Annales Mathematicae et Informaticae
61 (2025) pp. 141-155

DOI: 10.33039/ami.2025.10.020

URL: https://ami.uni-eszterhazy.hu

Algorithmic thinking at risk?
Exploring LLM use in
computer science education

Sandor Kiraly, Ede Troll

Eszterhazy Karoly Catholic University
{kiraly.sandor,troll.ede }@Quni-eszterhazy.hu

Abstract. The rapid rise of AI — especially Large Language Models (LLMs)
like GPT-4, Microsoft Copilot, and Google Gemini — has significantly im-
pacted higher education. LLMs support students in problem-solving, writ-
ing, and learning complex topics, while educators use them for course plan-
ning, lecture content, and assessments. The primary aim of this research was
to explore whether university computer science students use large language
models (LLMs) to support their learning, and if so, how and why. The study
was conducted among students enrolled in a three-year BSc in Computer
Science program at Eszterhdzy Karoly Catholic University. The study com-
bined questionnaires with semi-structured interviews involving nine students
and three instructors. Students reported using Al chatbots for tasks such as
code testing, debugging, understanding examples, generating code, designing
exercises, and self-assessment. LLM usage increased with subject complexity
and varied by programming skill. While students were moderately satisfied
with LLMs, instructors voiced concerns that overreliance could undermine
algorithmic thinking and coding skills. The findings suggest a need to revise
assessment methods and enhance teaching materials to better reflect current
educational practices.

Keywords: computer science education, LLMs, Al Chatbots

AMS Subject Classification: 97D40, 68Q70

1. Introduction

The rapid advancement of artificial intelligence (AI), particularly Large Language
Models (LLMs) such as OpenAD’s GPT-4, Microsoft’s CoPilot, and Google’s Gem-

Accepted: October 19, 2025
Published online: October 28, 2025

https://doi.org/10.33039/ami.2025.10.020
https://ami.uni-eszterhazy.hu
mailto:{kiraly.sandor,troll.ede}@uni-eszterhazy.hu

Annal. Math. et Inf. S. Kiraly, E. Troll

ini, has significantly impacted higher education. LLMs — Al models trained on
massive text datasets — can generate and understand human-like language, en-
abling applications beyond chatbots, including summarization, translation, code
generation, and question answering. Chatbots are just one interface that leverage
LLMs, often enhanced with tools like memory, personality, or calculators.

In education, LLMs assist students with problem-solving, writing, and concept
explanation ([1, 7, 10, 33], while educators use them for course planning, content
generation, and assessment design [6, 27]. In computer science education, they
offer code generation, debugging, and natural language explanations [8, 9, 29, 34,
36], presenting both opportunities and challenges. Despite their benefits in content
creation and real-time support, issues like contextual misinterpretation, bias, and
ethical concerns persist [2, 7, 28].

Programming skills develop through practice, and deep-learning tools now sup-
port tasks like code repair, completion, and verification [23-26, 37]. Transformer-
based LLMs like CodeBERT, Codex, and PyMT5 have achieved state-of-the-art
results [32]. ChatGPT, based on this architecture, is widely used for its human-like
interaction style [23]. These tools help students navigate programming challenges
by offering debugging and problem-solving assistance [3, 11, 18, 19, 35, 36].

Some studies report improved learning outcomes with LLM use — for instance,
Akcapmar and Sidan observed higher exam scores when students used a custom
AT assistant [3]. However, they also noted a tendency to accept incorrect outputs
uncritically, highlighting the importance of careful integration. Additional concerns
include plagiarism, academic dishonesty, and content reliability [13].

Given these opportunities and risks, understanding how and why students use
LLMs is vital for developing effective teaching practices. This study explores com-
puter science students’ motivations and usage patterns with LLMs, particularly
in foundational programming courses, and examines possible links to academic
performance.

The research questions guiding this study are

(RQ1): How do computer science students use language models in their learning
process?

(RQ2): Do all students use language models in programming in the same ways
and for the same purposes?

2. Literature review

Recent research highlights both the benefits and limitations of LLM-based assis-
tants in programming education. Ravselj et al. [28] found that students across 109
countries primarily used ChatGPT for brainstorming and summarizing, reporting
generally positive attitudes. Similarly, Alves et al. reviewed studies on Al chatbots
in programming and found positive impacts on learning, but also noted gaps, such
as limited focus on teachers’ views and student collaboration [4].

Experimental studies have shown improved performance with AI support [15,
16, 21], especially in coding tasks, debugging, and personalized learning. However,

142

Annal. Math. et Inf. Algorithmic thinking at risk? Ezploring LLM use in . ..

Groothuijsen et al. [12] and Xue et al. [35] reported concerns about reduced col-
laboration, learning outcomes, and motivation when ChatGPT was used. Students
often used AI not to copy code directly, but to structure or debug their work.

Several studies point to the unreliability of Al-generated code. Liu et al. [18]
found that many ChatGPT solutions, though functional, suffered from poor main-
tainability. Chu et al. [5] and Rahman & Watanobe [24] noted issues such as
hallucinations, bias, and lack of reasoning. Akcapiar & Sidan [3] observed a 54%
improvement in exam scores with Al use, but also that most students accepted
incorrect answers uncritically.

While students appreciate the interactivity and support offered by AI tools
[19], overreliance may hinder independent learning. Most studies emphasize Al’s
positive role [1, 11, 31, 36], though some warn of negative effects on academic
integrity and engagement [14, 17, 22].

At our institution, a steady decline in programming course grades has been ob-
served despite stable assessments. This trend may reflect reduced student engage-
ment with algorithmic thinking, possibly linked to increased use of Al-generated
code. To explore this, our study investigates how and why students use Al tools
and whether their usage relates to skill development.

3. Methods

3.1. Participants

The study was conducted in December 2024 among students enrolled in a three-year
Bachelor of Science program in Computer Science at a Hungarian university, en-
compassing both full-time and part-time cohorts. Two instruments — Questionnaire
A and Questionnaire B — were administered to a total of 256 students across all
three academic years. Questionnaire A was completed by 232 students, while 211
students responded to Questionnaire B. Participation in both surveys was entirely
voluntary and anonymous.

Additionally, semi-structured interviews were carried out with nine students
representing different year groups and three instructors who were not affiliated with
the authorship of this study. Participants were selected through random sampling,
with deliberate inclusion of individuals exhibiting low, average, and high academic
performance across each year group. Instructors were likewise randomly selected
from among those teaching programming-related subjects.

3.2. Data collection

Data for this mixed-methods study were collected using four approaches. First,
Questionnaire A was administered to 256 students at semester’s end, using a five-
point Likert scale to assess their use of large language models (LLMs). It covered
model types, usage contexts and frequency, trust, familiarity with underlying con-
cepts, and demographic details. The primary aim was to determine when and how

143

Annal. Math. et Inf. S. Kiraly, E. Troll

students engaged with LLMs and the extent of their trust in these tools.

Second, Questionnaire B, also distributed to the same cohort, had two parts.
B1 employed the validated Technology Readiness Index 2.0 (TRI 2.0; [20]), measur-
ing Optimism, Innovativeness, Discomfort, and Insecurity toward new technologies.
B2, developed for this study, collected students’ self-reported grades in three pro-
gressively advanced programming courses (HLPL1, HLPL2, SOP) and examined
their use of LLMs during coursework and assessments.

Third, semi-structured group interviews were conducted with nine student vol-
unteers (three per year group) to explore their LLM use, engagement, and percep-
tions of skill development.

Fourth, three instructors were interviewed to gather perspectives on LLM in-
tegration in teaching, student engagement, skill development, and anticipated cur-
ricular changes. Combining quantitative and qualitative data from students and
instructors enabled source and method triangulation. The validated TRI 2.0 in-
strument and rigorously developed interview protocols enhanced reliability.

3.3. Data analysis

For the TRI 2.0 section of the questionnaire, mean scores for each of the four
subscales — Optimism, Innovativeness, Discomfort, and Insecurity — were calculated
using SPSS, with each subscale comprising four items. Cronbach’s alpha indicated
acceptable internal consistency for Optimism (« = .76) and Innovativeness (o =
.76), while Discomfort (o = .60) and Insecurity (a = .54) showed lower reliability,
warranting cautious interpretation and suggesting a need for potential refinement
in future applications.

To address Research Question 2 (RQ2), several statistical analyses were con-
ducted in SPSS. In addition, qualitative analysis was performed on the open-ended
questionnaire responses and the student group interview notes, following Braun
and Clarke’s (2006) six-phase thematic analysis. Sensitizing concepts from Rah-
man and Watanobe [23] — error checking and debugging, conceptual understanding
support, code generation, and code optimization — guided the initial coding process.

Semi-structured interviews with nine students and three instructors involved
in the HLPL1, HLPL2, and SOP courses were also analysed thematically. The
interview protocol was designed to explore participants’ experiences, motivations,
and concerns regarding Al chatbot use in programming education. Interviews
lasted 30-45 minutes, were audio-recorded, transcribed verbatim, and analysed
manually to enable cross-case comparisons.

Coding included both inductive and deductive approaches. Emergent codes
were grouped into candidate themes, which were then refined for clarity and con-
sistency. Themes were compared across courses and between student and teacher
perspectives, with representative quotes selected to illustrate key findings.

This process facilitated a nuanced understanding of how and why AI chatbots
are used in programming education, highlighting implications for student auton-
omy, skill development, and assessment practices. A similar approach was applied

144

Annal. Math. et Inf. Algorithmic thinking at risk? Ezploring LLM use in . ..

to the teacher interview data, synthesizing their insights on student engagement,
learning outcomes, and anticipated curricular adjustments.

All procedures for data collection, storage, and analysis adhered to the ethical
standards set by the university’s Research Ethical Review Board and complied fully
with the General Data Protection Regulation (GDPR, 2016).

4. Results

4.1. Descriptive results

Of the 256 students invited, 232 completed the first questionnaire. Among re-
spondents, 33.6% were first-year, 33.2% second-year, and the remainder third-year
students. The sample comprised 15% female and 75% male participants. Among
the respondents, 96.6% had heard of ChatGPT, 33.2% knew about Claude, and
30.8% knew about LLaMA. 1% of respondents had never used a chatbot, while
17.9% used them very frequently. On a Likert scale from 1 to 5, the average
chatbot usage frequency was 3.44.

4.1.1. Research Question 1: How do computer science students use large
language models in their learning process?

The majority of students reported using LLMs, indicating a higher likelihood of
engagement than non-use. The average value (Likert scale 1-5) is 3.45. Respon-
dents rarely use chatbots for text translation (2.39), still preferring traditional
applications like Google Translate and DeepL (see Figure 1).

85 (36,2%)

59 (25,1%)

31(13,2%)

31 (13,2%) 29 (12,3%)

1 2 3 4 5

Figure 1. How often do you use a large language model for text
translation (more often than e.g. Google Translate, DeepL, etc.)?

They also rarely use chatbots for non-academic conversations, with an average
response of 2.83. When asked how often they use Al chatbots to solve homework
assignments, the average response was 3.46. Disaggregated by year, first-year stu-
dents reported an average of 3.29, while third-year students averaged 3.74. These
results show that language models are mainly used for homework, not for transla-
tion or conversation.

Meanwhile, 64% of respondents either did not use Al at all or used it very rarely
at the beginning of their programming studies.

145

Annal. Math. et Inf. S. Kiraly, E. Troll

Based on the questionnaire responses, it is evident that students prefer using
AT tools for code generation. Of the 232 respondents, only 19 (8%) reported never
having generated code using an Al tool. The overall average frequency for code
generation was 3.11 on a five-point scale, with first-year students averaging 2.67
and third-year students 3.6 (Table 1). Asked how often they integrate Al-generated
code into their programs without verification, the average response was 1.55. 59%
had never done this, while 87% only used Al-generated code after verification.

Table 1. What did students use LLMs for?

Never Average
Students used LLMs for: First year | Second year | Third year
Code generation 8% 2.67 3.12 3.6
Code generation and 59% 1.42 1.5 1.7
submitted without
verification
Code generation and 13% - - -
submitted with
verification
Debugging 12% 3.32 3.5 3.8

Table 1 shows that as students progress in their studies, they use LLM more
and more often.

When learning a new programming language or technology, only 2.1% of stu-
dents reported primarily relying on Al tools, while the majority preferred tradi-
tional resources such as YouTube, textbooks, and other learning materials (see
Figure 2).

80

79 (33,8%)

72 (30,8%)
60

53 (22,6%)

40

25 (10,7%)

20
5(2,1%)

1 2 3 4 5

Figure 2. What do you rely on most when learning a new pro-
gramming language or technology? (1-Youtube, Udemy, books, etc.
5-LLMs)

Questionnaire B

Responses to the first questionnaire offered an overview of LLM usage among IT
students, highlighting both common applications and areas of non-use. The ques-

146

Annal. Math. et Inf. Algorithmic thinking at risk? Ezploring LLM use in . ..

tionnaire also explored individual differences in usage patterns, purposes, and per-
ceived usefulness of Al chatbots.

A total of 211 students completed the second questionnaire: 54 first-year, 63
second-year, and 99 third-year students. Questionnaire B incorporated the Tech-
nology Readiness Index (TRI 2.0). As shown in Table 2, Optimism and Innova-
tiveness received the highest scores, while Discomfort was rated low and Insecurity
moderate. These results indicate that participants are technologically adept and
approach new technologies with a critically reflective mindset.

Table 2. Overview of TRI2 dimension scores.

Overview TRI2 scores

Dimension Mean | SD
Optimism 3.86 | 0.73
Innovativeness 3.50 | 0.81
Dissatisfaction 2.60 | 0.73
Insecurity 2.44 | 0.58

The results indicate that students exhibit both comfort with and openness to-
ward adopting new technologies.

Table 3 shows how often students use Al chatbots to explain, review, test, and
debug. Only 34 (16%) students reported never using Al for these purposes. Ninety
students (43%) indicated usage between 1-10 times, 43 students (20%) between 10-
20 times, and 44 (21%) students more than 20 times. Even in the Service-Oriented
Programming (SOP) course — the course with the lowest reported usage — only 24%
of students reported using Al for reviewing and testing their own code.

Figure 3 illustrates that students were generally moderately satisfied with the
large language models (LLMs) they used, with an average satisfaction rating of
3.30. The relationship between satisfaction and students’ course grades, as well as
overall GPA, was also analysed. Students who received grades of 4, 5, or 1 reported
marginally higher satisfaction levels (3.36, 3.39, and 3.37, respectively).

80
77 (36,5%)

69 (32,7%
. ()

40

20

6(2,8%) 16 (7,6%)

14 (6,6%)

0 1 2 3 4 5

Figure 3. How satisfied are you with the language model(s) used
and their responses? (0 - I do not use it, 1 - I am not satisfied, 5 -
I am very satisfied)

147

Annal. Math. et Inf. S. Kiraly, E. Troll

Table 3. Student responses on Al use for explaining, reviewing,
testing, and debugging.

Number of
Questions students
How often did students use Al for 34
explaining, reviewing, testing, and
debugging? — “Never” responses
How often did students use Al for 90
explaining, reviewing, testing, and
debugging? — 1-10 times

How often did students use Al for 43
explaining, reviewing, testing, and
debugging? — 10-20 times

How often did students use Al for 44
explaining, reviewing, testing, and
debugging? — More than 20 times

4.1.2. Research Question 2: Do all students use language models in
programming in the same ways and for the same purposes?

After processing the Questionnaire B, we found that the method of LLM use de-
pends on the subject and grades. We performed statistical analysis for the three
subjects as follows. Dependent Variable: Grade (A): Numerical grade (1-5). In-
dependent Variables: AI Usage Variables: General Al frequency (B), Al-generated
code (C), AI code not understood (D), AI code understood (E), Al-reviewed code
(F), AI debugging (G).

In the case of the HLPL1, the analysis demonstrated significant negative asso-
ciations between AI usage and academic performance, particularly when students
relied on Al-generated code without full understanding (p = —0.35, p < 0.001).
The performed cluster analysis further identified a high-risk group (25% of stu-
dents) with heavy AI dependence and markedly lower grades (M = 2.1). Regres-
sion models confirmed these effects persisted after accounting for baseline skill
levels (8 = —0.42, p < 0.001), underscoring the need for pedagogical strategies
that promote critical engagement with AI chatbots (Table 4).

Similar results were found for the High-Level Programming Languages II sub-
ject. The statistical analysis for correlation shows that negative correlations be-
tween higher AT usage and lower grades. General Al usage (B), debugging (G) and
lack of understanding (D) show the most significant negative relationships. This
suggests that frequent, less reflective Al use may associate with poorer academic
performance.

Using AI generated codes without understanding (C) and Al usage frequency
ford debugging (G) significantly predict lower grades.

148

Annal. Math. et Inf. Algorithmic thinking at risk? Ezploring LLM use in . ..

Table 4. Correlation between HLPL1 grades and Al chatbot usage
using Spearman’s method (with p < 0.05 for significance).

Al usage types Correlation (p) | p-value | Interpretation
(B) How often did students —0.25 < 0.001 | Moderate

use an LLM? negative link
(C) How often did students —0.32 < 0.001 | Strong negative
use Al-generated code to link

solve assignments? (Only
tested if it worked, without

modifications)
(D) How often did —0.35 < 0.001 | Strongest
students use Al-generated negative effect

code without
understanding every line?

(E) How often did students —0.10 0.132 | No significant
use Al-generated code link

while fully understanding
every line?

(F) How often did students -0.14 0.021 | Weak negative
use Al to review or test link

their own written code

(G) How often did students —0.18 0.003 | Moderate

use Al for debugging? negative link

These findings underscore that AI’s role in learning is context-dependent: while
tool-assisted comprehension (e.g., debugging with understanding) may be neutral,
unreflective dependence correlates with academic risks.

In the case of SOP, the results are different. The statistical analysis for corre-
lation shows that higher-graded students used Al-generated code for assignments
slightly less often (r = —0.21, p = 0.022). All other AI usage behaviours showed
no meaningful relationship with grades (Table 5).

Unlike the other two courses, lower-performing students in this course also
avoided using Al chatbots for code generation. Semi-structured group interviews
revealed that large language models (LLMs) struggle with stream-based communi-
cation tasks, often producing non-functional or algorithmically inconsistent code.
Instructors observed that LLM-generated solutions to producer-consumer problems
were overly complex, included irrelevant code, and remained unclear even with ex-
planations. As one teacher noted: “Al is not yet sufficiently reliable for addressing
more complex problems and should not be relied upon by individuals pursuing a
serious career in this field.” Another added: “For SOP, the situation is similar
— obtaining a usable response may require an excessive number of prompts. The
model may also struggle with concepts such as asynchronous programming.” Conse-

149

Annal. Math. et Inf. S. Kiraly, E. Troll

Table 5. Correlation between SOP grades and Al chatbot usage
using Spearman’s method (with p < 0.05 = significant).

Al usage types Correlation (p) | p-value | Interpretation
(B) How often did students 0.02 < 0.85 | No significant
use an LLM? correlation

(C) How often did students —0.21 < 0.022 | Weak negative
use Al-generated code to correlation

solve assignments? (Only
tested if it worked, without

modifications)
(D) How often did —0.11 < 0.24 | No significant
students use Al-generated correlation

code without
understanding every line?

(E) How often did students 0.02 0.81 No significant
use Al-generated code correlation
while fully understanding
every line?

(F) How often did students 0.05 0.58 No significant
use Al to review or test correlation
their own written code

(G) How often did students 0.07 0.44 No significant
use Al for debugging? correlation

quently, students primarily used chatbots in this course to explain code rather than
to generate or debug it. Across all three courses, a clear trend emerged: students
with lower grades tended to rely on Al chatbots more frequently and were more
likely to use them for code generation. In contrast, higher-achieving students used
chatbots mainly for code explanation, testing, and debugging.

5. Discussion

This section addresses the study’s findings in relation to the two research questions.
The primary aim was to examine how university-level computer science students
use large language models (LLMs) to support their learning and in what ways.
Survey results show that students primarily use OpenAI’s ChatGPT, rarely
for translation or casual conversation, but frequently for assignments, coursework,
and exam preparation. As expected [12, 16, 23], they commonly use LLMs to
generate, debug, analyse, and explain code. Only 8% reported never inserting
LLM-generated code into their work, and just 59% claimed never to have submitted
unverified Al-generated code — figures that suggest only a minority consistently

150

Annal. Math. et Inf. Algorithmic thinking at risk? Ezploring LLM use in . ..

code independently (Table 1).

LLM usage increases with academic progression, likely due to both the growing
reliability of LLMs and the increasing complexity of course content.

Some students used chatbots to generate exercises or quizzes for self-assessment,
although specific course associations were not identified. This behavior aligns with
RQ1, indicating diverse and evolving uses of LLMs in learning.

For RQ2, no prior studies were found that explore correlations between Al use
and student ability. Our findings reveal that students struggling with a subject used
LLMs more frequently — especially for code generation and less for code debugging.
In contrast, higher-achieving students mainly used Al for testing and debugging.
In HLPL1, over 90% did not use AI at all, while usage was notably higher in SOP.
A positive correlation was found between perceived subject difficulty and Al use.

Students with lower grades often relied on LLMs to generate code, while stronger
students used them for support tasks. Whether low performance resulted from
excessive reliance on Al or pre-existing skill deficits remains unclear.

Regardless of performance, many students used Al to explain code. According
to some, Al was unnecessary for SOP tasks as they could be solved using class
material and logic. Others warned that excessive reliance on Al hindered genuine
learning. Students expressed concern that Al-generated code is often syntacti-
cally correct but overly complex and difficult to understand, especially for weaker
learners.

Instructors agreed that while LLMs can support learning, especially in code
comprehension and debugging, generated code is often misaligned with course-
specific approaches. Weaker students tend to depend on Al because they struggle to
write or understand code. As tasks grow in complexity, Al-generated solutions may
hinder more than help, particularly when students cannot replicate the solution
independently.

Despite these concerns, students appreciated LLMs for saving time — especially
when used to clarify errors or concepts they could not understand otherwise. In-
structors cautioned, however, that using Al at the first sign of difficulty may impede
long-term skill development.

Most students reported satisfaction with their chosen LLM (mean rating: 3.30),
especially those who earned high or failing grades. They believed AI support
enhanced their learning, reduced effort, and saved time.

As one part-time student observed, LLMs are useful in professional contexts —
for generating SQL, HTML, or JSON — yet they tried to minimize reliance on Al
in academic settings. Instructors echoed the need for caution, emphasizing that
students who rely heavily on Al risk not learning essential problem-solving skills.

5.1. Implications

In subjects where students seek additional practice but find the number of available
exercises insufficient, they often use Al to generate tasks. Instructors should ad-
dress this by providing a wider range of high-quality exercises, including examples

151

Annal. Math. et Inf. S. Kiraly, E. Troll

with solutions and explanations, followed by similar tasks to reinforce understand-
ing.

Self-assessment opportunities should be integrated into each course, enabling
students to gauge their comprehension independently.

The findings also suggest that online exams may not reliably assess actual
knowledge. As one respondent noted, “more perceptive students may learn to ob-
scure Al-generated syntax patterns, including stylistic features such as comments or
distinctive variable naming conventions.” Another added, “every exam submission
should be followed by a defense session, which would require additional time and
effort from both instructors and students.” To maintain academic integrity, exams
should be conducted in person, under supervision, with mobile phone collected
beforehand.

6. Conclusion and future work

This study found that computer science students use Al chatbots not only for
code generation, explanation, testing, and debugging, but also for creating prac-
tice exercises and self-assessment, such as generating topic-specific test questions.
Translation and non-academic use are rare. The primary motivation is to speed up
learning and complete tasks more efficiently, though this is not always achieved.
Code quality varies across chatbots, and faulty or overly complex outputs may
hinder learning, even when explanations are provided.

Relying on Al-generated code can limit students’ development of key skills
such as algorithmic thinking and coding proficiency. Weaker students, who would
benefit most from practice, are more likely to depend on code generation. Similarly,
excessive use of Al tools for debugging may impede deeper code comprehension.
Conversely, Al-generated explanations — particularly when applied to students’ own
code — can support learning when used appropriately.

The TRI 2.0 instrument showed acceptable reliability and partial construct and
criterion validity in this context. Positive dimensions (optimism and innovative-
ness) performed well, though negative subscales may require refinement. Overall,
the tool effectively measured students’ technology readiness in relation to AI chat-
bot use.

Future studies could compare different Al tools and their respective affordances
in education. Beyond code generation, Al can also evaluate student-written code
[30], offering potential for both student self-assessment and instructional support.
Investigating the impact of selecting appropriate Al tools and prompting strategies
may further clarify their role in programming education.

References

[1] S. ABDULLA, S. ISMAIL, Y. FAwzY, A. ELHAJ: Using ChatGPT in teaching computer program-
ming and studying its tmpact on students’ performance, Electronic Journal of E-Learning
22.6 (2024), pp. 66-81, DOI: 10.34190/ejel.22.6.3380.

152

https://doi.org/10.34190/ejel.22.6.3380

Annal. Math. et Inf. Algorithmic thinking at risk? Ezploring LLM use in . ..

[2]

3]

[4]

[5]

[6]

7]

(8]

[9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

A. ACERBI, J. M. STUBBERSFIELD: Large language models show human-like content biases
in transmission chain experiments, PNAS 120.44 (2023), €2313790120, poI: 10.1073/pnas
.2313790120.

G. AKCAPINAR, E. SIDAN: AT chatbots in programming education: guiding success or encour-
aging plagiarism, Discov Artif Intell 4 (2024), p. 87, DOI: 10.1007/s44163-024-00203-7.

J. V. B. ALVES, Y. T. GONCALVES, H. B. SiLvA: Use of ChatBots in Programming Education:
A Scoping Review, in: XIII Congresso Brasileiro de Informdtica na Educagdo (CBIE 2024),
Rio de Janeiro, 2024, DOI: 10.5753/sbie.2024.242473.

Z. CHu, J. WaNgG, J. Xig, T. ZHU, Y. YaN, J. YE, A. ZHONG, X. Hz, J. Liang, P. S. Yu,
O. WEN: LLM Agents for Education: Advances and Applications, 2024, DOI: 10.48550/arXi
v.2503.11733, eprint: arXiv:2503.11733.

S. CONKLIN, T. DORGAN, D. BARRETO: Is Al the new course creator, Discov Educ 3 (2024),
p.- 285, DOI: 10.1007/s44217-024-00386-2.

C. DENG ET AL.: Deconstructing The Ethics of Large Language Models from Long-standing
Issues to New-emerging Dilemmas: A Survey, 2024, DOI: 10 . 48550/ arXiv . 2406 . 056392,
eprint: arXiv:2406.05392.

B. DENNY, J. PRATHER, B. A. BECKER, J. FINNIE-ANSLEY, A. HELLAS, J. LEINONEN, A.
LuxToN-REILLY, B. N. REEVES, E. A. SANTOS, S. SARSA: Computing education in the era of
generative AI, Communications of the ACM 67.2 (2024), pp. 56—67, DOI: 10.1145/3624720.

J. FINNIE-ANSLEY, P. DENNY, B. BECKER, A. LUXTON-REILLY, J. PRATHER: The robots
are coming: Exploring the implications of OpenAl Codex on introductory programming, in:
Proceedings of the 24th Australasian Computing Education Conference, 2022, pp. 10-19,
DOI: 10.1145/3511861.3511863.

S. GARCIA-MENDEZ, F. DE ARRIBA-PEREZ, M. D. C. SOM0ZA-LOPEZ: A Review on the Use
of Large Language Models as Virtual Tutors, Sci & Educ 34 (2025), pp. 877-892, pOI: 10.1
007/s11191-024-00530-2.

N. GARDELLA, R. PETTIT, S. L. Riaas: Performance, workload, emotion, and self-efficacy
of novice programmers using Al code generation, in: Proceedings of the 2024 on Innovation
and Technology in Computer Science Education, 2024, pp. 290-296, DOI: 10.1145/3649217
.3653615.

S. GROOTHULJSEN, A. BEEMT, J. C. REMMERS, L. W. MEEUWEN: AI chatbots in programming
education: Students’ use in a scientific computing course and consequences for learning,
Computers and Education: Artificial Intelligence 7 (2024), p. 100290, DOI: 10.1016/j.caeai
.2024.100290.

Q. Huang, C. Lv, L. Lu, T. SHUANG: Ewvaluating the Quality of AI-Generated Digital Edu-
cational Resources for University Teaching and Learning, Systems 13.3 (2025), p. 174, DoI:
10.3390/systems13030174.

D. M. JonNsoN, W. Doss, C. M. EsTEPpP: Using ChatGPT with novice Arduino program-
mers: Effects on performance, interest, self-efficacy, and programming ability, Journal of
Research in Technical Careers 8.1 (2024), poI: 10.9741/2578-2118.1152.

M. KAZEMITABAAR, J. CHOow, C. K. T. Ma, B. J. EricsoN, D. WEINTROP, T. GROSSMAN:
Studying the effect of Al code generators on supporting novice learners in introductory
programming, in: Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, Hamburg, Germany, 2023, DOI: 10.1145/3544548.3580919.

L. LaBADZE, M. GRIGOLIA, L. MACHAIDZE: Role of Al chatbots in education: systematic
literature review, Int J Educ Technol High Educ 20 (2023), p. 56, DOI: 10.1186/s41239-023
-00426-1.

M. Lepp, J. KAIMRE: Does generative Al help in learning programming: Students’ percep-
tions, reported use and relation to performance, Computers in Human Behavior Reports 18
(2025), p. 100642, DOL: 10.1016/3.chbr.2025.100642.

153

https://doi.org/10.1073/pnas.2313790120
https://doi.org/10.1073/pnas.2313790120
https://doi.org/10.1007/s44163-024-00203-7
https://doi.org/10.5753/sbie.2024.242473
https://doi.org/10.48550/arXiv.2503.11733
https://doi.org/10.48550/arXiv.2503.11733
arXiv:2503.11733
https://doi.org/10.1007/s44217-024-00386-2
https://doi.org/10.48550/arXiv.2406.05392
arXiv:2406.05392
https://doi.org/10.1145/3624720
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1007/s11191-024-00530-2
https://doi.org/10.1007/s11191-024-00530-2
https://doi.org/10.1145/3649217.3653615
https://doi.org/10.1145/3649217.3653615
https://doi.org/10.1016/j.caeai.2024.100290
https://doi.org/10.1016/j.caeai.2024.100290
https://doi.org/10.3390/systems13030174
https://doi.org/10.9741/2578-2118.1152
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1186/s41239-023-00426-1
https://doi.org/10.1186/s41239-023-00426-1
https://doi.org/10.1016/j.chbr.2025.100642

Annal. Math. et Inf. S. Kiraly, E. Troll

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27]

28]

29]

(30]

(31]

(32]

Y. Liu, T. LE-CONG, R. WIDYASARI, C. TANTITHAMTHAVORN, L. L1, X. B. D. Lg, D. Lo:
Refining ChatGPT-Generated Code: Characterizing and Mitigating Code Quality Issues,
ACM Transactions on Software Engineering and Methodology 33.5 (2024), pp. 1-26, DOI:
10.1145/3643674.

B. MA, L. CHEN, S. KonoMI: Enhancing Programming Education with ChatGPT: A Case
Study on Student Perceptions and Interactions in a Python Course, 2024, DOI: 10.48550/a
rXiv.2403.15472, eprint: arXiv:2403.15472.

A. PARASURAMAN, C. CoLBY: An Updated and Streamlined Technology Readiness Index:
TRI 2.0, Journal of Service Research 18.1 (2015), DOI: 10.1177/109467051453973.

A. Park, T. Kim: Code suggestions and explanations in programming learning: Use of Chat-
GPT and performance, The International Journal of Management Education 23.2 (2025),
p.- 101119, por1: 10.1016/j.ijme.2024.101119.

J. PRATHER, B. N. REEVES, J. LEINONEN, S. MACNEIL, A. S. RANDRIANASOLO, B. A.
BECKER, B. KIMMEL, J. WRIGHT, B. BRIGGS: The widening gap: The benefits and harms
of generative Al for novice programmers, in: Proceedings of the 2024 ACM Conference on
International Computing Education Research - Volume 1, 2024, pp. 469-486, DOI: 10.1145
/3632620.3671116.

M. M. RAHMAN, Y. WATANOBE: ChatGPT for education and research: Opportunities, threats,
and strategies, Applied Sciences 13.9 (2023), p. 5783, DOL: 10.3390/app13095783.

M. M. RAHMAN, Y. WATANOBE, R. U. KIRAN, R. KABIR: A stacked bidirectional lstm model
for classifying source codes built in mpls, in: Proceedings of the Machine Learning and
Principles and Practice of Knowledge Discovery in Databases: International Workshops of
ECML PKDD 2021, 2021, pp. 75-89, DOI: 10.1007/978-3-030-93733-1_5.

M. M. RAHMAN, Y. WATANOBE, K. NAKAMURA: A neural network based intelligent support
model for program code completion, Sci. Program. 2020 (2020), p. 7426461, po1: 10.1155/2
020/7426461.

M. M. RAHMAN, Y. WATANOBE, K. NAKAMURA: Source code assessment and classification
based on estimated error probability using attentive LSTM language model and its application
in programming education, Appl. Sci. 10 (2020), p. 2973, DOL: 10.3390/app10082973.

P. RaJaBl, P. TAGHIPOUR, D. CUKIERMAN, T. DOLECK: Unleashing ChatGPT’s impact in
higher education: Student and faculty perspectives, Computers in Human Behavior: Artificial
Humans 2.2 (2024), p. 100090, DOI: 10.1016/j . chbah.2024.100090.

D. RavseELJ, D. KERZIC, N. ToMAZEVIC, L. UMEK, N. BREZOVAR, N. A. TAHAD, ET AL.:
Higher education students’ perceptions of ChatGPT: A global study of early reactions, PLoS
ONE 20.2 (2025), 0315011, DOI: 10.1371/journal.pone.0315011.

M. RICHARDS, K. WAUGH, M. SLAYMAKER, M. PETRE, J. WOODTHORPE, D. GOOCH: Bob
or bot: Exploring ChatGPT’s answers to university computer science assessment, ACM
Transactions on Computing Education 24.5 (2024), pp. 1-32, DOI: 10.1145/3633287.

A. SARANTI, B. TARAGHI, M. EBNER, A. HOLZINGER: Property-based testing for parame-
ter learning of probabilistic graphical models, in: Lncs: 12279. CD-MAKE 2020, ed. by A.
HOLZINGER, P. KIESEBERG, A. M. Tioa, E. WEIPPL, 2020, pp. 499-515, DOI: 10.1007/978-
3-030-57321-8_28.

A. SARCEVIC, 1. ToMICIC, A. MERLIN, M. HORVAT: Enhancing Programming Education with
Open-Source Generative AI Chatbots, in: 2024 47th MIPRO ICT and Electronics Convention
(MIPRO), Opatija, Croatia, 2024, pp. 2051-2056, DOI: 10.1109/MIPRO60963 . 2024 . 10569736.

D. SoBaNIA, M. BRrIESCH, F. ROTHLAUF: Choose your programming copilot: A comparison
of the program synthesis performance of github copilot and genetic programming, in: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, New York, NY, USA,
2022, pp. 1019-1027, pOI: 10.1145/3512290.3528700.

154

https://doi.org/10.1145/3643674
https://doi.org/10.48550/arXiv.2403.15472
https://doi.org/10.48550/arXiv.2403.15472
arXiv:2403.15472
https://doi.org/10.1177/109467051453973
https://doi.org/10.1016/j.ijme.2024.101119
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.3390/app13095783
https://doi.org/10.1007/978-3-030-93733-1_5
https://doi.org/10.1155/2020/7426461
https://doi.org/10.1155/2020/7426461
https://doi.org/10.3390/app10082973
https://doi.org/10.1016/j.chbah.2024.100090
https://doi.org/10.1371/journal.pone.0315011
https://doi.org/10.1145/3633287
https://doi.org/10.1007/978-3-030-57321-8_28
https://doi.org/10.1007/978-3-030-57321-8_28
https://doi.org/10.1109/MIPRO60963.2024.10569736
https://doi.org/10.1145/3512290.3528700

Annal. Math. et Inf. Algorithmic thinking at risk? Ezploring LLM use in . ..

33]

(34]

(35]

(36]

37]

S. STEINERT, K. E. AviLA, S. Ruzika, J. KunN, S. KUCHEMANN: Harnessing large language
models to develop research-based learning assistants for formative feedback, Smart Learn.
Environ. 11 (2024), p. 62, DOI: 10.1186/s40561-024-00354~1.

D. Sun, A. Boubpouala, C. Zuu, Y. Li: Would ChatGPT-facilitated programming mode im-
pact college students’ programming behaviors, performances, and perceptions? An empirical
study, International Journal of Educational Technology in Higher Education 21 (2024), p. 14,
DOI: 10.1186/s41239-024-00446-5.

Y. Xug, H. CHEN, G. R. BAl, R. TAIRAS, Y. HUANG: Does ChatGPT Help With Introduc-
tory Programming? An Experiment of Students Using ChatGPT in CS1, in: ICSE-SEET
’24: Proceedings of the 46th International Conference on Software Engineering: Software
Engineering Education and Training, 2024, pp. 331-341, DOI: 10.1145/3639474.3640076.

R. YiLmaz, F. G. K. YiLMAZ: The effect of generative artificial intelligence (Al)-based tool
use on students’ computational thinking skills, programming self-efficacy and motivation,
Computers & Education: Artificial Intelligence 4 (2023), DoI: 10.1016/j.caeai.2023.10014
7.

Q. ZHANG, C. FANG, Y. MA, W. SuN, Z. CHEN: A Survey of Learning-based Automated
Program Repair, 2023, DOI: 10.1145/3631974, eprint: arXiv:2301.03270.

155

https://doi.org/10.1186/s40561-024-00354-1
https://doi.org/10.1186/s41239-024-00446-5
https://doi.org/10.1145/3639474.3640076
https://doi.org/10.1016/j.caeai.2023.100147
https://doi.org/10.1016/j.caeai.2023.100147
https://doi.org/10.1145/3631974
arXiv:2301.03270

