Motion enhanced video anomaly detection using masked autoencoder and hybrid loss functions

Almurumudhe, Mohammed Iqbal, Hornyák, Olivér (2025) Motion enhanced video anomaly detection using masked autoencoder and hybrid loss functions Annales Mathematicae et Informaticae. 61. pp. 15-30. ISSN 1787-6117 (Online)

[thumbnail of 15_30_hornyák.pdf] pdf
15_30_hornyák.pdf

Download (911kB) [error in script]
Hivatalos webcím (URL): https://doi.org/10.33039/ami.2025.10.015

Absztrakt (kivonat)

In this paper, a hybrid deep learning framework for video anomaly detection that combines autoencoder-based reconstruction with an advanced anomaly scoring mechanism is proposed. Unlike conventional methods that rely solely on reconstruction loss, our approach integrates motion-based scoring and masked autoencoders to enhance detection accuracy and interpretability. The autoencoder learns to reconstruct normal patterns, while an anomaly scoring function evaluates deviations based on reconstruction errors and motion gradients. This directs attention to dynamic regions and foreground objects, thereby reducing false positives from background variations. To improve robustness, we apply preprocessing techniques, including min-max normalization and data augmentation (random cropping, horizontal flipping, and rotation), ensuring consistency across datasets. The framework is evaluated on widely used benchmark datasets, ShanghaiTech Campus and UCSD Ped2, using precision, recall, ROC-AUC, and confusion matrices as performance metrics. It outperforms traditional reconstruction-based autoencoders and GAN-based models. Furthermore, the hybrid scoring mechanism reduces false positives by 15% compared to standard autoencoder approaches, improving detection reliability. Despite the high accuracy, the method incurs additional computational overhead due to motion gradient calculations and masked reconstructions. However, the trade-off is justified by significant improvements in anomaly detection performance. The results demonstrate that our framework enhances both accuracy and interpretability, making it a viable solution for real-world applications such as surveillance, traffic monitoring, and industrial security.

Mű típusa: Folyóiratcikk - Journal article
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
Almurumudhe, Mohammed Iqbal
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Hornyák, Olivér
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Kapcsolódó URL-ek:
Kulcsszavak: video anomaly detection, hybrid deep learning models, multi-frame anomaly detection, surveillance systems, masked autoencoder
Folyóirat alcíme: Selected papers of the International Conference on Formal Methods and Foundations of Artificial Intelligence
Nyelv: angol
Kötetszám: 61.
DOI azonosító: 10.33039/ami.2025.10.015
ISSN: 1787-6117 (Online)
Felhasználó: Tibor Gál
Dátum: 29 Okt 2025 11:20
Utolsó módosítás: 29 Okt 2025 11:20
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/8821
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet