Detection of God Class and Data Class code smells based on an automatic machine learning tool

Khleel, Nasraldeen Alnor Adam, Nehéz, Károly (2025) Detection of God Class and Data Class code smells based on an automatic machine learning tool In: Proceedings of the International Conference on Formal Methods and Foundations of Artificial Intelligence. Eger, Eszterházy Károly Catholic University. pp. 115-128.

[thumbnail of fmfai2025_pp115-128.pdf] pdf
fmfai2025_pp115-128.pdf

Download (744kB) [error in script]
Hivatalos webcím (URL): https://doi.org/10.17048/fmfai.2025.115

Absztrakt (kivonat)

Code smells are symptoms of poor design or incomplete implementation that can degrade software quality and maintainability. Detecting them is crucial for improving software reliability and guiding refactoring efforts. Traditional detection methods rely on predefined rules or thresholds, which are inflexible and prone to errors, while modern machine learning approaches require significant expertise and large, balanced datasets. To address these challenges, we propose an automated code smell detection method using AutoGluon, an AutoML framework that streamlines model selection, hyperparameter tuning, and handling of imbalanced datasets. To evaluate the effectiveness of the proposed method, experiments were conducted using two code smell datasets: God Class and Data Class. The performance of the method was evaluated using six different metrics: accuracy, precision, recall, F-measure, Matthew’s correlation coefficient (MCC), and the area under the receiver operating characteristic curve (AUC). Additionally, we have also compared our proposed method with stateof- the-art code smell detection methods. Experimental results show that AutoGluon achieves high predictive performance—up to 0.98 accuracy for God Class and 1.00 for Data Class, which often matches or outperforms stateof- the-art methods, demonstrating the potential of AutoGluon for efficient and scalable code smell detection.

Mű típusa: Könyvrészlet - Book section
Szerző:
Szerző neve
Email
MTMT azonosító
ORCID azonosító
Közreműködés
Khleel, Nasraldeen Alnor Adam
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Nehéz, Károly
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
NEM RÉSZLETEZETT
Szerző
Kapcsolódó URL-ek:
Kulcsszavak: code smells, software metrics, machine learning, AutoGluon Tool
Nyelv: angol
DOI azonosító: 10.17048/fmfai.2025.115
Felhasználó: Tibor Gál
Dátum: 28 Okt 2025 10:15
Utolsó módosítás: 28 Okt 2025 10:15
URI: http://publikacio.uni-eszterhazy.hu/id/eprint/8808
Műveletek (bejelentkezés szükséges)
Tétel nézet Tétel nézet