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Abstract. Neural network ensembles with soft voting improve accuracy and
stability by aggregating multiple models; however, their reliability under in-
dividual model failure remains a critical concern. This paper addresses the
robustness of soft-voting ensembles in safety-critical settings by combining
empirical analysis and formal verification. We evaluate the impact of single-
model failures on ensemble performance and find that soft voting yields grace-
ful degradation, with only minimal loss in accuracy when one component
model is removed or corrupted. In parallel, we develop a formal verification
framework to investigate whether the ensemble’s final prediction remains un-
changed under any single-model failure scenario. The results demonstrate
that soft-voting ensembles can maintain reliable outputs despite individual
model failures, providing both empirical evidence and provable guarantees of
fault tolerance in neural network ensembles.
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1. Introduction

Modern safety-critical applications of Al, such as autonomous driving and health-
care, demand not only high accuracy but also formal robustness guarantees for
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reliability under all conditions. Ensemble learning is a proven approach to im-
prove reliability: by aggregating multiple neural network models, ensembles achieve
higher accuracy and greater stability than individual networks. However, empirical
robustness (e.g., against noisy or adversarial inputs) achieved via techniques like
adversarial training or data augmentation does not automatically translate into
formal guarantees of correctness.

In high-stakes domains, we require provable assurance that the system will
maintain correct operation even when some components fail or behave unexpect-
edly. This work introduces the concept of wvoting robustness as a measure of an
ensemble’s tolerance to individual model failures, and provides both empirical anal-
ysis and formally verified guarantees for this property.

We present a comprehensive study of voting robustness in neural network en-
sembles, evaluating their resilience across diverse architectures on a digit classifica-
tion task. Our experiments demonstrate that even if one model in the ensemble is
corrupted or fails entirely, the aggregated prediction remains essentially unchanged,
with minimal loss in accuracy.

Beyond empirical evaluation, we provide formal verification of these ensem-
bles using neural network verification tools based on Satisfiability Modulo Theo-
ries (SMT). By encoding the soft-voting mechanism into a single verifiable model,
we can prove if the ensemble’s prediction remains stable under single-model failures
for any set of inputs. This dual approach of empirical analysis and formal verifi-
cation establishes ensemble voting as a powerful mechanism for achieving built-in
robustness, paving the way for AI systems that can be deployed with certified
reliability in safety-critical domains.

2. Background and related work

2.1. Ensemble learning and voting schemes

Ensemble methods combine multiple learners to improve generalization perfor-
mance. Classic ensemble techniques such as bagging, boosting, and random forests
leverage model diversity to reduce variance and increase accuracy. In neural net-
work ensembles, each model (potentially differing in initialization, architecture, or
training data) contributes to the final prediction.

Voting can be performed in two primary ways: majority voting (hard voting),
where the class with the most votes is selected, and averaging (soft voting), where
the models’ output probabilities are averaged and the class with the highest mean
probability is chosen. Soft voting typically provides smoother decision boundaries
and is easier to integrate into verification pipelines, as the voting layer is differen-
tiable.

Prior work has demonstrated that ensembles can enhance adversarial robust-
ness, as diversity among models makes it more difficult for a single adversarial
example to mislead the entire ensemble. For instance, it was demonstrated that
promoting diversity in non-maximal predictions via an adaptive regularizer en-
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hanced both ensemble robustness and transfer resilience [10]. While substantial
work has focused on empirical defenses such as adversarial training, noise resilience,
and robustness to distributional shifts, much of this remains heuristic and lacks for-
mal guarantees [6, 12]. Gross et al. showed that ensemble robustness verification
is NP-hard and proposed SMT- and MILP-based encodings to either find optimal
randomized attacks or formally prove robustness [5].

2.2. Voting robustness

We define wvoting robustness as the minimum number of model predictions that
must change to alter the ensemble’s final decision. This concept is analogous to
the vote margin in classical voting theory.

For a majority vote ensemble of n > 0 models, voting robustness is simply the
number of votes by which the leading class exceeds the runner-up (e.g., if 6 out of
10 models vote for the predicted class, at least two votes must flip to change the
outcome). In soft-voting ensembles, robustness relates to the confidence margin
— the gap between the averaged probability assigned to the predicted class and
the next highest class. A large margin indicates that more substantial changes in
individual model outputs are needed to alter the final prediction.

Voting robustness is particularly crucial for safety-critical Al systems, as high
robustness ensures that even if some ensemble members fail or behave incorrectly,
the system’s overall decision remains unaffected.

2.3. Robustness metrics

To capture an ensemble’s tolerance to component failures, we summarize and define
several complementary metrics beyond raw accuracy.

Ensemble Accuracy: The accuracy of the ensemble on a test set under normal
conditions, serving as the baseline for comparison.

Accuracy Drop: The reduction in accuracy when one or more models are cor-
rupted or removed. A robust ensemble should degrade gracefully, typically
losing less than 1% accuracy when a single member is compromised.

Class Switching Probability (CSP): The probability that the ensemble’s pre-
dicted class changes when a single model’s prediction changes. Low CSP
values mean that no single model has undue influence on the decision.

Ensemble Margin: The difference between the ensemble’s support for the pre-
dicted class and the runner-up class. A larger margin indicates greater deci-
sion stability, meaning that individual model failures are less likely to overturn
the ensemble’s output.

Leave-One-Out (LOO) Impact: A diagnostic analysis where each model is re-
moved in turn to measure the effect on predictions and accuracy. Significant
accuracy drops or frequent class changes upon removal reveal that a model
is critical to the ensemble’s decision-making.
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2.4. Formal verification of neural networks

The formal methods community has developed several approaches for verifying
properties of neural networks, including Satisfiability Modulo Theories (SMT) solv-
ing, linear programming (LP), and abstract interpretation. These methods have
been applied to tasks such as verifying robustness to input perturbations and en-
suring other safety properties [8, 11].

Tools such as Marabou [8, 13] encode a network’s ReLU activation constraints
as LP constraints, enabling solvers to determine whether specific outputs can be
altered under given conditions. These techniques provide certified guarantees (e.g.,
proving that no adversarial example exists within a bounded input region).

However, most verification research to date has focused on single networks [2,
3, 7]. Ensemble models introduce additional complexity, particularly when using
discrete majority voting, which creates combinatorial branching. Encoding major-
ity voting in a formal verification setting is challenging due to the large number of
possible vote distributions, significantly increasing the combinatorial complexity.

By contrast, averaging (soft voting) produces continuous outputs that can be
expressed as an additional network layer, effectively fusing the ensemble into a
single verifiable network. This transformation enables existing verification pipelines
— whether based on SMT, LP, or abstract interpretation — to be applied to ensemble
models without incurring the combinatorial explosion caused by discrete voting
schemes.

2.5. Related work

Adversarial training with generated examples has been explored to close the ro-
bustness gap, and ensemble adversarial training has demonstrated that ensemble
diversity improves defense effectiveness [4].

Formal verification of neural networks is an active field, with recent advances
extending verification techniques to a wider class of activation functions and input
sets. For example, Antal et al. [1] generalize verification methods for piece-wise lin-
ear activation functions, supporting both bounded and unbounded input domains,
and demonstrate their effectiveness on multiple case studies.

Our work builds directly on these insights by adopting soft voting for ensemble
verification, thereby enabling formal analysis while preserving robustness. To our
knowledge, this is among the first studies to wverify ensemble voting robustness
formally, combining empirical results with SMT-based verification to certify that
ensemble predictions remain stable even when some members are corrupted or
removed.

3. Methodology

We designed an experiment to empirically evaluate the robustness of ensemble vot-
ing across multiple neural network architectures and simulated model failures. Our
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methodology encompasses the neural network models employed, the construction
of ensembles, the introduction of failures via corrupted models, and the evaluation
procedure. We focus on classification of 10-digit classes (0-9), a scenario where
some models might be “blind” to certain digits to simulate partial failure.

3.1. Neural network models
We consider five types of neural network (NN) architectures of varying complexity:

SimpleLinear: A simple linear classifier (logistic regression) with no hidden layer,
directly mapping 784 input features to 10 class scores. This model has 7,850
parameters (784 x 10 weights + 10 biases) and serves as a minimal baseline.

HiddenMLP: A multi-layer perceptron (MLP) with one hidden layer of 64 units
and ReLu activation, adding non-linearity and capacity compared to Simple-
Linear. The model maps 784 inputs to 64 hidden units and then to 10 class
scores through the hidden layer for a total of 50,370 parameters.

SingleConv: A small convolutional neural network (CNN) with a single convo-
lutional layer of 32 filters of size 3 x 3, followed by flattening and a dense
layer of 10 units. This model has approximately 3,074 parameters. It enables
spatial feature extraction while keeping the network lightweight.

TinyCNN: A slightly deeper CNN with a single convolutional layer of 16 filters
of size 3 x 3 and a dropout layer, followed by flattening and a dense layer of
10 units. This model has 1,498 parameters and achieves higher accuracy on
digit classification due to its additional depth.

CompressedModel: A compressed MLP with a single hidden layer of 32 units
and ReLU activation, mapping 784 inputs to 32 hidden units and then to 10
class scores through the hidden layer for a total of 25,370 parameters. This
simulates scenarios where model size is constrained, potentially at some cost
to accuracy.

Each architecture was trained on the digit classification task. We trained 17 full
models per architecture, where “full” means the model was trained on the complete
set of 10 digit classes (0-9). These 17 models were independently trained with
different random initializations to provide diversity.

In addition to full models, we trained corrupted models to simulate omission
failures. For each architecture, we trained models on datasets where 3 out of the 10
digit classes were omitted from the training set (the model never saw those classes
and would likely misclassify them). We created four corruption schemes:

o Scheme 0: Models trained without digits {0, 1, 2}.
o Scheme 1: Models trained without digits {1,2, 3}.
o Scheme 2: Models trained without digits {2, 3,4}.

o Scheme 3: Models trained without digits {3,4,5}.
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For each scheme, we trained seven models (28 corrupted models per architec-
ture). The multiple models per scheme account for randomness in training and
reduce bias from any single corrupted instance.

3.2. Ensemble construction

From the pool of 17 full models for each architecture, we constructed 100 ensembles,
each consisting of 5 models. Each ensemble was created by randomly selecting 5
models out of the 17, ensuring diverse combinations.

While it is standard practice to balance ensembles by avoiding concentration of
the best or worst models in the same group, in our case the performance deviations
between models were so small that we omitted this step.

Each ensemble used soft voting: each model produced a probability distribution
over the 10 classes (via softmax), and the probabilities were averaged element-wise.
The predicted class was the one with the highest average probability. Soft voting
naturally allows confident models to influence the decision while outliers are diluted
by the consensus.

3.3. Simulating model failure (corruption schemes)

To evaluate robustness, we simulated single-model failures by replacing one model
in an ensemble with a corrupted version of that model. For each of the 100 original
ensembles, we generated four corrupted ensembles, one for each corruption scheme
defined in Section 3.1.

Precisely one of the 5 ensemble members was swapped out, representing a single-
point failure. The first model in each ensemble was replaced with a corrupted model
from the same architecture’s corrupted model pool. This yielded 100 corrupted en-
sembles per scheme, per architecture. All ensembles (both original and corrupted)
employed the same soft voting mechanism.

3.4. Evaluation procedure

We evaluated every ensemble (and each corrupted variant) on a common test
dataset of digit images specifically the MNIST dataset[9]. For each ensemble, we
computed the metrics defined in Section 2: Ensemble Accuracy, Ensemble Mar-
gin, Accuracy Drop, and Class Switching Probability (CSP). We also conducted a
leave-one-out (LOO) analysis, in which each model was removed in turn to assess
its impact on predictions.

The entire experimental pipeline — model training, ensemble construction, cor-
ruption injection, and evaluation — was implemented using TensorFlow/Keras.
Trained models were saved and converted to the ONNX (Open Neural Network
Exchange) format for interoperability with verification tools. ONNX conversion
also enabled formal analysis using solvers by representing the ensemble as a single
verifiable network with a soft-voting layer.
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All metrics were computed from model predictions using Python scripts. We re-
lied on numpy for statistical aggregation (e.g., averaging ensemble accuracies across
100 random ensembles per architecture and calculating standard deviations). When
comparing original vs. corrupted predictions, we ensured the exact same test inputs
were used and fixed all sources of randomness so that predictions were deterministic
and reproducible.

Automated scripts generated random 5-model ensemble compositions from the
pool of trained models and systematically injected corrupted models for each cor-
ruption scheme. Each original ensemble produced four corrupted versions (one per
scheme), ensuring fair and uniform comparisons across all architectures.

All accuracy measurements, CSP calculations, and leave-one-out statistics were
stored in structured logs and tables for traceability. This structured workflow
enables the empirical results to align directly with the models used for formal veri-
fication, ensuring consistency between the experimentation and verification stages.

3.5. Formal verification on voting robustness

In order to encode NN models as a set of mathematical constraints, we rely on
Marabou [8, 13]. The tool provides functionality for loading NN models from
ONNX files and encoding them as a combination of linear equalities and inequali-
ties, piecewise-linear constraints, and disjunctive constraints. Since Marabou does
not support the encoding of Softmax layers due to their non-linearity, all Softmax
layers must be removed in advance. Instead, we use the raw output values (logits)
directly and encode the Argmax operation by introducing disjunctive constraints
over the logits.

When loading multiple NN models and merging them into a single Marabou
network, variable indexing must be handled carefully: (1) the input variables must
be shared among all NNs, and (2) all other variables, including the outputs, must
be shifted by an offset, computed on the fly, to avoid collisions in variable indices.

Encoding averaging for soft voting

To implement a soft voting scheme, the average of the output logits for each class
must be computed. In Marabou, averaging can be encoded simply by summing
the output variables and equating the result to a fresh variable — division by the
number of models is unnecessary for verification purposes.

Let n > 0 be the number of NN models in the ensemble, and m > 0 the
number of output classes. Let the variables o;; denote the jth output logit of the
ith NN model, where 1 <¢ <nand 1 < j < m. We define s; as a fresh variable
representing the sum of logits for class j across all models:

Vje{l,...,m}: Zoij:sj.
i=1
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Encoding distinct argmax outputs

Let s1,...,8, and s, ..., s, denote the summed logits for two different ensembles
(or models). We wish to encode the condition that the two ensembles predict

different classes after applying Argmax. This can be expressed as the following

disjunction:
n n
\/ ((/\(sZ > sk)> A s < s;>

i,j=1 \ “k=1

Since Marabou supports only non-strict inequalities, the strict inequality s, < s;
must be rewritten as s; < s;- — €, where € > 0 is a tunable constant controlling the
precision for non-strict inequalities.

4. Experimental results

4.1. Experimental environment

All experiments were conducted on a cluster of 20 identical machines, forming a
distributed computing setup. Each machine was equipped with an 8-core Intel(R)
Xeon(R) W-2225 CPU at 4.10 GHz, 32 GB of RAM, and an NVIDIA RTX A4000
with 16 GB of VRAM. This setup allowed experiments to be parallelized across
multiple machines. While this hardware configuration provided adequate compu-
tational resources for the neural network training phase and verification of simpler
architectures, memory limitations became apparent during formal verification of
more complex models.

The software environment consisted of TensorFlow 2.15 for training individual
neural network models, NumPy for ensemble voting and statistical aggregation,
Marabou 2.0 for formal verification encoding and constraint solving, and Gurobi
1.2.3 as the underlying optimization solver. The distributed setup enabled parallel
execution of the 100 ensemble trials across multiple architectures and corruption
schemes, significantly reducing the overall experimental runtime.

Following the training phase described in Section 3, all trained models were
saved and subsequently converted to the ONNX (Open Neural Network Exchange)
format to ensure compatibility with the Marabou verification framework. This
conversion process maintained the mathematical equivalence of the models while
enabling the constraint-based encoding required for SMT-based verification.

4.2. Empirical results

Now we present the empirical results demonstrating the impact of single-model
corruption on ensemble performance over 100 random trials. Table 1 presents
ensemble evaluation metrics for the different neural network architectures under
both non-corrupted and corrupted conditions across four corruption schemes (S0,
S1, S2, S3). The Model column represents the different neural network archi-
tectures. The Corr. column corresponds to the different corruption schemes and
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their absence. The label “none” references the scenario with ensembles composed
entirely of fully trained models, serving as a reference baseline, while S0...S3 cor-
respond to ensembles where one model has been replaced by a corrupted model
according to the specified corruption scheme. Acc. shows the average prediction
accuracy over the trials. Acc. Drop indicates the decrease in accuracy relative to
the baseline. Margin represents the average difference between the top two pre-
dicted class probabilities, quantifying prediction confidence. CSP (Class Switching
Probability) measures how often the ensemble prediction changes when one mem-
ber is removed or corrupted. LOO Drop quantifies the impact of leaving out a
single model on ensemble accuracy.

4.2.1. Accuracy

As shown in the results, the accuracy did not vary significantly even when one model
in the ensemble was replaced by a corrupted one. The largest observed accuracy
drop is only 0.16% (see SimpleLinear in Table 1), demonstrating the robustness of
our ensemble approach against individual model failures. This robustness is critical
in maintaining reliable performance despite the presence of corrupted inputs.

4.2.2. Margin

While accuracy remained relatively stable, the ensemble margin consistently de-
creased under corruption, with the largest reduction being approximately 12%.
Even the best performing model TinyCNN experienced a margin drop of roughly
11-12%. Nonetheless, the ensemble voting mechanism ensures that the corrupted
model could not outweigh the consensus of the remaining four models, preserving
decision stability.

4.2.3. Class Switching Probability (CSP)

The ratio of class switches, measured by the CSP, remained quite small; this indi-
cates that our ensembles are stable under perturbations caused by corrupted mod-
els. CSP quantifies the proportion of samples for which an individual model alone
changes the voting outcome. A low CSP implies that the corrupted model rarely
influences the ensemble’s decision, enabling rapid SAT verification by the Marabou
tool. High CSP values correlate with easier SAT input detection, while low CSP
values correspond to more robust ensembles that resist corrupted influences.

4.2.4. Leave-One-Out (LOO) drop

The LOO drop, which measures the accuracy decrease when removing one model
from the ensemble, reflects the accuracy drop seen with corrupted models. Smaller
LOO drops indicate that even reduced ensembles perform comparably to the full
ensemble, emphasizing the resilience of the voting mechanism. A large LOO drop
signifies a model’s key role in correct decisions, meaning if corrupted, the ensemble
is more likely to encounter SAT conditions. Conversely, small LOO drops suggest
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Table 1. Evaluation results for different ensemble architectures
(non-corrupted and corrupted).

Model Corr. Acc. Acc. Drop | Margin CSP LOO Drop
— 0.92570 0.00000 0.84442 | 0.00000 0.00000
S0 0.92430 0.00140 0.74527 | 0.00960 -0.00140
SimpleLinear  S1 0.92410 0.00160 0.75020 | 0.01130 -0.00160
S2 0.92450 0.00120 0.75910 | 0.01210 -0.00120
S3 0.92460 0.00110 0.76557 | 0.00990 -0.00110
- 0.97430 0.00000 0.95354 | 0.00000 0.00000
S0 0.97480 -0.00050 0.84248 | 0.00388 0.00050
HiddenMLP S1 0.97490 -0.00060 0.84143 | 0.00310 0.00060
S2 0.97350 0.00080 0.84680 | 0.00380 -0.00080
S3 0.97390 0.00040 0.85247 | 0.00420 -0.00040
- 0.98148 0.00000 0.97727 | 0.00005 -0.00001
S0 0.98162 -0.00013 0.86241 | 0.00291 0.00013
SingleConv S1 0.98216 -0.00067 0.86128 | 0.00263 0.00067
S2 0.98211 -0.00062 0.86461 | 0.00272 0.00062
S3 0.98212 -0.00063 0.87166 | 0.00311 0.00063
— 0.98232 0.00000 0.96820 | 0.00005 0.00000
S0 0.98345 -0.00113 0.85642 | 0.00296 0.00113
TinyCNN S1 0.98319 -0.00088 0.85450 | 0.00304 0.00088
S2 0.98230 0.00002 0.85936 | 0.00332 -0.00002
S3 0.98239 -0.00008 0.86576 | 0.00308 0.00008
— 0.96500 0.00000 0.93244 | 0.00000 0.00000
S0 0.96649 -0.00149 0.82676 | 0.00649 0.00149
CompressedM. S1 0.96550 -0.00050 0.82351 | 0.00550 0.00050
S2 0.96430 0.00070 0.83104 | 0.00570 -0.00070
S3 0.96420 0.00080 0.83674 | 0.00560 -0.00080

that corrupted models have limited impact on voting outcomes, often resulting
in UNSAT conditions. In our case, the LOO Drop is equal to the inverse of the
accuracy drops of the corrupted ensembles, showing us that the smaller ensemble
containing 4 full models is just as strong as our full 5 model ensemble.

Notable observations In some cases, ensembles containing a corrupted model
appear to achieve slightly higher accuracy than the corresponding full ensemble.
This behavior is likely due to the combination of two factors: (i) the MNIST dataset
is relatively small and well-separated, so omitting a few classes in one model does
not drastically affect predictions on the test set, and (ii) the corruption itself is mild,
meaning the corrupted model may occasionally make correct predictions by chance
that complement the other ensemble members. Consequently, random variations
across the 100 ensemble trials can produce instances where the corrupted ensemble
performs marginally better than the full ensemble. Importantly, these occurrences
are rare and do not undermine the overall robustness trends observed across all
metrics.
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4.3. Formal verification results

We now present the verification results for the ensemble models described above. In
our experiments, we used the Marabou solver to assess whether it could complete
verification tasks within a timeout of 1200 seconds, and — most importantly —
whether it could return a correct SAT (satisfiable) or UNSAT (unsatisfiable) result
for different NN models under various corruption schemes.

For each NN model, we constructed 50 ensemble instances by randomly selecting
5 full models and 1 corrupted model. We then executed three distinct verification
tasks on each ensemble:

Model Failure: Checks whether the full ensemble and a corrupted ensemble (in
which the first intact model is replaced by the corrupted one) can produce
different class predictions. If the verification result is SAT, then such inputs
exist; if it is UNSAT, the two ensembles always agree on their prediction. In
SAT cases, our tool also returns a set of input values as a counterexample.

Leave-One-Out (LOO): Checks whether the corrupted ensemble and the ensem-
ble from which the corrupted model is entirely removed can predict different
classes. The SAT/UNSAT interpretation is the same as in the Model Failure
task.

Ensemble Equivalence: Checks whether two instances of the corrupted ensem-
ble can produce different predictions. This task was implemented primarily
to study how the solver handles UNSAT instances, as verifying UNSAT cases
is generally considered more computationally demanding than verifying SAT
cases.

Table 2 provides insights into the scale of the verification problem instances solved
for different types of ensemble models and verification tasks. The column #Vars
denotes the number of decision variables, while ##ReLUs represents the number of
ReLU constraints. The #Eqs column reports the total number of equations and
inequalities, followed by two statistical measures describing the number of addends
in these constraints — Mean indicates the average number of addends, and Median
shows the corresponding median value.

Figures 1, 2, and 3 present the verification results for the SimpleLinear, Hid-
denMLP, and CompressedModel ensembles, respectively. The bars are grouped
according to the three verification tasks, with each group containing results for the
four corruption schemes (S0, S1, S2, S3). The stacked bars display the distribution
of SAT and UNSAT results, timeouts, and solver crashes across the 50 ensemble
instances. The line plot shows the solver’s average runtime in seconds (note that
the right-hand vertical axis is log-scaled).

As expected, most of the Model Failure and LOO instances are SAT, indicating
that the ensembles are not completely robust with respect to their voting behavior.
For these SAT cases, the solver successfully found counterexamples (adversarial
inputs), even though these inputs were artificially crafted by the solver and are
not part of the original dataset. However, some Model Failure and LOO instances
were proven to be UNSAT, meaning that they are absolutely robust — the solver
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Table 2. Statistics on the verification problem instances as
modeled by Marabou.

Model Ver. Task #Vars | #ReLUs | #Eqs Mean Median
Model Failure 864 0 80 590 785
SimpleLinear LOO 854 0 70 562 785
Equivalence 844 0 60 655 785
Model Failure 1632 384 464 658 785
HiddenMLP LOO 1494 320 390 653 785
Equivalence 1484 320 380 670 785
Model Failure | 260448 129792 129872 20 10
SingleConv LOO 217174 108160 108230 20 10
Equivalence 217164 108160 108220 20 10
Model Failure | 130656 64896 64976 20 10
TinyCNN LOO 109014 54080 54150 20 10
Equivalence 109004 54080 54140 20 10
Model Failure 1248 192 272 562 785
CompressedM. LOO 1174 160 230 554 785
Equivalence 1164 160 220 579 785

Figure 1. Verification results for SimpleLinear ensembles.
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was able to guarantee that no adversarial inputs exist.

Interestingly, for all SingleConv and TinyCNN ensembles, the solver crashed
in every case due to the system running out of available RAM. We suspect that
the solver was unable to handle the computational overhead introduced by con-
volutional layers in these models, though this issue requires further investigation.
Similarly, we plan to investigate why the solver occasionally crashed when check-
ing the equivalence of HiddenMLP and CompressedModel ensembles (see Figures 2
and 3).

We note that a few UNSAT instances were incorrectly reported as SAT by the
solver. However, a manual review of the logs revealed that, in these cases, the
two ensembles under investigation produced identical predictions. The apparent
discrepancy arose from the encoding used for comparing Argmax outputs (see Sec-
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Figure 2. Verification results for HiddenMLP ensembles.
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Figure 3. Verification results for CompressedModel ensembles.
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tion 3.5), where the predicted values differed by less than the chosen precision
threshold of € = 0.001.

5. Conclusion

Robustness in neural network ensembles is paramount for safety-critical ATl appli-
cations, where high reliability is required even if some individual models fail. In
this work, we introduce voting robustness as a measure of an ensemble’s tolerance
to model failures and demonstrate, through extensive experiments, that soft-voting
ensembles can maintain accurate and stable predictions despite single-model cor-
ruption. Empirically, our results showed a negligible drop in accuracy (less than
1% in the worst case) when one network was compromised, confirming that the en-
semble’s performance degrades gracefully. No single member has undue influence
on the final decision, and the consensus of the ensemble preserves overall reliability
beyond what any standalone model could achieve.

Equally important, we combined empirical analysis with formal verification
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to provide a rigorous assurance of robustness. Using an SMT-based verifier, we
encoded the entire soft-voting ensemble into a single model and demonstrated that,
in many cases, the ensemble’s prediction remains unchanged under any single-model
failure. The formal analysis not only confirmed the ensemble’s resilience observed
in testing but also identified corner-case adversarial inputs for certain ensembles,
highlighting that empirical robustness alone does not guarantee absolute security.
By uniting these approaches, our study offers both practical evidence and provable
guarantees of robustness. This comprehensive evaluation enhances confidence in
soft-voting ensembles and demonstrates the value of integrating empirical results
with formal methods to verify the reliability of Al systems.

The challenges we encountered with current verification engines (e.g., solver
memory exhaustion on convolutional networks and occasional precision-related er-
rors) point to the need for more scalable and reliable neural network verifiers.
Future verification frameworks should enhance their handling of complex architec-
tures and large ensembles — for instance, by optimizing memory usage or incorpo-
rating problem-specific heuristics — so that formal certification can keep pace with
the growing complexity of models. Furthermore, maximizing the vote margin and
limiting the influence of any single model will not only improve empirical resilience
but also facilitate formal verification.

Our study focused on single-model failure scenarios in a controlled classification
task, and the SMT-based verification struggled with very deep or convolutional
models due to scalability constraints. These limitations mark directions for future
work. Exploring multiple simultaneous model failures, applying our framework to
larger real-world datasets, and devising more efficient verification algorithms are
natural next steps to generalize our approach. Despite these challenges, our work
demonstrates a promising step toward neural network ensembles that combine high
accuracy with provable robustness.

Code availability

The trained ensemble models, their ONNX representations, and all scripts used in
the experiments are openly accessible at our Zenodo repository: https://doi.or
g/10.5281/zenodo . 17286858.
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