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Abstract. The increasing complexity and scale of microservice-based sys-
tems pose major challenges for ensuring reliability and operational conti-
nuity. Multimodal fault diagnosis integrating logs, metrics, and traces has
emerged as a key approach for improving anomaly detection, failure type
identification, and root cause localization. Graph Neural Networks (GNNs)
show strong potential for modeling intricate service dependencies and fault
propagation patterns in such systems. This study presents a systematic re-
view of state-of-the-art graph-based multimodal diagnostic frameworks. We
compare existing methods in terms of diagnostic accuracy, scalability, com-
putational cost, and implementation complexity, and analyze representative
public datasets and benchmark systems. We highlight key challenges, includ-
ing generalization, explainability, online applicability, and outline promising
directions for future research. In addition, we report preliminary findings
from our own experiments, which suggest that Transformer-based models
provide a promising foundation for multimodal fault diagnosis in enterprise
microservice systems. These early results motivate our ongoing work toward
hybrid architectures that combine the strengths of Transformers and GNNs.
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1. Introduction

The microservice architecture is increasingly prevalent in modern information sys-
tems. However, ensuring reliability in such environments — composed of numerous
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interdependent services — remains challenging, as faults can propagate in complex
ways [13]. To monitor system health, logs, performance metrics, and traces are typ-
ically collected. Different anomalies may appear in different modalities: a failure
may cause only a metric spike or manifest as log entries indicating a crash [29].

Multimodal fault diagnosis is thus essential and has gained growing attention
in recent years [7, 30]. Recent studies focus on combining heterogeneous telemetry
data to improve fault detection and root cause analysis.

Graph-based methods are particularly promising [7, 11, 30], since microservices
form natural graphs, with nodes as service instances and edges denoting dependen-
cies. Graph Neural Networks (GNNs) leverage this structure to model system-wide
interactions [12, 23, 26, 29, 31, 32].

This paper reviews multimodal fault diagnosis methods using GNNs. We com-
pare approaches that integrate log, metric, and trace data across multiple dimen-
sions such as accuracy, scalability, and complexity. We also examine common
datasets and benchmarks, and identify research gaps.

In addition, we present preliminary findings from our own work. We first ana-
lyze log anomaly detection, showing the benefit of Transformer architectures, then
introduce a Graph Transformer-based model for enhanced root cause localization
and failure type identification.

2. Methodology

The studies reviewed in this paper were identified using keyword-based searches on
platforms of Google Scholar and Semantic Scholar. To ensure comprehensive cov-
erage, we used a diverse set of keywords, including but not limited to: “multimodal
fault diagnosis,” “microservice anomaly detection,” “graph neural network,” “data
fusion,” “root cause analysis,” and “AIOps benchmark.” The keywords were com-
bined with Boolean operators and adapted iteratively during the search process.
Initial selections were filtered based on relevance, citation impact, and publica-
tion recency, followed by citation chaining. Although the process was exploratory,
we aimed to ensure broad and representative coverage of methodologies and key
contributions across both survey and empirical research papers.

3. Multimodal fault diagnosis in microservice sys-
tems

Artificial Intelligence for IT Operations (AIOps) aims to enhance IT systems using
AT techniques. Despite advancements, challenges in adaptivity, efficiency, and scal-
ability remain, partly due to the lack of standardized taxonomies for data handling,
target tasks, and system requirements [13]. This complicates the comparison and
integration of diagnostic approaches.

Early fault diagnosis methods in microservice systems typically relied on a single
telemetry source, which proved insufficient. Multimodal fault diagnosis addresses
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this by jointly analyzing logs, metrics, and traces, capturing complementary system
perspectives [12, 29].

For example, a complex outage may manifest through spikes in CPU usage,
increased log severity, and timeout traces. Analyzing only one modality could lead
to missed or misattributed faults.

The most commonly used data types are:

e Logs: Semi-structured textual entries containing system and application
events [26]. Log-based methods rely on parsing and pattern mining [20].

e Metrics: Time-series data capturing quantitative performance indicators
(e.g., CPU usage, request counts) [32]. Diagnostics often involve anomaly
detection on time series [20].

e Traces: Sequences of spans representing end-to-end request paths. Useful
for identifying bottlenecks and fault propagation [30].

Key diagnostic tasks include:

o Anomaly Detection (AD): Binary classification to detect abnormal system
behavior.

o Failure Type Identification (FTI): Multi-class classification to determine
the nature of the fault.

e Root Cause Localization (RCL): Identifying the component responsible
for the fault, often ranked by likelihood; advanced methods also reconstruct
propagation paths.

Preprocessing of
metrics

! —

Preprocessing of| Fusion of Prediction
logs modalities

—

Preprocessing of
traces

Figure 1. Multimodal fault diagnosis pipeline.

As shown in Figure 1, the diagnosis process typically involves: (a) preprocessing
and unifying telemetry data; (b) fusing multimodal features into a model input;
and (c¢) applying predictive models to perform AD, FTI, and RCL.

Modern approaches utilize deep learning to model complex system dynamics.
Early works like DeepLog [5] applied sequential modeling to log data. Similarly,
LSTM-based models and statistical methods have been used for metric anomaly
detection. However, unimodal analysis often lacks sufficient insight, prompting
recent methods to integrate all three modalities [26, 29], yielding improved FTI
and RCL performance.
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4. Graph Neural Networks in fault diagnosis of mi-
croservice systems

Graph Neural Networks (GNNs) have become a key trend in fault analysis of
microservice systems. These deep learning models are designed to process graph-
structured data, making them ideal for modeling microservices, where nodes rep-
resent instances and edges denote service dependencies. GNNs can capture both
topological and contextual information using techniques like message passing and
attention [8, 9, 27].

In multimodal diagnosis, GNNs are used to fuse heterogeneous telemetry data
or to process node-level features within a system graph.

Several recent models adopt similar GNN-based architectures [7], differing main-
ly in the graph encoders and supported diagnostic tasks. Table 1 summarizes their
key characteristics.

Table 1. Overview of GNN-based multimodal fault diagnosis mod-
els. M, L, T are metrics, logs, and traces, respectively.

Model Year | Modalities | Graph Encoder | AD | FTI | RCL
Eadro [12] 2023 M,L, T GAT [2] v X v
DiagFusion [29] | 2023 M,L,T TAGConv [4] 4 4 4
UniDiag [31] 2024 M,L, T R-GCN [22] v v X
DeepHunt [23] 2024 M,L,T GraphSAGE (8] v X v
TVDiag [26] 2025 M,L,T GraphSAGE (8] 4 4 4
CHASE [32] 2025 M,L,T HGT [9] v X v

Fadro [12] uses GAT over fused multimodal inputs, but its complexity may
cause overfitting on small systems, where simpler models sometimes perform better
[7].

DiagFusion [29] embeds alerts using fastText and fuses features via a multi-
part neural architecture. However, ignoring modality-specific traits may harm
performance when data is incomplete [24].

UniDiag [31] builds temporal knowledge graphs and uses R-GCN for efficient
stream-based diagnosis, introducing a microservice-specific embedding strategy.

TVDiag [26] avoids uniform fusion by using task-specific GNN encoders and
contrastive learning, improving robustness via graph augmentation.

DeepHunt [23] introduces Root Cause Score (RCS), combining reconstruction
error and propagation patterns. It also supports adaptive refinement via feedback.

CHASE [32] employs a causal hypergraph framework with modality weighting
and inference to identify root causes. While accurate, its resource demands may
limit scalability.

In summary, GNN-based models effectively integrate multimodal data and cap-
ture complex patterns. Still, simpler models with well-designed features can match
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or exceed GNN performance in constrained settings [7].

5. Public datasets and benchmark environments

A major challenge in fault diagnosis research is the scarcity of large-scale, publicly
available datasets from real-world microservice systems [13]. Consequently, many
studies rely on proprietary data or synthetic environments. In recent years, several
datasets have been released to support model development and evaluation.

Table 2 summarizes widely used datasets for FTI and RCL tasks, including
both single and multimodal sources.

Table 2. Overview of widely used, openly available information
system anomaly datasets. M, L, and T are metrics, logs, and traces,

respectively.
Name Year | Modalities | Description
AIOps  Challenge | 2020 M, T Data about a real-world pro-
2020 [16] duction microservice system, col-

lected by China Mobile Zhejiang.

AlIOps  Challenge | 2021 M, L, T Data about two large commer-
2021 [1] cial banking systems, collected
by Tsinghua University.

Generic AIOps At- | 2022 M, L, T Detailed dataset with simulated
las (GAIA) [3] anomalies and injection records
for root cause analysis evalua-
tion, collected by CloudWise.

Loghub [33] 2023 L Large volume of logs from vari-
ous systems.

RCAEval-RE1 [17, | 2024 M Metric-only failure cases from

18] three microservice systems, sup-
porting metric-based root cause
analysis.

RCAEval-RE2, 2025 M, L, T Multi-source telemetry data for

RCAEval-RE3 [18] root cause analysis, with RE2

covering general failure cases and
RE3 focusing on code-level fault
cases across three microservice
systems.
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These resources facilitate benchmarking and comparison of diagnostic models.
However, most datasets involve synthetic fault injection, which may fail to capture
the complexity and spontaneity of real production failures. As a result, models
trained exclusively on these may face generalization issues in large-scale industrial
settings.

In addition to datasets, open-source benchmark systems have been developed
to emulate microservice environments with integrated telemetry tools (e.g., Open-
Telemetry, Prometheus, Jaeger, Loki). Table 3 lists commonly used examples.

Several studies inject faults into these systems and monitor the telemetry to
assess model performance [12, 26]. While effective for controlled experimentation,
their scale — typically 8-12 services — is far from enterprise-grade systems. For
context, Netflix operated over 200 microservices by 2016 [6], while Uber reported
4,500 by 2023 [25].

Table 3. Overview of widely used microservice benchmark systems.

Name Release | Microservices | URL

SockShop 2016 8 https://github.com/microse
rvices-demo/microservice
s—demo

Train Ticket 2018 41 https://github.com/FudanSE
Lab/train-ticket

Hotel Reser- 2019 10 https://github.com/delimit

vation rou/DeathStarBench/tree/ma

ster/hotelReservation

Social Net- 2019 12 https://github.com/delimit

work rou/DeathStarBench/tree/ma
ster/socialNetwork

Online Bou- 2020 12 https://github.com/GoogleC

tique loudPlatform/microservices
—demo

6. Comparison of existing methods

Evaluating multimodal fault diagnosis methods requires careful consideration of
several criteria. In this section, we summarize the most important dimensions for
comparison, with a particular focus on detection accuracy, computational cost and
scalability, real-time applicability, and implementation complexity. We also discuss
how recent models perform with respect to each of these aspects.
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6.1. Detection and localization accuracy

In general, multimodal GNN-based models tend to achieve the improved reported
accuracy, compared to single modal approaches in published studies. A recent
evaluation [7] showed that state-of-the-art models such as Eadro, DiagFusion, Dee-
pHunt, TVDiag, and CHASE achieved top-1 hit rates between 30% and 60% on
the GATA dataset, while their top-3 hit rates ranged from approximately 59% to
88%. Precision is another critical metric, particularly when assessing false pos-
itives. Multimodal models tend to outperform single-modality detectors in this
regard, as they require consistent signals across multiple modalities to trigger an
alert — resulting in fewer spurious detections.

However, it is important to note that the advantage of multimodal GNNs in
accuracy may be highly dependent on the dataset and fault types. Some studies
suggest that in certain scenarios, this advantage may not be statistically signifi-
cant [7].

6.2. Computational cost

Graph-based deep learning models are generally more computationally expensive
than simpler architectures such as MLPs or LSTMs. This is due to the complex-
ity of GNN layers (e.g., graph convolution or attention operations that involve
neighborhood aggregation with time complexity O(V + E) depending on the graph
structure), and the additional overhead introduced by multimodal data preprocess-
ing (e.g., log parsing, metric filtering, dimensionality reduction). A key scalability
concern is that most GNN-based diagnostic models have not been tested in online
setups, and on systems with hundreds of service instances.

Although current datasets are manageable with GNNs, it remains unclear
whether these methods can scale effectively to larger environments. Future progress
may require more scalable architectures, as the computational cost of running com-
plex multimodal models may be prohibitive in smaller organizational settings lack-
ing adequate infrastructure.

6.3. Real-time applicability

A practical requirement for fault diagnosis methods is their ability to operate in
real time or near real time. Most published multimodal models are trained of-
fline and applied in a near-real-time setting, where the model processes telemetry
aggregated over a fixed interval (e.g., every second or minute) and raises alerts
as needed. Offline training is not inherently problematic if model updates are
infrequent. However, microservice environments are highly dynamic, raising the
need for continual learning or online inference capabilities. Real-time applicability
is further constrained by the latency of preprocessing steps such as log parsing,
metric filtering, and trace clustering. Stream-based tools like Draind for logs and
sliding-window aggregation for metrics are essential in online systems.
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There is broad consensus in the literature that current deep learning models
require further optimization, such as model pruning or knowledge distillation to be
truly viable in real-time AIOps settings. For now, multimodal GNN-based models
are best suited for near real time detection.

6.4. Engineering complexity

Implementing multimodal GNN-based diagnostic systems demands significant en-
gineering effort. Key challenges include handling and synchronizing three different
telemetry streams (logs, metrics, and traces), cleaning and storing diverse data
sources, and integrating multiple specialized algorithms (e.g. NLP for log analysis,
time-series modeling for metrics, and graph processing for traces). In many imple-
mentations, the diagnostic pipeline comprises multiple interdependent components
that must be individually tuned [26, 29]. For instance, DiagFusion and TVDiag
include a full preprocessing framework before the neural network model begins
learning. This involves filtering logs, normalizing metrics, and deriving service
dependency graphs from trace data.

GNN models typically require dedicated libraries such as PyTorch Geometric or
Deep Graph Library, which introduce a steeper learning curve for operations teams.
Moreover, debugging end-to-end pipelines can be difficult: when the diagnosis fails,
it is not always clear whether the error occurred during log parsing, feature fusion,
or within the GNN itself. This may prevent the utilization of such methods for
small-medium sized or non-technology-focused organizations with less AT expertise.

In conclusion, there is no single best method that dominates across all dimen-
sions. GNN-based deep learning models offer high accuracy and effectively leverage
multimodal data. However, they come with considerable resource demands, scala-
bility limitations, and operation complexity.

7. Limitations and open challenges

Despite recent progress in multimodal fault diagnosis for microservice systems, sev-
eral important challenges and limitations remain. These arise both from the limita-
tions of current methods and the shortcomings of existing datasets and benchmarks.
Below, we highlight the most critical issues identified.

7.1. Generalizability

Most published models have been evaluated on relatively small and simple fault
scenarios. It is common for studies to assess their methods on 1-2 microservice
benchmarks with just 2-5 injected fault types [12, 29, 31]. As a result, the gen-
eralizability of these models to real-world systems remains unclear. In production
environments, dozens of distinct root causes may exist, including hardware fail-
ures, code-level bugs, and network anomalies, many of which are not represented
in the training data. Moreover, operational environments are constantly evolving
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due to factors of sudden peaks in user demand, ongoing software development, and
the introduction of new hardware components, further complicating fault diagnosis
and model robustness.

For example, a GNN model tuned primarily for detecting CPU spikes may
completely miss a database deadlock scenario if neither the metrics nor the log
anomaly detection modules provide a clear signal. Overfitting to the limited fault
cases present in the training set is a common risk — as demonstrated by Eadro, which
performed well on trained scenarios but underperformed in unseen environments [7].
Current deep learning models lack proven generalization capabilities, and there is
a strong need for larger, more diverse benchmarks that reflect real production
complexity.

7.2. Lack of real-world data

Although public datasets exist, many studies still rely on synthetic fault injection.
While such datasets can approximate real-world conditions, they are inherently ar-
tificial. In actual operations, failures often arise from overlapping and interdepen-
dent causes, such as a minor memory leak combined with a configuration change,
which are difficult to reproduce under controlled lab conditions. This limits the
external validity of many evaluation results.

A major reason for the lack of real-world data is the sensitivity of production
environments. Sharing logs and failure cases may pose risks related to business
confidentiality, intellectual property, or security. However, it is also in the interest
of organizations that researchers develop methods targeting real operational chal-
lenges. Without access to realistic data, proposed models may remain overfitted
to synthetic scenarios and fail to generalize to production-scale systems.

Furthermore, synthetic datasets typically include ground truth labels for the
faulty component, allowing models to be trained to recognize known faults rather
than to discover novel root causes in unfamiliar environments. This introduces
potential bias. To truly evaluate and improve fault diagnosis systems, publicly
available datasets based on real-world incidents and complex causal chains are
needed.

7.3. Interpretability and explainability

Deep learning models, particularly GNNs, often lack transparent decision-making
mechanisms. In operational contexts, it is critical for human operators to under-
stand why a service was flagged as faulty. Although recent studies have begun to
address this issue, most state-of-the-art models still fall short in terms of explain-
ability.

For instance, a GNN might output Node X is anomalous (confidence = 0.9),
but this information is of limited practical use, unless the system can also indi-
cate which features contributed to this decision. Addressing this challenge requires
either post hoc interpretation techniques (e.g., feature attribution or counterfac-
tual analysis), or the integration of inherently interpretable components into the
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model architecture. While attention mechanisms have been used in some models
to provide a degree of transparency, their alignment with human-understandable
explanations remains limited and context-dependent. Methods such as SHAP [15],
LIME [21], and GNNExplainer [28] have been proposed to improve model inter-
pretability by identifying the most influential features or substructures contributing
to a prediction.

7.4. Scalability

Most current methods have not been tested on industrial-scale systems with at least
50-100 microservices. GNN complexity typically grows linearly with the number of
nodes and edges, but can become quadratic with operations such as self-attention
over large node sets. In large-scale environments, the volume of telemetry data
and the complexity of service interactions may significantly impact inference time
and memory usage, raising concerns about real-time applicability and deployment
feasibility.

Furthermore, large microservice systems are likely to experience multiple con-
current faults, which may be independent or interacting. Supporting multi-fault
scenarios increases the diagnostic complexity of models, as they must disambiguate
overlapping symptoms and attribute them to distinct root causes. This additional
burden further challenges the scalability of current approaches and highlights the
need for more robust, efficient, and fault-tolerant diagnostic architectures.

7.5. Preprocessing and pipeline fragility

Multimodal diagnostic pipelines depend on complex, often computationally inten-
sive preprocessing steps, such as log parsing, metric normalization, trace corre-
lation, and graph construction. These can strongly influence downstream model
performance. The diversity of current approaches has led to heterogeneous work-
flows, complicating reproducibility and fair comparison.

Moreover, errors or inconsistencies during preprocessing can severely degrade
diagnostic accuracy. For instance, log parsing failures may cause misclassifica-
tion, while incomplete traces from sampling or missing instrumentation lead to
fragmented service graphs. Noisy or outlier-heavy metric series can distort model
behavior and degrade learned representations.

Current models often lack robustness to such imperfections. Beyond improving
resilience via adaptive preprocessing or uncertainty-aware learning, there is a clear
need for standardization. Common data formats and pipelines would support more
meaningful comparisons and enable sharing of preprocessed datasets alongside raw
telemetry. This would lower the entry barrier for new researchers and promote
transparency and reproducibility.
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8. Preliminary explorations to address challenges

To assess how different Al models perform in detecting faults based on event se-
quences, we conducted an initial comparative evaluation of machine learning ap-
proaches for log anomaly detection. Our focus was on event sequence-based meth-
ods that transform logs into sequences of event template identifiers and classify
them as either normal or anomalous. This process is depicted in Figure 2.

Raw log
[instance-A) Creating instance. T I
[instance-A] Instance started successfully (tock 2.53). emplates
[instance-B] Creating instance. Template 1 ["] Creating instance.
[instance-B] Instance started successfully (tock 1.88). | exiraction |2 [*] Instance started successfully (took *s).
tance paused successfully. +—
tance resumed successfully. 3 | [*] Instance paused successfully.
Creating instance. 5| [']Instance resumed successfully.
[instance-C tance started successfully (took 1.9s). 5 I'] Deletion of instance complete

[instanc etion of instance complete.
etion of instance complete.

or: No space left on device. Code: 15269

6 [*] Error: No space left on device. Code: *

[instanc
[instanc

Session grouping

Event sequences Anomaly
instance-A |1,2,5 detection instance-A OK
instance-B 1,2,3,4,5 ML model instance-8| oK
instance-C [1,2,6 inslam:e-cl ANOMALY DETECTED

Figure 2. Process of event sequence based log anomaly detection.

Using the HDF'S dataset [33], we benchmarked four models: the original LSTM-
based DeepLog implementation [5], as well as our own variations based on a bidi-
rectional LSTM, a Random Forest classifier, and a Transformer encoder.

In our experiments, the Transformer model outperformed the LSTM baseline,
Bi-LSTM, and Random Forest in terms of overall accuracy, precision, and F1-score.
Its ability to capture long-range dependencies resulted in ~6% gain in F1-score over
the LSTM and a ~ 25% gain over the Random Forest. Notably, it also achieved
about 11% relative improvement over the baseline LSTM model in precision. This
indicates the model’s superior ability to reduce false positives while maintaining
high recall. These findings suggest that Transformer-based architectures are a
promising choice for anomaly detection, as they effectively capture dependencies
in event sequences. Motivated by these results, we began extending this approach
to a multimodal diagnostic setting by integrating logs, metrics, and traces into a
unified model.

As a first step toward this goal, we developed a prototype system that leverages
Transformer-based graph encoders to integrate logs, metrics, and traces for fault
diagnosis in microservice systems. Our design choices were informed by key limi-
tations identified in the literature, including the lack of robust multimodal fusion
strategies, the limited scalability of conventional GNNs in large microservice archi-
tectures, and the absence of interpretability mechanisms suitable for operational
use.
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Our method builds on the TVDiag framework [26], replacing its GraphSAGE-
based encoder with the Graphormer architecture [27], a Transformer model adapted
for graphs. As illustrated in Figure 3, telemetry anomalies are detected using
tailored strategies: the 30 method [19] for metrics, Isolation Forest [14] for traces,
and pattern-based filtering for logs. Alerts are embedded using fastText [10] and
mapped to nodes in a graph representing service instances. Edges are formed based
on runtime communication patterns between the instances.

Alert Extraction
+ Node Embedding

A

Metrics Encoding

Figure 3. Overview of our prototype framework for multimodal
fault diagnosis.

To overcome the lack of inherent node ordering in graphs, we adopted encoding
strategies introduced by [27]. Node centrality — computed from node degrees — is
used to highlight structurally important service instances, which are more likely to
play critical role in failures. Additionally, spatial encoding captures shortest-path
distances between nodes, allowing the model to account for fault propagation pat-
terns within the service graph. Together, these encodings offer a richer structural
context that can support more informed fault reasoning.

The encoded graph is passed through Graphormer layers, followed by two MLP
heads performing FTT and RCL. We performed preliminary evaluation using the
Generic AIOps Atlas dataset, which features fault scenarios in a QR-based access
control system. Compared to the baseline TVDiag model, our method yielded
3-6% higher RCL top-1 to top-3 hit rate and approximately 5% improvement in
F1-score for FTI, while reducing inference time by up to 80%, thanks to the model’s
parallelizable architecture.

Although further validation is needed, results show that combining Transformer-
based graph representation learning with multimodal data can address certain key
challenges in fault diagnosis. In particular, it improves both diagnostic accuracy
and runtime efficiency, while providing interpretable features like centrality and
spatial locality that can assist system administrators. Our work is still in an early
stage and should not be interpreted as a complete solution. Instead, it offers encour-
aging evidence to justify deeper investigation. Future work will focus on deploying
the model in dynamic, real-time settings and addressing issues such as data imbal-
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ance and preprocessing overhead. Understanding how the model performs under
online conditions and dynamically evolving service topologies will be essential for
evaluating its practical value in production systems.

9. Conclusion

In recent years, multimodal fault diagnosis in microservice systems has made sig-
nificant progress, especially in combining logs, metrics, and traces to improve fault
detection and root cause localization. GNNs have shown strong potential for mod-
eling fault propagation across complex service topologies, offering notable gains in
detection accuracy and root cause localization.

Despite these benefits, GNNs demand significant computational resources and
are highly sensitive to data quality. Interestingly, simpler models, such as multilayer
perceptrons can also be competitive when paired with well-designed preprocessing
and feature engineering.

Current research indicates that no single model consistently outperforms oth-
ers across all scenarios. Choosing the right approach involves trade-offs between
accuracy, scalability, automation, and interpretability. In industrial settings, GNN-
based models are still rarely deployed for real-time fault detection. A promising
strategy is to use hybrid architectures: lightweight models for routine monitoring,
complemented by GNN-based diagnostics for critical or ambiguous cases.

Achieving practical breakthroughs will require greater focus on addressing real-
world constraints, such as data availability, benchmark realism, and model trans-
parency, rather than solely increasing model complexity. Our ongoing research,
starting from single-modal Transformer-based log anomaly detection and advanc-
ing toward a graph-based multimodal framework, provides early evidence that ap-
propriately adapted Transformer models may offer substantial benefits. However,
thorough experimentation and validation remain necessary to evaluate the robust-
ness and generalizability of this approach.
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