Evaluating profitability in sports betting using probabilistic models and betting strategies

Pál, József Gergő, Bíró, Csaba (2025) Evaluating profitability in sports betting using probabilistic models and betting strategies Annales Mathematicae et Informaticae. 61. pp. 202-214. ISSN 1787-6117 (Online)

[thumbnail of 202_214_pál.pdf] pdf
202_214_pál.pdf

Download (7MB) [error in script]
Hivatalos webcím (URL): https://doi.org/10.33039/ami.2025.10.016

Absztrakt (kivonat)

Sports betting has evolved into a multibillion-dollar global industry, raising the question of whether consumers can achieve sustainable long-term profit. This study explores whether combining probabilistic prediction models with various betting strategies can yield statistically significant profit in football betting. We examine six prediction models – including Poisson, logistic regression, Elo, Monte Carlo simulation, and two novel heuristics (Veto and Balance) – alongside five popular betting strategies: Flat Betting, Martingale, Fibonacci, Value Betting, and the Kelly criterion. A custom Python-based simulation system was developed using real match data from 539 unique football games played between March and May 2025. A total of 10,000 match groups were generated, each containing 25 unique matches, yielding 300,000 model–strategy runs (6 × 5 × 10,000). Simulations preserved chronological order and modeled realistic stake adjustments. Our results highlight the complex relationship between predictive accuracy and profitability, and the limitations of exploiting statistical advantages in an efficient market. While some combinations showed short-term gains, consistent long-term profit remained elusive under most conditions. The findings provide insight into model performance, risk management, and the practical challenges of algorithmic sports betting. This study is intended solely for academic purposes; the results should not be interpreted as practical betting advice.

Mű típusa: Folyóiratcikk - Journal article
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
Pál, József Gergő
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Bíró, Csaba
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Megjegyzés: This research was supported by the Eköp-24 University Research Fellowship Program of the Ministry for Culture and Innovation from the Source of the National Research, Development and Innovation Fund.
Kapcsolódó URL-ek:
Kulcsszavak: sports betting, probabilistic models, Veto model, Balance model, Kelly criterion, value betting, simulation
Folyóirat alcíme: Selected papers of the International Conference on Formal Methods and Foundations of Artificial Intelligence
Nyelv: angol
Kötetszám: 61.
DOI azonosító: 10.33039/ami.2025.10.016
ISSN: 1787-6117 (Online)
Felhasználó: Tibor Gál
Dátum: 29 Okt 2025 12:52
Utolsó módosítás: 29 Okt 2025 12:52
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/8836
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet