Kovásznai, Gergely, Gajdár, Krisztián, Narodytska, Nina (2021) Portfolio solver for verifying Binarized Neural Networks Annales Mathematicae et Informaticae (53.): Selected papers of the 1st Conference on Information Technology and Data Science. pp. 183-200. ISSN 1787-6117 (Online)
pdf
AMI_53_from183to200.pdf Download (1MB) [error in script] |
Absztrakt (kivonat)
Although deep learning is a very successful AI technology, many concerns have been raised about to what extent the decisions making process of deep neural networks can be trusted. Verifying of properties of neural networks such as adversarial robustness and network equivalence sheds light on the trustiness of such systems. We focus on an important family of deep neural networks, the Binarized Neural Networks (BNNs) that are useful in resourceconstrained environments, like embedded devices. We introduce our portfolio solver that is able to encode BNN properties for SAT, SMT, and MIP solvers and run them in parallel, in a portfolio setting. In the paper we propose all the corresponding encodings of different types of BNN layers as well as BNN properties into SAT, SMT, cardinality constrains, and pseudo-Boolean constraints. Our experimental results demonstrate that our solver is capable of verifying adversarial robustness of medium-sized BNNs in reasonable time and seems to scale for larger BNNs. We also report on experiments on network equivalence with promising results.
Mű típusa: | Folyóiratcikk - Journal article |
---|---|
Szerző: | Szerző neve Email MTMT azonosító ORCID azonosító Közreműködés Kovásznai, Gergely NEM RÉSZLETEZETT NEM RÉSZLETEZETT NEM RÉSZLETEZETT Szerző Gajdár, Krisztián NEM RÉSZLETEZETT NEM RÉSZLETEZETT NEM RÉSZLETEZETT Szerző Narodytska, Nina NEM RÉSZLETEZETT NEM RÉSZLETEZETT NEM RÉSZLETEZETT Szerző |
Kapcsolódó URL-ek: | |
Kulcsszavak: | Artificial intelligence, neural network, adversarial robustness, formal method, verification, SAT, SMT, MIP |
Nyelv: | angol |
DOI azonosító: | 10.33039/ami.2021.03.007 |
ISSN: | 1787-6117 (Online) |
Felhasználó: | Tibor Gál |
Dátum: | 18 Máj 2021 16:21 |
Utolsó módosítás: | 18 Máj 2021 16:21 |
URI: | http://publikacio.uni-eszterhazy.hu/id/eprint/7004 |
Tétel nézet |