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Abstract. Fullerenes are an allotrope of carbon having a hollow, cage-like
structure. The atoms in the molecule are arranged in pentagonal and hexag-
onal rings such that each atom is connected to three other atoms. Simple
polyhedra having only pentagonal and hexagonal faces are a mathematical
model for fullerenes. We say that a fullerene with n vertices has a magic
property if the numbers 1, 2, . . . , n may be assigned to its vertices so that
the sums of the numbers on each pentagonal face are equal and the sums of
the numbers in each hexagonal face are equal. We show that C8n+4 does not
admit such an arrangement for all n, while there are fullerenes, like C24 and
C26 that have many nonisomorphic such arrangements.
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1. Introduction
Forty years ago, Sir Harold W. Kroto, Robert F. Curl, Jr., and Richard Smalley
discovered the first fullerene C60, also known as buckminsterfullerene or “bucky-
ball”, see [6]. For this discovery, they were awarded the Nobel Prize for Chemistry
in 1996. The identification of fullerenes significantly broadened the range of recog-
nized carbon allotropes, which had previously been restricted to graphite, diamond,
and amorphous forms of carbon such as soot and charcoal. After the discovery of
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buckminsterfullerene, the existence of similar structures having 70, 76, 78, 82, 84,
90, 94, or 96 carbon atoms was confirmed. They have been the focus of extensive
research, concerning both their chemical properties and their technological uses,
particularly in materials science, electronics, and nanotechnology.

The experimental study of fullerenes was accompanied by theoretical investiga-
tions based on mathematical models of fullerene molecules called fullerene graphs.
The vertices of the graphs are the atoms, and the edges are the bonds between
the atoms in the molecules. Mathematically, a fullerene is a 3-connected 3-regular
planar graph with only pentagonal faces and hexagonal faces. Equivalently, a
mathematical fullerene may be regarded as a simple 3-polytope whose facets are
pentagons or hexagons. Euler’s formula implies that the number of pentagonal
faces in a fullerene is 12 while the number of vertices is even. Grünbaum and
Motzkin in [4] showed that there exists a fullerene with any even n ≥ 24 and with
n = 20 vertices, and that there is no fullerene with n = 22 vertices.

Baralić and Milenković in [1] proposed a study of an interesting property mo-
tivated by magic square configurations. They found an example of an arrange-
ment of the first twenty four positive integers in across twenty four vertices of
the 3-dimensional permuthohedron satisfying that the sums of the numbers in the
vertices of each square and each hexagonal facets are constant. They called this
property magic. The notion of a magic property can be introduced similarly for
fullerenes. A fullerene with n vertices has a magic property if the first n positive
integers can be associated one per vertex so that the sum of the numbers in each
pentagonal face is constant, as well as the respective sum corresponding to each
hexagonal face. The aim of this article is to present and discuss some results about
the magic property of fullerenes.

2. Fullerenes and the magic property
Let us denote by V = {v1, v2, . . . , vn} the set of vertices of a fullerene Cn.

Definition 2.1. Let H and P be the sets of hexagonal and pentagonal faces on a
fullerene Cn. Fullerene Cn is said to have the magic property if there is a bijection
f : V → {1, 2, . . . , n}, referred to as a magic configuration, such that∑

v∈Hi

f(v) = Sh, ∀Hi ∈ H,

∑
v∈Pj

f(v) = Sp, ∀Pj ∈ P,

where the sum per pentagon Sp and the sum per hexagon Sh are deemed the magic
constants of fullerene.

A fullerene may admit many distinct magic configurations, including with dif-
ferent magic constants, as we will see in the next section. However, the magic
constants Sp and Sh for a given fullerene Cn satisfy the next relation.
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Proposition 2.2. If a fullerene Cn has a magic property, then

24Sp + (n − 20)Sh = 3n(n + 1). (2.1)

Proof. The relation follows by summing the numbers over all faces of Cn, which
yields three times the sum of the first n positive integers, since each vertex belongs
to exactly three faces.

Baralić and Milenković used (2.1) and a divisibility argument in [1] to show that
there is no magic configuration on the dodecahedron C20. The same reasoning can
be applied to the buckminsterfullerene C60. If there were a magic configuration on
C60 then by (2.1) the magic constants would satisfy

24Sp + 40Sh = 3 · 60 · 61,

which is impossible due to the divisibility of the left-hand side by 8. Indeed, the
argument straightforwardly generalizes to the following result.

Proposition 2.3. If n ≡ 4 (mod 8) than a fullerene Cn does not admit a magic
configuration.

Proof. Assume the contrary. Then 24Sp + (n − 20)Sh ≡ 0 (mod 8). On the other
hand 3n(n + 1) ≡ 4 (mod 8). The contradiction!

Based on congruences modulo 8 we can deduce little about the magic constants
in the remaining cases.

Proposition 2.4.

Sh ≡

0 (mod 2), if n ≡ 0 (mod 8),
3 (mod 4), if n ≡ ±2 (mod 8).

Unfortunately, we cannot obtain much from utilizing these kinds of elementary
number theory approach. Working modulo 3, the most we can say is the following.

Proposition 2.5. If n ̸≡ 2 (mod 3) and a fullerene Cn admits a magic configura-
tion, then Sh ≡ 0 (mod 3).

3. Magic configurations on C24

In the previous section, we established several nonexistence results for magic config-
urations on fullerenes. The simplest case of a fullerene is C24: the Schlegel diagram
for this fullerene is presented in Figure 1. C24 has 24 vertices, twelve pentagonal
and two hexagonal faces.
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Figure 1. Schlegel diagram of C24.

We start the study of magic configurations on C24 by examining its magic
constants Sp and Sh. Using (2.1) we get

6Sp + Sh = 450. (3.1)

The (3.1) linear Diophantine equation has solutions in positive integers, e.g. Sp = 50
and Sh = 150, so we cannot rule out the possibility of a magic property of C24.

From (3.1) it is evident that Sh ≡ 0 (mod 6). Two hexagonal C24 do not share
a vertex. The minimal possible value for Sh is not less than the sum when the
numbers from {1, 2, 3, 4, . . . , 12} are placed on the hexagonal vertices, which is 39.
On the other hand Sh is not greater than the sum when {13, 14, 15, 16, . . . , 24} are
placed on the hexagonal vertices, which is 111.

However, Sh ≡ 0 (mod 6) implies Sh ∈ {42, 48, 54, . . . , 96, 102, 108} and the
corresponding values for Sp are Sp ∈ {68, 67, 66, . . . , 59, 58, 57}. We exhausted all
obvious number-theoretic arguments and no new constraints on the magic constants
could be obtained. Attempting to search for a magic configuration with these
constants by hand appears pointless. Therefore, we wrote a program [3] to check
which permutations of the first 24 positive integers satisfy the system (3.2) of
Diophantine equations for each of the twelve possible pairs of magic constants
(Sp, Sh). The variables are associated with the vertices labeled in Figure 2. More
about the program will be given in Appendix A.

v1 + v2 + v3 + v4 + v5 + v6 = Sh v19 + v20 + v21 + v22 + v23 + v24 = Sh

v5 + v8 + v15 + v9 + v4 = Sp v4 + v9 + v16 + v10 + v3 = Sp

v3 + v10 + v17 + v11 + v2 = Sp v2 + v11 + v18 + v12 + v1 = Sp

v1 + v12 + v13 + v7 + v6 = Sp v6 + v7 + v14 + v8 + v5 = Sp

v14 + v8 + v15 + v22 + v21 = Sp v15 + v9 + v16 + v23 + v22 = Sp

v16 + v10 + v17 + v24 + v23 = Sp v17 + v11 + v18 + v19 + v24 = Sp

v18 + v12 + v13 + v20 + v19 = Sp v13 + v7 + v14 + v21 + v20 = Sp

(3.2)
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Table 1. Number of magic configurations on C24 with given magic
constants.

Sp Sh # of solutions Sp Sh

57 108 576 68 42
58 102 936 67 48
59 96 2832 66 54
60 90 8832 65 60
61 84 11208 64 66
62 78 14592 63 72

Figure 2. Number of magic configurations on C24 with given magic
constants.

Surprisingly, our program found many solutions in each of these twelve cases.
Figure 2 also illustrates the number of magic configurations on C24.
To conclude the analysis of C24, we will provide examples of magic configura-

tions on it. In Figure 3 we represent a magic configuration for each pair of twelve
couples of the magic constants Sp and Sh.
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Figure 3. Examples of magic configurations on C24.

4. Magic configurations on C26

After analysing C24, the next least complex fullerene is C26, containing twelve
pentagons, three hexagons, and 26 vertices. Its structure is shown in the Schlegel
diagram in Figure 4.

Similarly to C24, we start studying the magic configurations on C26 by exam-
ining its magic constants Sp and Sh. Using (2.1) we get

12Sp + 3Sh = 1053. (4.1)

Since no two hexagonal faces of C26 share a common vertex, using the same logic
used in the analysis of C24, the range of possible values for Sh can be bounded by
convention. That is, the minimal value for Sh cannot be less than the sum that
arises when the smallest 18 integers {1, 2, 3, 4, . . . , 18} are placed on the hexagonal
vertices, yielding a sum of 57. The same logic can be applied to find the maximum
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Figure 4. Schlegel diagram of C26.

value of Sh which is 105. This exhausts all possible constraints for the magic
constants of C26 fullerene, and the Diophantine equation program must now be
used to find all permutations of the first 26 numbers that are solutions for each of
the 12 pairs of (Sh, Sp).

v5 + v6 + v7 + v16 + v17 + v18 = Sh v19 + v20 + v21 + v22 + v26 = Sp

v8 + v9 + v10 + v11 + v20 + v21 = Sh v11 + v12 + v21 + v22 + v23 = Sp

v12 + v13 + v14 + v15 + v23 + v24 = Sh v3 + v10 + v11 + v12 + v13 = Sp

v1 + v2 + v4 + v5 + v6 = Sp v2 + v3 + v4 + v13 + v14 = Sp

v1 + v2 + v3 + v10 + v9 = Sp v4 + v5 + v14 + v15 + v16 = Sp

v1 + v6 + v7 + v8 + v9 = Sp v15 + v16 + v17 + v24 + v25 = Sp

v17 + v18 + v19 + v25 + v26 = Sp v22 + v23 + v24 + v25 + v26 = Sp

v7 + v8 + v18 + v19 + v20 = Sp

(4.2)

In the (4.2) system, the variables correspond to the vertices marked in Figure 4.
Our program [3] found many solutions in each of these 12 cases, with the ex-

ception of (73, 59) and (62, 103) where it found no solutions. Table 2 provides us
with a summary of these solutions.

The diagram in Figure 5 also represents the number of magic configurations on
C26 with given magic constants.

In addition to this, we will provide examples of configurations on C26 similar
to that of the fullerene C24. Figure 6 displays a sample configuration on fullerene
C26 for 10 of the 12 pairs of magic constants, as constants (73, 59) and (62, 103)
did not produce solutions.
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Table 2. Number of magic configurations on C26 with given magic
constants.

Sp Sh # of Solutions Sp Sh

73 59 0 62 103
72 63 84 63 99
71 67 2796 64 95
70 71 18228 65 91
69 75 33252 66 87
68 79 58632 67 83

Figure 5. Number of magic configurations on C26 with given magic
constants.

5. Symmetries of fullerenes and magic configura-
tions

The study of the magic property of C24 showed that a fullerene can have many
magic configurations. Let us denote by M(Cn) the set of all magic configurations
on Cn. M(Cn) is an interesting combinatorial structure associated with fullerene
Cn, as will be seen in this section.

Assume that V = {v1, v2, . . . , vn} is the set of vertices of a fullerene Cn. An ele-
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Figure 6. Examples of magic configurations on C26.

ment of M(Cn) can be represented as a set {(v1, f(v1)), (v2, f(v2)), . . . , (vn, f(vn))}
where f : V → {1, 2, . . . , n} is a magic configuration on Cn.

Let G(Cn) be the automorphism group of the face poset of a fullerene Cn and
let θ ∈ G(Cn) be an automorphism of Cn. Then θ induces a map

{(v1, f(v1)), . . . , (vn, f(vn))} 7→ {(θ(v1), f(v1)), . . . , (θ(vn), f(vn))}. (5.1)

We start with the following apparent property.

Proposition 5.1. The group G(Cn) acts freely on M(Cn).

Proof. An automorphism of G(Cn) sends the pentagons to the pentagons, and
the hexagons to the hexagons. Therefore, a magic configuration on Cn with magic
constants Sp and Sh is sent to a magic configuration with the same constants.

According to (5.1) and the fact that any magical configuration f is a bijection,
to fix f , an automorphism θ ∈ G(Cn) has to satisfy θ(vi) = vi for all 1 ≤ i ≤ n.
But it means that θ fixes all vertices of Cn, so it must be a trivial element of G(Cn).
Therefore, the action is free.

In addition to the action induced by G(Cn), there exists another interesting
action on M(Cn).
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Proposition 5.2. A map x 7→ n + 1 − x induces a non-trivial map on M(Cn).

Proof. Observe that a magic configuration on Cn with magic constants Sp and Sh

is sent to a magic configuration with S′
p = 5n + 5 − Sp and S′

h = 6n + 6 − Sh.

Let us denote the induced map from Proposition 5.2 by h. Then h sends a
magic configuration f to

{(v1, f(v1)), . . . , (vn, f(vn))} 7→ {(v1, n + 1 − f(v1)), . . . , (vn, n + 1 − f(vn))} (5.2)

The composition h ◦ h is the identity map, so h defines an Z2 action on M(Cn).
The following fact is a corollary of Propositions 5.1 and 5.2.

Theorem 5.3. The group G(Cn) ⊕ Z2 acts freely on M(Cn).

Proof. Since G(Cn) acts freely on M(Cn), we can assume that a magic configu-
ration f is fixed by (θ, h) for some automorphism θ ∈ G(Cn). However, by (5.1)
and (5.2) (θ, h) sends f with magic constants Sp and Sh to a magic configuration
with S′

p = 5n + 5 − Sp and S′
h = 6n + 6 − Sh. But since n is even, it follows that

S′
p ̸= Sp contradicting the assumption that f was fixed. Therefore, the action of

G(Cn) ⊕ Z2 on M(Cn) is free.

Since the automorphism group of C24 is the dihedral group D6 ([2, 7]), so
the claim previous is reflected in Table 1 by all numbers in the last column be-
ing divisible by 24. In this way, we obtain the number of non-isomorphic magic
arrangements.

The examples of C24 and C26 show that the magic configurations over a fullerene
form an interesting mathematical structure that deserves further exploration. The
next question to be addressed is:

Problem 5.4. Determine all positive integers n such that fullerene Cn admits a
magic configuration.

6. Magic configurations and Principal Component
Analysis

As we will see in this section, the set M(C24) provides interesting results when
Principal Component Analysis (PCA) techniques are used to allow the solutions
to be visualised in R2.

PCA is a statistical method of dimensionality reduction, often used with big
and highly complex datasets [5]. The technique involves solving for new variables,
which are linear functions of the original variables in the dataset, also known as
the principal components. These principal components are the linear combinations
of the original variables, determined by the eigenvectors of the data’s covariance
matrix; the eigenvalues associated with each eigenvector are an indicator of how
much variance each component explains [5]. In the case of M(C24), we must first

10



Annal. Math. et Inf. Magic property of fullerenes

consider a magic configuration, a row in the dataset defined by variables v1 to v24,
as a vector in R24. The first two principal components form a plane onto which
the points are projected, yielding a 2-dimensional plot that is easily interpretable.
This process and its mathematics are detailed below.

PCA identifies dominant directions of variation in the solution set S ∈ RN×24,
where each row represents a labelling vector vi ∈ R24. Centring is first performed
by subtracting the empirical mean vector

µ = 1
N

N∑
i=1

vi,

to obtain the centred matrix Ṽ = V − 1N µ, where 1N is an N × 1 vector of
ones. The covariance matrix is then computed as Σ = 1

N Ṽ ⊤Ṽ , whose eigenvalue
decomposition

Σ =
24∑

i=1
λi uiu⊤

i

yields eigenvectors ui (principal directions) and eigenvalues λi (explained vari-
ances). From the definition of the covariance matrix, it follows that the matrix is
symmetric and positive semi-definite, so all of its eigenvalues are non-negative real
values.

The loading of vertex v on component i is defined as

Lv,i = uv,i

√
λi,

where uv,i is the element of the eigenvector ui corresponding to vertex v. Loadings
quantify the extent to which each vertex contributes to a given principal component.
Vertices with larger absolute loadings have a greater influence on that component’s
variance and orientation.

To reduce dimensionality, the data is projected onto the first k principal com-
ponents, with

W =
[
u1 u2 . . . uk

]
, Z = X̃W.

For visualization in R2, k = 2 is used, giving

Z = X̃
[
u1 u2

]
∈ RN×2,

which represents each solution projected onto the plane spanned by the first two
principal components.

In Table 3 the eigenvalues for each pair of magic constants for C24 are shown.
The rank of (3.2) is 14 and the nullity is therefore 10 as it is indicated in Table 3
with 14 eigenvalues clustered around zero. It means that the set of the solutions
of (3.2) is 10 10-dimensional affine subspace of R24. Therefore, an infinite set of
lattice solutions is highly expected. Non-zero eigenvalues for each pair of magic
constants appear in pairs of two same eigenvalues, confirming the action of the
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automorphism group of G(C24) on the set of magical configurations for a fixed pair
of magical constants.

Table 3. Eigenvalues of the covariance matrix for C24.

PC Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
57,108 68,42 58,102 67,48 59,96 66,54 60,90 65,60 61,84 64,66 62,78 63,72

1 57.05 57.05 87.32 87.32 114.61 114.61 114.04 114.04 121.66 121.66 121.28 121.28
2 57.05 57.05 87.32 87.32 114.61 114.61 114.04 114.04 121.66 121.66 121.28 121.28
3 50.24 50.24 66.39 66.39 90.26 90.26 105.24 105.24 120.07 120.07 116.06 116.06
4 50.24 50.24 66.39 66.39 90.26 90.26 105.24 105.24 120.07 120.07 116.06 116.06
5 36.23 36.23 65.58 65.58 84.35 84.35 101.40 101.40 107.31 107.31 112.10 112.10
6 36.23 36.23 65.58 65.58 84.35 84.35 101.40 101.40 107.31 107.31 112.10 112.10
7 34.91 34.91 64.54 64.54 81.01 81.01 94.45 94.45 104.14 104.14 111.67 111.67
8 34.91 34.91 64.54 64.54 81.01 81.01 94.45 94.45 104.14 104.14 111.67 111.67
9 33.93 33.93 48.52 48.52 57.92 57.92 84.93 84.93 94.86 94.86 110.93 110.93
10 33.93 33.93 48.52 48.52 57.92 57.92 84.93 84.93 94.86 94.86 110.93 110.93
11 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
12 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
13 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
14 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
15 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
16 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
17 0.00 0.00 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 0.00 0.00
18 0.00 0.00 0.00 0.00 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The projection for all 12 magic constants allowed by M(C24) is shown in Fig-
ure 7. In it the PCA plots appear identical for different pairs of solutions that
have the same number of solutions. This similarity arises because the solution sets
share the same statistical structure. Specifically, the distribution of values across
the vertices and the covariance structure of the assignments are alike. Since PCA
focuses on patterns in variance, different configurations that produce the same co-
variance matrix – despite having different vertex values – lead to very similar PCA
projections.

In addition to this observation, there also exists symmetrical structures within
certain individual PCA plots in Figure 7; Constants of (58,102), (59,96), and (62,78)
provide circular plots with 12 axes of symmetry, while constants of (60,90) and
(61,84) show triangular plots with three axes of symmetry. Precisely the dihedral

12



Annal. Math. et Inf. Magic property of fullerenes

Figure 7

group D12 action can be noticed in the plots for (58, 102), (61, 84) and (62, 78)
and the dihedral group D6d in the plots for (57, 108), (60, 90) and (61, 84). While
the presence of D6d which is the automorphism group of C24 is expectable, the
appearance of D12 is not unusual since D12 and D6d are isomorphic as abstract
groups.

In the context of PCA methods, similar results may be expected for any fullerene
Cn admitting magical configurations. The nullity of the corresponding pentagonal
and hexagonal faces for a pair of magical constants (Sp, Sh) will be seen as the
number of zero eigenvalues of the corresponding symmetric semi-definite covari-
ance matrix Σ(Sp,Sh). At the same time, the presence of the automorphism group
G(Cn) will produce multiplicities of certain eigenvalues. Also, Z2 action on M(Cn)
induced by (5.2) produces the same PCA plots.

Proposition 6.1. Let (Sp, Sh) and (S′
p, S′

h) be magic constants for magic config-
urations on a fullerene Cn such that Sp + S′

p = 5n + 5 and Sp + S′
p = 6n + 6. Then

the corresponding covariance matrix Σ(Sp,Sh) and Σ(S′
p,S′

h
) are equal.

Proof. The covariance matrix Σ(Sp,Sh) is given by 1
N (V −1N µ)⊤(V −1N µ) where

13
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V is N×n matrix of the solutions, 1N is an N×1 vector of ones, and µ = 1
N

∑N
i=1 vi.

The corresponding centred matrix of solutions for the pair (S′
p, S′

h) is

(n + 1) 1N × 1n − V − ((n + 1)1N × 1n − 1N µ) = 1N µ − V,

where 1n is an 1 × n matrix of ones. Thus,

Σ(S′
p,S′

h
) = 1

N
(1N µ − V )⊤(1N µ − V ) = 1

N
(V − 1N µ)⊤(V − 1N µ) = Σ(Sp,Sh),

as it was claimed.

The set of magical configurations M(Cn) is a unifying object for linear algebra,
combinatorial design and group representations of G(Cn), and it would be nice to
say more about it.

A. Program for finding magical configurations

Our program [3] found all magical configurations on C24 and C26. The search for all
valid magical labellings of C24 and C26 was formulated as a constraint satisfaction
problem (CSP). Each vertex vi was treated as an integer variable ranging from 1
to n, subject to an AllDifferent constraint to ensure that every label appeared
exactly once. Each pentagonal and hexagonal face introduced a linear constraint
requiring the sum of its vertex labels to equal the respective pentagon or hexagon
constant, Sp or Sh.

Pseudocode 1 describes the algorithm’s search procedures. All admissible pairs
(Sp, Sh) were derived from (2.1) and filtered under integer, range, and divisibil-
ity conditions before being used as model inputs. The model was implemented
in Python 3.12 using the CP-SAT solver from Google OR-Tools, configured with
enumerate_all_solutions = True to ensure complete enumeration of all valid
labellings. The solver employs several exact, non-brute-force mechanisms that col-
lectively optimise the search process. Constraint propagation continuously elimi-
nates infeasible variable assignments by tightening domains as constraints interact.
Clause learning records conflicts encountered during the search, preventing the
solver from revisiting failed paths. Backtracking explores only feasible branches
of the search tree, systematically returning to the last valid decision point when a
contradiction is detected.

These mechanisms reduce the theoretical search space from 2424 ≈1033 combi-
nations to roughly 106 feasible configurations while ensuring that no valid labelling
is omitted. All results were saved in CSV format for reproducibility. Computations
were performed on a dedicated workstation running Python 3.12, providing an ex-
haustive and exact enumeration of all configurations consistent with (2.1) and the
fullerene’s geometric constraints.
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Algorithm 1 Constraint-Based Search for Magic Labellings using CP-SAT.
1: Input: Fullerene type (C24 or C26), vertex count n, constants (Sp, Sh)
2: Output: All valid labellings (v1, v2, . . . , vn) satisfying all face-sum constraints

3: Define integer variables vi ∈ {1, . . . , n}
4: Apply AllDifferent(v1, . . . , vn) to ensures that all vertex labels are distinct.
5: Add face constraints:∑

vi∈pentagon vi = Sp∑
vi∈hexagon vi = Sh

6: Initialize CP-SAT solver with enumerate_all_solutions = True to find every possi-
ble labeling that satisfies all constraints.

7: Note: The solver explores possible assignments as a search tree, where each node
represents a partial labelling and each branch corresponds to a variable choice.

8: function Search(partial_assignment)
9: if all variables assigned and all constraints satisfied then

10: Record solution to CSV
11: return
12: end if
13: Select next unassigned variable vk

14: for each feasible value x in domain(vk) do
15: Assign vk = x
16: Apply constraint propagation to update remaining domains
17: if no constraint violated then
18: Search(partial_assignment ∪ {vk = x})
19: else
20: Clause learning: store this failed combination to skip later
21: end if
22: Undo assignment of vk (backtracking)
23: end for
24: end function

25: Search(∅)

26: Solver mechanisms:
Constraint propagation: removes impossible values early. For example,
for ([1, 2, 3, 4, 5, 6], Sh), if v1, . . . , v5 are fixed, v6 is determined automatically.

Clause learning: records conflicts like (v1, v2, v3) = (7, 8, 9) that violate a
constraint, avoiding repetition.

Backtracking: when no feasible values remain, the solver returns to the
previous variable and tries a new value.
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