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Abstract. For the purposes of mathematics teacher education, we provide
an algebraic and number theoretic explanation of how one can determine,
from a and b, whether the decimal expansion of a/b, where gcd(a, b) = 1,
contains a pre-period, and if so, how long it is. To that end, we observe
that explanation cannot be based solely on group theory because the residue
classes of remainders do not form a subgroup of the multiplicative group
modulo b. However, the collection of residue classes does form a submonoid
of the multiplicative monoid modulo b.
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1. Introduction
One fine day, a lower secondary mathematics teacher might face a sudden question
from a pupil curious to know whether one can determine from a and b if the decimal
expansion of

x = a

b
,

where gcd(a, b) = 1 (i.e., the greatest common divisor of a and b equals 1), contains
a pre-period, and if so, how long it is. Similarly, a pupil may ask whether one can
foresee the length of period from a and b. Caught off guard, the teacher might buy
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some time to reflect on these questions by first explaining that x has a terminating
decimal expansion if b has no prime factors other than 2 or 5. Simultaneously, the
teacher might wonder: “Did we cover anything related to this issue in our algebra
courses?”

Indeed, why does, for example, 1
21 lack a pre-period, while 1

22 has one? Since
both 21 and 22 are composite numbers, the presence of a pre-period does not
depend on whether b is a prime or not. However, examining the expansion of x
where the denominator b is a prime other than 2 or 5 quickly reveals that such x
lacks a pre-period.

Poranen and Haukkanen [7] explored various aspects of the decimal expansion
of a rational number x through the lens of group theory. Their survey aimed to
demonstrate how a solid understanding of group theory and fundamental number
theory concepts can help secondary mathematics teachers gain deeper insights into
secondary-level mathematical topics.

The present paper is a kind of sequel to [7]. It will turn out that addressing
the questions posed in the first paragraph leads to studying monoids. Interestingly,
this shift from one algebraic system to another has a parallel in mathematics edu-
cational research. Several studies (e.g., [13, 14]) have shown that a minor change
in the formulation of a task can significantly alter a learner’s perception of the
mathematical knowledge required to solve the task. For instance, a pupil who can
successfully solve

ax = b

whenever a, b ∈ Z+, may perceive the task as belonging to a fundamentally dif-
ferent algebraic system with new rules of calculation when a and b are negative
or decimal numbers [14]. A similar phenomenon is observed even when examining
how students perceive elementary mathematical concepts, such as that of equation
[12]. One possible reason for these phenomena may arise from the nature of math-
ematics itself: seemingly similar tasks situated in different mathematical contexts
can, in fact, constitute fundamentally different challenges and require entirely dis-
tinct approaches. A concrete example of this is the difference between solving the
linear equation 2x = 1 in the context of lower secondary school and solving it in
an introductory real analysis course, where real numbers are treated as elements of
the complete ordered field, see [11]. This observation underscores the importance
of attending not only to the mathematical content but also to the context in which
a problem is posed and discussed.

The aim of this paper is to establish an appropriate mathematical context for
addressing the questions posed above and to provide a comprehensive answer to
them. Our goal is to make the paper a self-contained learning resource suitable
for use in mathematics teacher education. While the questions themselves are not
new and their answers are familiar to many mathematicians, e.g., [5, Section 9.2]
and [2], a concise yet complete exposition of the topic appears to be scarce in mod-
ern literature. This observation, along with findings from mathematics education
research, e.g., [15], indicating that preservice teachers experience considerable diffi-
culty in understanding the relationship between a rational number and its decimal
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expansion serves as the motivation for writing this paper.
Nontheless, some recent papers have addressed aspects of the issue. For in-

stance, Facchini and Simonetta [3] explored the connection between decimal rep-
resentations of rational numbers, the structure of finite cyclic monoids, divisibility
rules between integers, and divisors of the numbers of the form 99 . . . 900 . . . 0.
Similarly, Ross [9] considered the question, although his study primarily focused
on the m-block property of fractions. Also Hall and Bastos [4] acknowledged the
condition under which a pre-period exists as they explored how to convert decimal
expansions of rational numbers into visual forms via string art.

In Section 2, we summarize the essential results from university-level algebra
and number theory required in Section 3, where we present a detailed exposition
of the basic theory underlying the decimal expansion of a rational number. The
article concludes with Section 4 that discusses some examples.

2. Preliminaries on algebra and number theory
In this section, we give a concise summary of the algebraic and number theoretic
concepts and results necessary for discussing the main theme of this article in detail.
Our overview closely follows that given in [7]. For a more comprehensive review of
these topics, see, for example, [1, 6, 8, 10].

2.1. Groups, monoids, and their cyclic substructures
Let G be a nonempty set equipped with a binary operation ⋆ : G × G → G, i.e., for
any two elements a, b ∈ G, their product a ⋆ b is a unique element of G.

Semigroups, monoids, and groups. The pair (G, ⋆) is called a semigroup if
the operation ⋆ is associative, that is,

(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) for all a, b, c ∈ G.

Associativity ensures that the placement of parentheses does not affect the outcome
of repeated operations.

A semigroup is called a monoid if it has a special element e ∈ G such that

a ⋆ e = e ⋆ a = a for all a ∈ G.

This element, called the identity, acts as a “neutral element” under ⋆ similarly as
1 does under multiplication of real numbers.

Finally, a monoid is a group if every element a ∈ G has an inverse a−1 ∈ G
satisfying

a ⋆ a−1 = a−1 ⋆ a = e.

Thus, in a group, any element can be “undone”. If, in addition,

a ⋆ b = b ⋆ a for all a, b ∈ G,
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then (G, ⋆) is called an Abelian or commutative group. In school mathematics, we
encounter several examples of Abelian groups, such as addition on the integers and
multiplication on the positive real numbers.

Subgroups and Lagrange’s theorem. A group can contain a subset that be-
haves self-contained similarly as the group itself. More precisely, a pair (H, ⋆) is
called a subgroup of (G, ⋆) if H is a nonempty subset of G and itself forms a group
under the same operation ⋆.

For a finite group G, the finite subgroup criterion provides a convenient test
to identify its subgroups: if H is a finite nonempty subset of G, then (H, ⋆) is a
subgroup of (G, ⋆) if and only if

∀a, b ∈ H : a ⋆ b ∈ H,

that is, if and only if H is closed under the operation ⋆.
A key result concerning subgroups is Lagrange’s theorem, which states that if

(G, ⋆) is a finite group and (H, ⋆) is its subgroup, then the number of elements in
H divides the number of elements in G, i.e.,

|H| | |G|.

Cyclic subgroups and generators. Let (G, ⋆) be a group and let a ∈ G. The
set

⟨a⟩ = {ak | k ∈ Z}
is called the cyclic subgroup generated by a. It is the smallest subgroup of (G, ⋆)
that contains a. The number of distinct elements in ⟨a⟩ is called the order of a in
G, denoted by ord(a).

If there exists an element a ∈ G such that G = ⟨a⟩, then (G, ⋆) is a cyclic group,
and a is called a generator of G. In a cyclic group, every element can be obtained
by repeatedly applying the group operation to a single generator.

When G is finite, each of its cyclic subgroups can be written as

⟨a⟩ = {e, a, a2, . . . , aℓ−1},

where ℓ = ord(a) and e denotes the identity element. Such groups are among the
simplest yet most fundamental structures in group theory.

Cyclic submonoids. Assume now that (M, ⋆) is a finite monoid. The structure
of cyclic submonoids is slightly harder to deal with than that of cyclic subgroups.
Since we assumed that M is finite, the set ⟨a⟩ = {ak | k = 0, 1, 2, . . .} also has to
be finite. Thus at least one element in the infinite sequence 1, a, a2, . . . has to be
equal to infinitely many other elements. Let u be the least exponent for which au is
equal to a subsequent element. Let au+v denote the first subsequent element that
equals au. Now, the cyclic submonoid of M generated by the element a is given as

⟨a⟩ = {1, a, a2, . . . , au−1, au, au+1, . . . , au+v−1}.
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The sequence 1, a, a2, . . . is of the form

1, a, a2, . . . , au−1︸ ︷︷ ︸
the pre-period

, au, au+1, . . . , au+v−1︸ ︷︷ ︸
the period

, au, au+1, . . . , au+v−1︸ ︷︷ ︸
the period

, . . . (2.1)

with pre-period 1, a, a2, . . . , au−1 of length u and period au, au+1, . . . , au+v−1 of
length v. If the monoid is a group, then u = 0, v = ℓ = ord(a) and the sequence
1, a, a2, . . . is of the form

1, a, . . . , aℓ−1︸ ︷︷ ︸
the period

, 1, a, . . . , aℓ−1︸ ︷︷ ︸
the period

, . . .

without a pre-period.

2.2. Cosets
In this subsection, we show how a group can be divided into parts of equal size.

Definition. Let (M, ⋆) be a group (resp. a monoid) and let (H, ⋆) be its subgroup
(resp. submonoid). We say that the left coset of a ∈ M modulo H in M is the set

a ⋆ H = {a ⋆ h | h ∈ H}.

If e is the identity element in M , then e ⋆ H = H. Also, a ∈ a ⋆ H for every a ∈ M .
Similarly, the right coset of a ∈ M modulo H in M is the set

H ⋆ a = {h ⋆ a | h ∈ H}.

If M is commutative, then a ⋆ H = H ⋆ a for all a ∈ M .

Partition. Let G be a group. The collection of all left cosets of H in G forms
a partition of G: two left cosets are either equal or disjoint, and their union is G.
Moreover,

a ⋆ H = b ⋆ H ⇐⇒ a ∈ b ⋆ H ⇐⇒ b ∈ a ⋆ H.

Also, a ⋆ H = H for all a ∈ H.
Each coset modulo H has the same cardinality. In particular, if H is finite,

then the number of elements in each coset is the same. If G itself is finite, then the
number of distinct left cosets of H in G is

|G|
|H|

.

Analogous results hold for right cosets.
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2.3. Congruences
Basics. Let m be a positive integer (≥ 2). Then a ∈ Z is said to be congruent to
b modulo m if a − b is divisible by m, that is, if m | (a − b). This is denoted by

a ≡ b (mod m).

Thus a ≡ b (mod m) if and only if a = b + mk for some k ∈ Z.
The congruence relation ≡ (mod m) is an equivalence relation on Z. The equiv-

alence classes are referred to as the residue classes modulo m. The residue class
determined by a is denoted by [a], and a is called a representative of [a]. The set
of all residue classes modulo m is denoted by Zm, that is,

Zm = Z/mZ = {[0], [1], [2], . . . , [m − 1]}.

According to the division algorithm, for each a ∈ Z there exist unique integers
q and r such that a = mq +r with 0 ≤ r < m. The number q is called the quotient,
and the number r the remainder. It is clear that

[a] = [r]

and more generally,
[a] = [b] ⇐⇒ a ≡ b (mod m).

Thus the representative a of the class [a] can be replaced by any integer congruent
to a modulo m, for instance by the remainder r of a modulo m.

Algebraic structures. Addition on Zm is defined by

[a] ⊕ [b] = [a + b],

where [a], [b] ∈ Zm. This is referred to as the addition modulo m. Now, (Zm, ⊕)
is an Abelian group. In this paper, however, we are primarily concerned with
multiplication modulo m, introduced below.

Multiplication on Zm is defined by

[a] ⊙ [b] = [ab],

where [a], [b] ∈ Zm. The multiplication on the right-hand side is the usual integer
multiplication, while the one on the left-hand side denotes multiplication modulo m.
Thus (Zm, ⊙) is a commutative monoid. An element [a] ∈ Zm possesses an inverse
in (Zm, ⊙) if and only if gcd(a, m) = 1.

We denote by
Z×

m = {[a] ∈ Zm | gcd(a, m) = 1}

the set of invertible elements in Zm. Then (Z×
m, ⊙) is an Abelian group, called the

multiplicative group modulo m.
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Euler’s totient function. The Euler totient function ϕ is defined by

ϕ(m) = |{a : 1 ≤ a ≤ m, gcd(a, m) = 1}|, m ∈ Z+,

that is, ϕ(m) is the number of elements in Z×
m, or equivalently, the number of

invertible integers modulo m. An arithmetical expansion for the Euler totient
function is given by

ϕ(m) = m
∏
p|m

(
1 − 1

p

)
,

where p runs through all primes dividing m. In particular, ϕ(pk) = pk − pk−1 for
prime powers pk with k ≥ 1.

Let a and m (> 1) be relatively prime, that is, gcd(a, m) = 1. Then, by Euler’s
theorem,

aϕ(m) ≡ 1 (mod m);

hence there exists a least positive integer x such that ax ≡ 1 (mod m). This integer
x is called the order of a modulo m and is denoted by ordm(a). In group-theoretic
terms, ordm(a) is the order of the element [a] in the multiplicative group Z×

m.

3. Theory of decimal expansions
In this section, we complete the discussion initiated in [7]. Among other extentions,
we include an examination of the case gcd(b, 10) = 1, which constitutes the main
focus of this paper. We draw also on Rosen’s book [8], although his treatment of
number theory is developed on a general base. Since our interest lies on decimal
numbers, we adopt base 10 throughout.

For the sake of clarity, in the rest of the paper, we focus on rational numbers
x ∈ (0, 1). The decimal expansion of x is

x =
∞∑

n=1
qn10−n = 0.q1q2 . . . ,

where qn’s are integers in [0, 9] so that for each positive integer N there exists an
integer n > N such that qn ̸= 9. The last condition assures that, e.g., the expansion
of 1/2 is 0.5, since the expansion 0.4999 . . . is not appropriate.

A decimal expansion is said to be periodic if there exist integers N ≥ 0 and
λ > 0 such that qn+λ = qn for all n > N . We then write

x = 0.q1q2 . . . qN qN+1qN+2 . . . qN+λ, (3.1)

and we say that q1q2 . . . qN is the pre-period of length N and qN+1qN+2 . . . qN+λ is
the period of length λ. Note that if a decimal expansion has a period of λ symbols,
it also has a period of tλ symbols for each t ∈ Z+. In this article, we choose N and
λ such that the period of an expansion always is the shortest possible and N is the
smallest possible.
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Before addressing the main questions of this paper, we record a theorem that
specifies the condition under which x terminates, i.e., there exists a positive integer
N such that qn = 0 for all n > N . The theorem is derived from the following
observation: b = 2i5j with s = max{i, j} > 0, if and only if x can be written as

x = ad

10s
, (3.2)

where d is an integer. Clearly, x in (3.2) terminates. For all details, see [8, Theo-
rem 12.3].

Theorem 3.1. The decimal expansion of x ∈ (0, 1) terminates if and only if x can
be written as

x = a

b
, gcd(a, b) = 1,

where b belongs to the submonoid of (Z, ·) generated by 2 and 5.

We first consider how to determine the length of period from a and b. To that
end, let us consider the long division of a/b, where gcd(a, b) = 1. The sequence of
quotients is q0, q1, q2, . . . with q0 = 0 and it forms the decimal expansion (3.1) of
x. Let r0, r1, r2, . . . denote the sequence of remainders. We examine properties of
the sequence of remainders.

The remainders rn satisfy the recurrence relation

10rn = bqn+1 + rn+1, n = 0, 1, . . . ,

r0 = a.

Thus,
10rn ≡ rn+1 (mod b), n = 0, 1, . . . ,

giving
rn ≡ 10na (mod b), n = 0, 1, . . . . (3.3)

If gcd(b, 10) = 1, the remainders rn, n = 0, 1, . . ., are congruent to

a, 10a, 102a, . . . , 10ℓ−1a, a, 10a . . . ,

modulo b, where ℓ = ordb(10), i.e., ℓ is the least integer t > 0 such that

10t ≡ 1 (mod b).

The existence of such t follows from Euler’s theorem, see Section 2.3. Observe also
that, by the definition of ℓ and the property gcd(a, b) = 1,

10na ̸≡ 10ma (mod b) and 10n ̸≡ 10m (mod b)

for 0 ≤ n ̸= m ≤ ℓ − 1.
Let us write

b = 2i5jc, where i, j ≥ 0 and gcd(c, 10) = 1. (3.4)

We may assume c > 1, since c = 1 leads to a terminating expansion.
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Case 1. Assume that gcd(b, 10) = 1, i.e., i = j = 0. Then b = c. If a = 1, then
the remainders rn, n = 0, 1, . . ., are congruent to

1, 10, 102, . . . , 10ℓ−1, 1, 10, . . . (3.5)

modulo b. Then a period of (3.5) represents the cyclic subgroup ⟨[10]⟩ of the group
(Z×

b , ⊙) generated by [10], i.e., the group

L = ⟨[10]⟩ = {[1], [10], [102], . . . , [10ℓ−1]}.

Let 1 ≤ a < b. Then the remainders rn, n = 0, 1, . . ., are congruent to

a, 10a, 102a, . . . , 10ℓ−1a, a, 10a, . . .

modulo b. A period of this sequence represents the coset of a modulo L in (Z×
b , ⊙)

given as
[a] ⊙ L = {[a], [10a], [102a], . . . , [10ℓ−1a]},

where (a, b) = 1.
So, we notice that the length of the period of the sequence of remainders in the

long division a/b is ℓ = ordb(10).

Case 2. Assume now that (b, 10) ̸= 1, i.e., s = max{i, j} > 0. Let a = 1 and
thus consider the long division of 1/b. Write again

L = ⟨[10]⟩ = {[10k] : k = 0, 1, 2, . . . }.

In this case, it is crucial to notice that L is not a subgroup of the group (Z×
b , ⊙).

The set L is not even a subset of the set Z×
b . However, L is a submonoid of the

monoid (Zb, ⊙). From (2.1) and (3.3) we see that the remainders rn, n = 0, 1, . . .,
are now congruent to

1, 10, 102, . . . , 10u−1, 10u, 10u+1, . . . , 10u+v−1, 10u, 10u+1, . . .

modulo b. Observe that v is the smallest positive integer such that 10u+v ≡ 10u

(mod b). Since gcd(c, 10) = 1, this is equivalent to 10v ≡ 1 (mod c). This implies
v = ordc 10 as we assumed that c > 1.

Now we can discuss the general case. In the long division of

a

b
, gcd(a, b) = 1,

the remainders rn, n = 0, 1 . . . , are congruent to

a, 10a, 102a, . . . , 10u−1a, 10ua, 10u+1a, . . . , 10u+v−1a, 10ua, 10u+1a, . . . (3.6)

modulo b. The pre-period and the period together again represents the coset of a
modulo L = ⟨[10]⟩ in the monoid Zb.
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We want to show that the length of period and that of pre-period in (3.6)
determine also those in (3.1), i.e., that v = λ and u = N . We first show that
v = λ. Now

a/b = 0.q1q2 . . . qN qN+1qN+2 . . . qN+λ

=
( q1

10 + q2

102 + · · · + qN

10N

)
+

( qN+1

10N+1 + qN+2

10N+2 + · · · + qN+λ

10N+λ

)
+

( qN+1

10N+λ+1 + qN+2

10N+λ+2 + · · · + qN+λ

10N+2λ

)
+ · · ·

=
( q1

10 + q2

102 + · · · + qN

10N

)
+ 1

10N

(qN+1

10 + qN+2

102 + · · · + qN+λ

10λ

)(
1 + 1

10λ
+ 1

102λ
+ · · ·

)
= 1

10N

(
q110N−1 + q210N−2 + · · · + qN

)
+ 1

10N

(qN+1

10 + qN+2

102 + · · · + qN+λ

10λ

)(
10λ

10λ − 1

)
= (10λ − 1)(q110N−1 + q210N−2 + · · · + qN )

10N (10λ − 1)

+ qN+110λ−1 + qN+210λ−2 + · · · + qN+λ

10N (10λ − 1) .

This implies that b divides 10N (10λ − 1) or, more precisely, by (3.4), 2i5j divides
10N and c divides (10λ − 1). The latter fact is equivalent to 10λ ≡ 1 (mod c). This
shows that λ ≥ ordc(10) = v. Since λ ≤ v trivially, we have λ = v.

We next show that N = u. In long division, the remainder rn uniquely de-
termines the quotient qn+1. However, two different remainders can lead to equal
quotients. Therefore, it follows that N + λ ≤ u + v. Since λ = v, we have N ≤ u.
On the other hand,

rN+λ − rN ≡ 10N+λa − 10N a ≡ 10N (10λ − 1)a ≡ 0 (mod b)

because 2i5j divides 10N and c divides (10λ − 1). This implies that u ≤ N .
Consequently, N = u.

The above reasoning contains also an implicit answer to the questions posed in
the introduction. Let us make the answer explicit by stating two theorems. The
first theorem follows directly from Cases 1 and 2, while the second requires an
additional comment.

Theorem 3.2. The length of the period in (3.1) is given by

λ = ordc(10),

where c is as given in (3.4). In particular, if gcd(b, 10) = 1, the length of the period
is λ = ℓ = ordb(10).

10
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Theorem 3.3. The length of the pre-period of

x = a

b

is s = max{i, j}.

Proof. Let us write

10sx = 2s5s a

2i5jc
= 2s−i5s−ja

c
.

Here s is the smallest integer such that the denominator of 10sx is relatively prime
to 10.

Let us consider the expansion

x = 0.q1q2 . . . qN qN+1qN+2 . . . qN+λ = q1q2 . . . qN + 0.qN+1qN+2 . . . qN+λ

10N
.

Here
0.qN+1qN+2 . . . qN+λ

is the decimal expansion of a rational number, whose denominator is relatively
prime to 10. Hence we can conclude that N is the smallest integer such that the
denominator of 10N x is relatively prime to 10. Thus s and N must be equal.

4. Examples
Above we proved that the length of the pre-period of

x = a

b
= a

2i5jc
,

where gcd(a, b) = gcd(10, c) = 1, is s = max{i, j}, and, for c > 1, the length of the
period of x is given by λ = ordc(10). If c = 1, the decimal expansion terminates.
Let us consider some concrete examples.

Example 4.1 (c = 1). For example, 13
40 has got a pre-period of length s = 3 and

the expansion terminates, because 40 = 235. Indeed,

13
40 = 13

235 = 0.325.

Example 4.2 (c > 1). Then, for example, for 13
56 , we have s = 3 and λ = 6,

because 56 = 237 and λ = 6 is the smallest positive solution of

10λ ≡ 1 (mod 7).

Explicitly,
13
56 = 13

237 = 0.232142857142857 . . . = 0.232142857.
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Example 4.3. Consider the expansion

1
26 = 1

2 · 13 .

Now, s = 1 and λ = ord13(10) = 6. All fractions of the form a/26, gcd(a, 26) = 1,
are

1
26 = 0.0384615 3

26 = 0.1153846
5
26 = 0.1923076 7

26 = 0.2692307
9
26 = 0.3461538 11

26 = 0.4230769
15
26 = 0.5769230 17

26 = 0.6538461
19
26 = 0.7307692 21

26 = 0.8076923
23
26 = 0.8846153 25

26 = 0.9615384

If we look at the decimals in the above periods, we observe that the numbers

3, 8, 4, 6, 1, and 5 (4.1)

occur cyclically in the periods of

1
26 ,

3
26 ,

9
26 ,

17
26 ,

23
26 , and 25

26 . (4.2)

Similarly, the numbers 9, 2, 3, 0, 7, and 6 occur cyclically in the periods of

5
26 ,

7
26 ,

11
26 ,

15
26 ,

19
26 , and 21

26 . (4.3)

Is this merely a coincidence? No. If we depict the decimals in the period of 1
26 as

shown in Figure 1, the decimals in the period of a
26 , a ∈ {1, 3, 9, 17, 23, 25}, can be

obtained by rotating the hexagon by an appropriate number of steps. The correct
number of steps is determined as follows.

For 1/26, we see from above that q2 = 3, q3 = 8, q4 = 4, q5 = 6, q6 = 1, and
q7 = 5. Let us compute the remainders r1, . . . , r6 from

rn ≡ 10n (mod 26).

We get r1 = 10, r2 = 22, r3 = 12, r4 = 16, r5 = 4, and, r6 = 14 modulo 26.
Since the nth remainder determines the (n + 1)th quotient, we find q∗

2 , the first
decimal of the period of a/26, a ∈ {1, 3, 9, 17, 23, 25}, by computing the remainder
r∗

1 of a/26 modulo 26 and determining which of the remainders r1−r6 it is congruent
to modulo 26.

12
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Figure 1. The decimal hexagon of 1/26.

For all a,
r∗

1 ≡ 10a (mod 26).

So, for instance, if a = 17, then r∗
1 ≡ 170 ≡ 14 ≡ r6 (mod 26) implying that q∗

2 of
17
26 is the same as the seventh decimal q7 in the decimal expansion of 1

26 .
But why do the numbers (4.1) occur in the periods of fractions (4.2) always

in the same order as in the hexagon in Figure 1? Now, r1 − r6 are congruent
(mod 13) to the numbers that occur in

S = {1, 4, 3, 12, 9, 10} = {[4k] : k = 0, 1, 2, . . .},

which forms a cyclic subgroup of the multiplicative group (Z×
13, ⊙). So, the re-

mainders r1 − r6 follow a cycle determined by a cyclic subgroup of the cyclic group
determined by c = 13 in (3.4).

In a similar manner, we can observe that the cyclic occurrence of numbers 9, 2,
3, 0, 7, and 6 in the expansions of (4.3) is related to the coset of 5 ∈ Z×

13 modulo
S, i.e.,

T = 5 ⊙ S = {5, 7, 2, 8, 6, 11}.

Lastly, we notice that Z×
13 can be partitioned as Z×

13 = S ∪ T . For any a/26, where
gcd(a, 26) = 1 and a < 26, the remainder r∗

1 is congruent modulo 13 to a number
belonging to S or T . Thereafter, each remainder r∗

n, n > 1, is congruent modulo 13
to a number belonging to the same set. This is the reason why only two different
sets of numbers can occur in the expansions of (4.2) and (4.3). Namely, r∗

1 ≡ 0
(mod 13) is not possible, otherwise a/b would terminate.

Example 4.4. Consider the following expansions.

1
24 = 0.0416 5

24 = 0.2083
7
24 = 0.2916 11

24 = 0.4583
13
24 = 0.5416 17

24 = 0.7083
19
24 = 0.7916 23

24 = 0.9583
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They illustrate the impossibility of predicting the pre-period of a/24 from that
of 1/24. More concretely, the pre-period of a/24 cannot be computed solely from
0.041, as a multiple of 0.0006 contributes to the pre-period, too.
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