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Abstract. We report a multi-instrument study of Hungarian informatics
students’ attitudes toward generative Al in programming education. Large
Language Models (LLMs) are increasingly used to generate code, explain
concepts, and support coursework, raising questions about reliability, skill
development, and job security. Our study, We Are Not Afraid of the Wolf!,
conducted at Eszterhdzy Kaéroly Catholic University, combined six surveys
across two waves with BSc students in Computer Science and Business In-
formatics. We tested three hypotheses: Hl—students are not concerned that
increasingly intelligent AI tools will hinder their job prospects; H2—better
programmers use Al more effectively for programming tasks; H3—better pro-
grammers evaluate Al-generated code more critically. Results: H1 was par-
tially supported—most view Al as a tool and express limited near-term con-
cern, though medium-term uncertainty remains. H2 received partial support:
programmer-quality proxies (course grade and self-assessment) showed weak-
to-moderate positive associations with output in a 10-minute Al-assisted
game development task. H3 was strongly supported: higher-competence stu-
dents consistently review, debug, and seek to understand Al-generated code.
Overall, students adopt a critical yet pragmatic stance: they leverage Al
to increase efficiency while maintaining verification routines. The dataset is
openly available and will be updated annually. So, there is new hope: higher
education in informatics still makes sense, as in our results more skilled pro-
grammers outperform less skilled peers even when both use powerful AT tools.
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1. Introduction

When we asked Roland, a 2nd-year Computer Science BSc student, whether he
was afraid of AI, his immediate reply was: “Not at all!” This unexpected answer
made us wonder: perhaps today’s students approach Al with far less fear than
our generation, which often views it with caution. This observation motivates our
study: how do young computer science students perceive Al in their learning and
future careers?

Roland’s response is not just an isolated remark but a starting point for a
broader inquiry. To situate this question, we must consider the wider educational
and technological context in which generative Al is emerging.

The rapid development of generative artificial intelligence (AI) has created new
opportunities and challenges in computer science education. Large Language Mod-
els (LLMs), such as ChatGPT, GitHub Copilot, or Gemini, are increasingly used
by students to generate source code, explain programming concepts, or assist in
software development projects. While these tools provide immediate support and
inspiration, they also raise questions about reliability, dependence, and their long-
term effect on programming skills and job security.

The title of this paper, We are not afraid of the wolf!, reflects this debate.
The “wolf” symbolizes the fear that AI may replace human programmers or reduce
the value of their skills. Our research investigates whether Hungarian informatics
students share this fear, or whether they instead approach AI with curiosity and
acceptance. More specifically, the study explores how students majoring in Com-
puter Science and Business Informatics at Eszterhdzy Kéaroly Catholic University
(EKCU) use Al in programming tasks, exam preparation, and creative projects,
and how these experiences influence their self-confidence and career expectations.

The contribution of this paper is threefold. First, we describe our study design
and data-cleaning methodology across two survey waves (total n = 72 4 110, pre-
dominantly second- and third-year Computer Science BSc students). Second, we
evaluate the pre-defined hypotheses and report exploratory findings on relation-
ships among Al usage, self-efficacy, creativity, and labor market attitudes. Third,
we outline how other researchers can reuse our openly released datasets and bilin-
gual codebook to facilitate replication and secondary analysis. We do not engage in
a sustained ethical analysis here, even though the questionnaires included several
items on this topic.

This study investigates three hypotheses: H1 (The Wolf): Informatics students
are not concerned that increasingly intelligent AT solutions will make it harder for
them to find jobs on the labor market. H2 (A New Hope): Good programmers are
more effective at using Al solutions to complete programming tasks than less skilled
programmers. H3 (An Old Style): Good programmers evaluate Al-generated code
more critically.

The results of these hypotheses are presented in Sections 3 and 4. To support
reuse and replication, we also make our dataset openly available at: https://ze
nodo.org/records/17013486.
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1.1. Related work

Early work on large language models for code highlighted both their promise and
limitations for program synthesis. DeepMind’s AlphaCode showed that models
trained on public code can solve competition-level problems, yet still produce frag-
ile solutions [6]. Following this, research on GitHub Copilot examined usability,
correctness, and productivity. User studies found that developers value Copilot for
speeding up tasks but can struggle with understanding and debugging longer snip-
pets [13]. Empirical evaluations further assessed correctness across benchmarks
[7, 10], and classroom experiments reported substantial efficiency gains in specific
tasks [14].

In computer science education, a growing body of work investigates whether
LLMs help novices learn to program. Classroom studies suggest that access to
ChatGPT can support task completion and perceived understanding, though out-
comes vary with scaffolding and assessment design [14]. Systematic reviews indicate
generally positive short-term effects on performance and motivation, coupled with
concerns about reduced cognitive effort and the need for responsible integration
[1, 3]. Further studies analyze students’ attitudes toward Al-generated code and
the detectability of such submissions in coursework [2, 4]. Recent surveys syn-
thesize open challenges around reliability, assessment, and academic integrity in
AT-assisted education [11].

In the Hungarian context, several strands of research highlight the diverse
ways in which generative Al is entering education. A recent pilot study explored
retrieval-augmented Al tutoring in higher education, demonstrating feasibility and
strong learner engagement [9]. Earlier work examined the integration of Al into
electronic learning environments, emphasizing its potential to extend e-learning in-
frastructures [8]. More recently, Toldi investigated adaptive learning enhanced by
generative models [12], and Kiraly raised concerns about the erosion of algorithmic
thinking in the context of LLM use among computer science students [5]. Our
study adds to this emerging body of Hungarian research by providing empirical,
multi-instrument evidence from informatics undergraduates on Al usage patterns.

2. Methodology

This study investigates how undergraduate informatics students use and perceive
generative Al in programming-related contexts. We combine questionnaires with
short, task-based activities to address three predefined hypotheses:

o labor market attitudes (H1 — The Wolf),
 programming proficiency and effective AT use (H2 — A New Hope), and
o critical evaluation of Al-generated code (H3 — An Old Style).

Data were collected in two survey waves during regular classes and lab sessions
at EKCU in Spring 2025. Participation was voluntary; informed consent and insti-
tutional ethics approval were obtained. Across the two waves, we obtained 72 and
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110 responses, respectively, from second- and third-year BSc students in Computer
Science and Business Informatics.
We administered six questionnaires across the two waves:

1. General AI Attitudes (Wave 1): broad, multi-block survey on AI use
attitudes, self-efficacy, perceived overreliance and reliability, ethics, and labor
market views.

2. Game Development Pre (Wave 1): prior experience, tool familiarity,
learning goals, and flow antecedents.

3. Game Development Post (Wave 1): perceived speed, reliability, error-
fixing effort, satisfaction, and creativity after a 40-minute Snake implemen-
tation with AT support.

4. Rust Pre (Wave 1): confidence and intended AI strategies before an Al-
tutored Rust learning session.

5. Rust Post (Wave 1): perceived tutor quality, learning, motivation, and
confidence after the session.

6. Consolidated H2 Questionnaire (Wave 2): a single-form instrument cap-
turing programmer quality and task performance in a 10-minute minimalist
Snake game implementation. The full questionnaire appears in Appendix A.

Unless noted otherwise, items used 5-point Likert scales; several binary items
(Yes/No) and free-text questions were also included. In task settings, students
were allowed to use Al (e.g., ChatGPT or Copilot) to the extent specified in the
activity instructions.

The Wave 1 game task required implementing a minimalist Snake game within
40 minutes (core mechanics mandatory; optional features such as score counters
allowed). The Wave 2 task used an intentionally 10-minute time box to elicit
rapid Al-assisted development: students implemented as many minimal functions
as possible and reported them both as a checklist and as a single total. The Rust
activity followed a pre—post design with an AT tutor: the pre-questionnaire captured
prior confidence and plans for AI use; the post-questionnaire captured perceived
learning and tutor experience.

3. Results of the first wave

In this paper we present the results of two data collection waves. This chapter
presents the result of the first one.

3.1. Data collection and cleaning

Survey-based analyses are sensitive to careless responding and incomplete records.
Since our goal was to capture motivated respondents, we implemented a two-stage
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cleaning strategy applied to all questionnaires (actual removals occurred in the
General AT Attitudes survey and in Rust Pre):

o Motivation filter (missingness): rows were retained only if at least 50%
of the numerically convertible items (grades, Likert, averages, binary answers
(e.g., Yes/No)) were answered. Free-text fields did not count toward this
ratio.

o Uniformity filter (entropy): we computed the effective number of unique
responses as exp(H), where H is the Shannon entropy (natural logarithm)
of the respondent’s numeric answer distribution. Binary items were coded
as 1/0; free-text and other non-numeric values were ignored for these cal-
culations. If exp(H) < 1.3, the row was excluded, indicating near-constant
responding (e.g., almost all 4s with occasional deviations).

This two-step filtering left 36 valid responses out of 71 raw entries in the
General Al Attitudes survey. For the other questionnaires, the same checks were
run; only Rust Pre required exclusions due to uniformity, while the game-related
and Rust Post datasets remained essentially unaffected.

The rationale behind this procedure was to exclude respondents who provided
low-effort answers, either by skipping large parts of the survey or by mechanically
repeating the same response option. By focusing on motivated participants, the
analysis better reflects the genuine attitudes and behaviors of students toward Al
usage.

Table 1. Data cleaning outcomes per questionnaire.

Questionnaire Raw Removed Final Primary reason
General Al Attitudes 71 35 36 Missing data
Game Development Pre 38 0 38 -
Game Development Post 37 0 37 -
Rust Pre 34 7 27 Uniformity
Rust Post 28 0 28 -

3.2. Analysis plan and validity

For scale-level reliability we computed Cronbach’s « on Likert-type items (integer
responses in [1,5]). To handle missingness consistently across questionnaires, we
applied a simple inclusion rule for reliability: keep items with > 80% non-missing
responses and rows with > 80% non-missing across the selected items, then com-
pute a on complete cases.!

1This avoids unstable estimates due to sparse item coverage; exploratory factor analysis is
outside this paper’s scope.
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Table 2. Reliability summary per questionnaire (Likert items only;
80% item/row rule).

Questionnaire Final n Items used Rows used «
General Al Attitudes 36 10 36 0.605
Game Development Pre 38 7 38 0.142
Game Development Post 37 11 37 0.678
Rust Pre 27 8 27 0.765
Rust Post 28 9 28 0.696

The Rust questionnaires exhibit satisfactory internal consistency (a =~ 0.70-
0.77). The Game Development Post questionnaire shows acceptable reliability
for exploratory analysis (o &~ 0.68). The General AI Attitudes questionnaire’s
reduced item count under the 80% rule still yields a moderate a (= 0.61), indicating
heterogeneous but usable attitudinal indicators. The Game Development Pre block
was intentionally diverse (experience, tools, motivation), which explains the low «;
we therefore treat it as a descriptive questionnaire rather than a single latent scale.

We report descriptive statistics (means, SDs, distributions) for all main vari-
ables. For predefined hypotheses we use Pearson correlation on Likert scores (com-
mon in education research); as a robustness check we replicate key correlations with
Spearman’s p. For comparisons across Al-usage strata, we use two-sample tests:
Welch ¢ or Mann—Whitney, depending on normality /scale. All inferential analyses
are computed on the cleaned datasets (Table 1).

Internal validity is limited by self-report and the correlational nature of several
analyses. External validity is constrained by a single-institution Hungarian sample.
Measurement validity is affected by short scales in some blocks and evolving Al
tools. We mitigate these risks via transparent cleaning, a reproducible pipeline,
reliability reporting, and robustness checks.

3.3. Results

All analyses use the cleaned General Al Attitudes sample (n = 36) and quality-
checked task datasets. Before presenting detailed analysis for each hypothesis, we
provide a brief overview.

o H1 (The Wolf): Partially supported. Students mostly view Al as a tool
rather than a competitor, though some express medium-term labor market
concerns.

« H2 (A New Hope): Not decided in the first wave. In the first wave, the
planned pairing between programming quality and AT effectiveness could not
be tested due to missing cross-questionnaire linkage.

o H3 (An Old Style): Supported. Higher-competence students critically eval-
uate Al-generated code through review, debugging, and understanding.
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3.4. H1: The Wolf

The first hypothesis states: HI (The Wolf): Informatics students are not concerned
that increasingly intelligent Al solutions will make it harder for them to find jobs
on the labor market.

H1 addresses labor market concerns: whether students fear that Al will reduce
programming jobs, whether they see Al as a tool or a competitor, and whether
they report direct experiences of job-search difficulties or dismissals.

On the item “I see AI more as a tool than a competitor”, students leaned
strongly toward the tool perspective (z = 3.58, SD = 0.63, n = 26). On the
5-point scale, 7.7% disagreed (1-2), 26.9% were neutral (3), and 65.4% agreed
(4-5). Expectations about Al “taking over” programming jobs varied by timeframe:

e 1-2 years: T = 2.56, SD = 0.60, n = 18; 1-2: 50.0%, 3: 44.4%, 4-5:

5.6%.

e 3-4 years: Tz = 3.09, SD = 0.83, n = 23; 1-2: 30.4%, 3: 30.4%, 4-5:
39.1%.

e 5—6 years: T = 2.85, SD = 0.77, n = 26; 1-2: 38.5%, 3: 38.5%, 4-5:
23.1%.

Direct labor market experiences were rare: 15.2% reported knowing a program-
mer who could not find employment (n = 33), and only 2.9% reported knowing
someone dismissed in the last 1-2 years (n = 34).

The frequency of Al use (e.g., asking an LLM to explain code) showed only
weak, non-significant associations with attitudes: with the tool vs. competitor
item r = 0.09 (n = 24), and with the 1-2 year takeover probability item r = —0.12
(n=18).

After entropy- and missingness-based filtering, the data indicate that students
do not generally fear near-term job losses due to Al. Most frame Al as a tool, see a
1-2 year “takeover” as unlikely, and hold mixed expectations for 3-6 years. Direct
negative experiences exist but remain in the minority. Overall, H1 is partially
supported: students do not exhibit widespread short-term fears, yet medium-term
uncertainty about AI’s labor market impact persists.

3.5. H2: A New Hope

The second hypothesis states: H2 (A New Hope): Good programmers are more
effective at using Al solutions to complete programming tasks than less skilled pro-
grammers.

We used two indicators of programmer quality: the theoretical programming
exam grade (High-level Programming 2, lecture) and a self-assessment item on
programming competence. For Al effectiveness, four questionnaires were designed
(Game Development Pre/Post, Rust Pre/Post) to capture speed, reliability, bug-
fixing effort, satisfaction, and tutor quality.
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Our intended primary test was to pair each student’s quality indicators with
their task-level outcomes. However, the questionnaires were not linked by a com-
mon identifier: anonymity was prioritized, which prevented direct individual-level
associations. As a result, only indirect proxies within single surveys could be
analyzed (e.g., tool-vs-competitor framing, debugging practices, or post-task confi-
dence). These showed weak and inconsistent relationships, making them insufficient
for a decisive H2 test.

Rather than a simple limitation, this outcome highlights an important method-
ological lesson: anonymity safeguards must be balanced with the ability to test
hypotheses across instruments. To address this, we designed a consolidated ques-
tionnaire; see Appendix A. This introduces an optional, privacy-preserving call
sign. We used this questionnaire in the second wave; see Section 4.

3.6. H3: An Old Style

The third hypothesis states: H3 (An Old Style): Good programmers evaluate Al-
generated code more critically.

H3 examines whether good programmers evaluate Al-generated code more crit-
ically.

Table 3 summarizes post-generation routines. A majority review Al code before
running it (Z = 3.45, 55.3% select 4-5). Many report fizing bugs themselves (T =
3.15), and an even larger share try to understand the generated code (Z = 3.65,
70.6% select 4-5). Consulting documentation is less frequent on average (z = 2.81),
and restyling to personal conventions sits in the mid-range (z = 3.35). Systematic
cross-checking across multiple Al tools is comparatively less common (z = 2.86).
Students report encountering errors in Al-generated code with moderate frequency
(z = 3.37), underlining the need for critical verification steps.

Table 3. Descriptive summary for H3 items (cleaned dataset). For
5-point items, percentages refer to response distribution within each

item.

Item n Mean SD 12% 3% 4-5%
Review AI code before running 38 3.45 0.69 10.5 34.2 55.3
I fix bugs myself after Al generation 52 3.15  0.75 21.2 423 36.5
Try to understand the generated code 17 3.65 0.61 5.9 235 70.6
Look up documentation to understand 43 2.81 0.73 37.2 442 18.6
the code

Restyle the generated code to my 46 3.35 0.71 13.0 39.1 47.8
conventions

Compare answers from multiple Al tools 42 2.86 0.75 35.7 429 214
How often do you find errors in 68 3.37  0.90 13.2  42.6 44.1

Al-generated code?

Overall, students show a clear tendency toward classical quality assurance be-
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haviors when working with Al-produced code: they review and actively try to
understand it, often taking responsibility for bug fixing and, to a lesser extent,
restyling. Documentation lookup and cross-tool triangulation are less common,
which — together with the reported error frequency — suggests room for scaffold-
ing (e.g., checklists or required code reviews) to ensure robust verification of Al
outputs.

4. Results of the second wave: Is there a new hope?

This section presents the results of the second survey wave. It specifically addresses
H2 (A New Hope) which was left undecided in the first wave, by using a single,
consolidated questionnaire that enables direct pairing of programmer-quality in-
dicators and task outcomes. The survey was completed by 110 participants, all
2nd- and 3rd-year Computer Science BSc students. The full questionnaire
appears in Appendix A.

4.1. Data collection and cleaning

The task was a time-boxed (10 minutes) Snake game implementation with Al
support. We focused on two constructs: (i) programmer quality (Al, course
grade; A2, self-assessed competence, both on 1-5 scales) and (ii) task perfor-
mance recorded in Section C. Specifically, C3 asked respondents to tick which
game features worked at the end of the task — via a checklist that included the core
mechanic (growth on dot; game over on wall/tail) and optional extras (e.g., score,
accelerating snake, pick-up lives, obstacles, level switching, different dot types,
sound/music, hall of fame), plus three other slots. We parsed this checklist into
a numeric count, denoted C8 count. By contrast, C4 requested a single total,
the number of features implemented within ten minutes. Thus, C8_count derives
from the marked features, while C/ is the participant’s self-reported total. The
full wording of C3-C4 appears in Appendix A.

The questionnaire also contained two manual timestamps (B5 and C1), but
they proved unusable. The Snake programming task was introduced in the header
of Section C; B5 was the last item before Section C, and C1 the first item within
it. Both B5 and C1 asked participants to enter the current time in hh:mm format.
We intended to compute time-on-task as C1—B5; however, in almost all responses
the difference is only one minute, indicating that most participants read the task
and immediately filled out C1 before beginning the work. Consequently, we did
not use B5/C1 for cleaning.

Instead, we relied on C4, which records the self-reported number of functions
implemented for the Snake game within 10 minutes using the chosen Al tool. To
balance inclusiveness with engagement control, we defined two analysis cohorts
based on C4:

e Permissive cohort: rows with non-numeric C4 were removed; C4 = 0 was
dropped as non-engagement; all cases with C4 > 1 were retained.
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o Strict cohort (“engagement filter”): same preprocessing but only cases
with C4 > 3 were retained, reflecting the expectation that 2nd—3rd year BSc
students using an LLM can implement at least three minimal functions in
ten minutes.

4.2. Results on H2

We will see the following result in this chapter. H2 (A New Hope): Partially
supported. Higher programmer-quality proxies show weak to weak-to-moderate
positive associations with task performance in a 10-minute Al-assisted setting.

Analysis plan: We report Pearson correlations with Spearman’s p as a robust-
ness check for ordinal/non-normal data. To bound the impact of the engagement
filter, all primary associations are presented on both cohorts. Our focal question is
whether Al and A2 are positively associated with C8_count. All analyses use the
consolidated second wave questionnaire and the cleaning rules above.

Analysis: Across the Permissive cohort (C4 > 1; N = 104 valid pairs), Al
showed a weak, positive trend with C3__count (Pearson r = 0.19, p = 0.052; Spear-
man p = 0.17, p = 0.081), while A2 exhibited a weak-to-moderate, positive asso-
ciation (Pearson r = 0.228, p = 0.020; Spearman p = 0.274, p = 0.0049). In the
Strict cohort (C4>3; N = 86), the A1-C3_ count trend persisted with similar
magnitude (Pearson r = 0.19, p = 0.078; Spearman p = 0.18, p = 0.099), and A2
C3__count remained positive (Pearson r = 0.170, p = 0.118; Spearman p = 0.212,
p = 0.050). In short, stronger programmers (by grade and self-assessment) tended
to list more implemented functions in the short Al-assisted task; effects were small
and more clearly detectable for self-assessment (A2), especially in the permissive
cohort.

Table 4. Summary of H2-related associations.

Pair Cohort N r/p p Note

Al <> C3_count Permissive (C4>1) 104 r=019/p=017 p=0.052 /0.081 Weak, positive trend

Al +<» C3_count Strict (C4>3) 86 r=019/p=018 p=10.078 /0.099 Similar magnitude

A2 +» C3 _count Permissive (C4>1) 104 r=0.228 / p=0.274 p=0.020 / 0.0049 Weak-to-moderate, positive
A2 < C3_count  Strict (C4>3) 8 r=0.170/p=0212 p=0.118 /0.050 Borderline p

4.3. Interpretation

Taken together, these results offer partial support for H2. In a short, Al-assisted
programming task students with higher programmer-quality proxies (A1, A2) tend
to achieve more implemented functions. The pattern is clearest for the self-assess-
ment proxy (A2), while the grade proxy (A1) shows a consistent but weaker trend
hovering near conventional significance thresholds. A reasonable reading is that
the two proxies capture partly different aspects of “being a good programmer”:
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the course grade reflects broader curricular achievement over time, whereas self-
assessment may track task-immediate confidence and strategy use that matter when
orchestrating Al assistance under time pressure.

Effect sizes are modest, which is unsurprising for at least three reasons. First,
the task was intentionally brief (10 minutes), compressing performance variance.
Second, our outcome measures trade precision for feasibility: C3_count aggregates
a checklist of heterogeneous features, and CJ is a single self-reported total. These
two can diverge under time pressure, introducing measurement noise that typically
attenuates observable associations. Third, differences in how students prompt,
decompose, and verify Al outputs likely add further variance that our minimal
instrument does not fully capture. Against this backdrop, the fact that the A2
signal remains detectable, especially in the permissive cohort, suggests a stable
underlying tendency rather than a spurious fluctuation.

Reporting results on both a permissive and a strict cohort helps bound sensitiv-
ity to low-engagement cases. As expected, the strict cohort yields slightly higher
average performance and reduced dispersion, yet the direction and relative strength
of the A1/A2 associations persist. This stability implies that the observed tenden-
cies are not driven solely by respondents with near-zero engagement. At the same
time, we avoid over-interpreting the magnitude of the effects: the present design
was optimized for short, classroom-feasible data collection rather than fine-grained
performance measurement.

From a pedagogical perspective, the findings support a pragmatic view of Al in
programming education. More skilled students appear to extract somewhat greater
task-level benefits from the same class of Al tools, even in a tightly time-boxed set-
ting. For instructors, this points to two complementary actions: (i) continue inte-
grating Al workflows that reward strong problem-solving and code comprehension
skills; and (ii) provide scaffolds (e.g., concise review checklists, debugging prompts,
minimal test-driven steps) that help less skilled students translate AI outputs into
working features more reliably.

In sum, within the constraints of a micro-task and minimalist measurement,
we find that programmer-quality proxies relate positively — albeit modestly — to
short-horizon Al-assisted output. This aligns with the broader narrative of the
paper: Al tools can amplify productivity, but classical strengths in programming
still matter.

4.4. Limitations and lessons

The principal instrumentation limitation was timing: because the time fields were
positioned before task completion, we could not validate time-on-task. Future
iterations should either place time entry at the end of the task block or, preferably,
instrument an automatic timer. Likewise, manual enumeration of functions can
diverge across C3 and C4 under time pressure; parsing and consistency flags help
but do not eliminate noise. The consolidated instrument, available in Appendix A,
will be deployed annually, and the datasets have been integrated into the We are
not afraid of the wolf! open data release on Zenodo, enabling replication and
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longitudinal analyses.

5. Open data release

Following ethics approval, we publish all datasets as open-access to support reuse,
replication, and secondary analysis. Open data improves transparency, enables
cumulative knowledge, and creates opportunities for new research beyond our own
hypotheses (e.g., items on AT ethics, not analyzed here).

All materials are hosted on Zenodo, ensuring long-term preservation through
OpenAIRE and CERN. The project landing page is at https://zenodo.org/r
ecords/17013486. Each release includes cleaned CSV files, metadata, and a
bilingual (Hungarian—English) codebook. Updates will be issued annually with
versioned DOIs, enabling both single-year and longitudinal analyses.

All data are anonymized and distributed under a CC BY 4.0 license. Users are
asked to cite both the dataset DOI and this article.

Wave-specific releases:

First wave dataset: https://zenodo.org/records/17013486
Second wave dataset: https://zenodo.org/records/17218128

6. Conclusion and future work

This study offers a multi-instrument snapshot of how Hungarian informatics un-
dergraduates perceive and use generative Al in programming. We find that stu-
dents typically frame Al as a tool rather than a competitor and, consistent with
classical software-engineering practice, higher-competence students tend to review,
understand, and debug Al-generated code (supporting H3). While short-term la-
bor market fears are limited, medium-term uncertainty remains (partial support
for H1). A key limitation was our inability to decisively test H2 due to missing
cross-form linkage; this was an anonymity-driven design error that we have reme-
died by introducing an optional, privacy-preserving call sign and a consolidated
instrument, see Appendix A.

Beyond H1-H3, we formulated Observation 1 (Prompt Productivity): is-
suing more prompts to the Al is associated with producing more working features
within a tight, 10-minute time box. We observed positive associations between the
number of prompts and task output, suggesting that rapid, iterative interaction
can be beneficial in short-horizon, Al-assisted coding.

We also note Observation 2 (Better Programmers Use Better Tools)
emerging from group-level patterns: more skilled programmers may gravitate to-
ward, or extract more value from higher-yield Al tools. While suggestive, this
requires controlled studies to disentangle self-selection from tool effects.

We plan to evaluate these observations in future work. We also plan to repeat
the surveys in the upcoming academic years to build a larger dataset.
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A. Questionnaire on attitudes toward Al use
in programming

This single questionnaire captures (A) baseline programmer quality, (B) general
AT use attitudes in programming, (C) task-specific outcomes after a short coding
exercise, (D) post-generation quality assurance attitudes, (E) attitudes toward Al
assistance in programming, and (F) vibe coding experience.

Administration and ethics. The survey is part of a research study conducted
at the EKCU Faculty of Informatics. Participation is entirely voluntary and anony-
mous. An ethics approval was granted by the EKCU Scientific Committee. Note:
This form is not optimized for mobile. Please fill it on a laptop/desktop with a
development environment available.

Please choose a private call sign you can remember (e.g., AI-User11). Use the
same call sign whenever you fill in any similar form. Do not include personal data
(name, nickname, birth date/age).

Unless stated otherwise, items use a 5-point Likert scale: 1 = Strongly disagree,
2 = Disagree, 8 = Neutral, 4 = Agree, 5 = Strongly agree.

Administrative header

ID1. Call sign (e.g., AI-Userll):

A. Baseline programmer quality.

Al. High-level Programming 2 (lecture) grade: 1 (Fail) 2 3 4 5 (Excel-
lent) (select one)

A2. By my own assessment, I am a good programmer. (1-5)

B. General AI use attitudes in programming.

B1. I use large language models (e.g., ChatGPT/Copilot) to generate code. (1-5)
B2. Using AI helps me complete programming tasks faster. (1-5)

B3. With Al I finish more tasks within a fized time. (1-5)

B4. Al use reduces the effort I spend on routine coding. (1-5)

B5. Please enter the current time (HH:MM), e.g., 11:23:
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C. Task-specific outcomes (to fill after the following short task). Short
task (10 minutes, measure time precisely). Develop a SNAKE game with AT
assistance.

Core function: The snake grows when it eats a dot; the game ends if it hits a
wall or its own tail.

Possible extra features: score; accelerating snake; pick-up lives; obstacles; level
switching; different dot types (e.g., speed-up/slow-down/bonus points); sound ef-
fects or background music; hall of fame; or any other cool feature.

C1. Please enter the current time (HH:MM), e.g., 11:23:
C2. Which AI solution did you use for developing the game?
C3. Which features work (check all that apply)?

— O Core function (growth on dot; game over on wall/tail)

— O Score

— [ Accelerating snake

— O Pick-up lives

— O Obstacles

— [ Level switching

— [ Different dot types (e.g., speed-up, slow-down, bonus points)

[0 Sound effects or background music
(] Hall of fame

— [ Other cool feature #1.

— [0 Other cool feature #2.

— [0 Other cool feature #3.

C4. Total number of features implemented in 10 minutes (select one): 0, 1, 2, 3,
4,5,6,7,8,9,10, 11, 12

C5. While developing the game, I fized bugs myself. (1-5)

C6. Total number of prompts I issued to the Al:

D. Post-generation quality assurance attitudes.

D1. I review Al-generated code before running it. (1-5)

D2. [ try to understand Al-generated code, not just execute it. (1-5)

D3. [ fix bugs in Al-generated code myself. (1-5)

D4. I create (or generate) unit tests for Al-generated code (either before or after

generation). (1-5)
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E. Attitudes toward Al assistance in programming.

El. T see AI more as a tool than a competitor. (1-5)

E2. After using Al I feel more confident that my solution is correct and complete.
(1-5)

F. Vibe coding experience.

F1. I enjoyed working with Al support during the Snake development task. (1-5)

F2. I experienced “vibe coding” (a creative flow state with AI) while working on
the task. (1-5)
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