed framework contributes a novel methodological perspective to the growing field of AI authorship detection.

Mű típusa: Folyóiratcikk - Journal article
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
B. Varga, Erika
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Baksa, Attila
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Kapcsolódó URL-ek:
Kulcsszavak: AI-generated text detection, syntactic analysis, sentence structure modeling, process discovery
Folyóirat alcíme: Selected papers of the International Conference on Formal Methods and Foundations of Artificial Intelligence
Nyelv: angol
Kötetszám: 61.
DOI azonosító: 10.33039/ami.2025.10.013
ISSN: 1787-6117 (Online)
Felhasználó: Tibor Gál
Dátum: 29 Okt 2025 13:00
Utolsó módosítás: 29 Okt 2025 13:00
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/8839
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet