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Abstract. Tackling the persistent dual challenge of noise and class imbal-
ance in binary classification, this study introduces a robust hybrid pipeline
that improves resilience and accuracy in noisy, imbalanced data environ-
ments. Leveraging a multi-stage framework, we integrate a Gaussian Mixture
Model Noise Filter (GMMNF) to preserve minority class integrity, a Noise-
Aware Multi-Layer Perceptron (MLP) enhanced with dynamic regularization
to adaptively mitigate noise, and a synergistic resampling strategy combining
SMOTE-Tomek and Conditional GAN to optimize class distribution. Com-
prehensive evaluations across escalating noise levels (0–32%) reveal that our
approach not only achieves a peak F1-score of 0.9255 at 4% noise but also
maintains over 49% minority class representation even under severe noise
stress. Five-fold cross-validation substantiates the pipeline’s robustness, con-
sistently outperforming established state-of-the-art methods. These results
underscore the significant advancement our framework offers for real-world
applications where data imperfection and imbalance are the norm, in reliable
binary classification.

1. Introduction
The reliability of binary classification models in real-world applications depends
on their capacity to address two prevalent and intertwined challenges: noisy data
and class imbalance. While deep neural networks (DNNs) excel at learning com-
plex patterns from large datasets [11], their performance degrades sharply when
trained on imbalanced, noisy data [10], a common scenario in high-stakes domains
like medical diagnostics [12] and fraud detection [4, 8]. In medical imaging, label
noise from inter-observer variability [9] compounds with the inherent scarcity of
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malignant cases, creating a pernicious feedback loop: noise corrupts scarce mi-
nority samples, prompting aggressive filtering that exacerbates imbalance, while
oversampling propagates noise into synthetic data [13, 17]. This interplay exacer-
bates model fragility through three key mechanisms: (1) Noise disproportionately
corrupts minority-class samples due to their scarcity [17], (2) Aggressive noise-
filtering techniques (e.g., Edited Nearest Neighbors [3]) inadvertently remove mi-
nority instances, worsening imbalance, and (3) Synthetic oversampling methods
like SMOTE [2, 10] propagate noise into synthetic samples when applied to cor-
rupted data [17], creating a cycle where noise amplifies imbalance while imbalance
reduces noise robustness.

Existing solutions fall short due to fundamental trade-offs.

• Classical ML Limitations: Hybrid techniques like SMOTE-Tomek improve
balance but cannot adapt to complex noise patterns learned by DNNs, re-
sulting in suboptimal feature representations that fail in high-dimensional
spaces [3].

• Deep Learning Shortcomings: Methods like adversarial training or noise-
injection regularization [20] enhance robustness but lack explicit mechanisms
to protect minority classes, often amplifying bias through majority-class over-
fitting [7].

Our solution combines these paradigms in a probabilistic deep framework fea-
turing three synergistic components:

• Gaussian Mixture Model Noise Filter (GMMNF): Probabilistic filtering with
adaptive thresholds and mutual information-based feature weighting removes
noise while preserving over 98% of minority instances at (32% noise levels).

• Noise-Aware MLP: Deep architecture with noise-adaptive dropout (0.3–0.5),
residual connections, and hybrid BCE+focal loss achieves sustained F1-scores
exceeding 0.90 across noise levels (0–32%).

• Dynamic Parameter Scaling: Automatic adjustment of GMM clusters and
regularization strengths maintains robustness across varying noise-imbalance
ratios.

2. Literature review
Handling noisy, imbalanced datasets remains a persistent challenge in both classical
machine learning and deep learning. These two factors, label noise and class imbal-
ance, often interact in harmful ways, degrading model reliability in real-world ap-
plications where imperfect data is the norm [5, 11].Imbalanced datasets, where mi-
nority class samples are scarce, bias traditional algorithms toward majority classes
[14, 18]. Simultaneously, label noise (e.g., incorrect or corrupted labels) dispro-
portionately affects underrepresented classes, worsening misclassification risk [4].
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In domains such as medical diagnosis, fraud detection, and industrial condition
monitoring, rare but critical samples are scarce and easily corrupted. This cre-
ates a feedback loop: noise obscures already weak minority signals, prompting
overzealous filtering or oversampling, which in turn further amplifies class imbal-
ance [16]. Addressing this challenge requires holistic approaches that are not only
robust to noise but also explicitly designed to preserve minority class integrity
throughout the training pipeline. Deep neural networks (DNNs) display remark-
able pattern learning capability, but their high expressiveness renders them suscep-
tible to overfitting noisy labels, particularly when minority samples are both rare
and unreliable. Traditional regularization (e.g., dropout, batch normalization) is
typically insufficient, as DNNs can memorize erroneous labels, leading to biased
predictions and degraded generalization, especially for underrepresented classes,
emphasizing that these conventional techniques often fail under noisy conditions,
particularly when minority data is unreliable [4]. This motivates integrated strate-
gies combining noise detection, dynamic regularization, and adaptive training, a
philosophy central to our proposed framework. Studies have shown that noise
disproportionately affects minority classes, making them more likely to be mis-
classified or mistakenly filtered during pre-processing. Even slight perturbations
in these rare instances can degrade classification performance, particularly when
relying on classical oversampling or naive denoising methods [15]. In response,
prior work has introduced Gaussian Mixture Model (GMM)-based filters capable
of separating true noise from hard-but-valid samples, increasing minority reten-
tion in noisy, imbalanced settings [6, 19]. The proposed GMMNF module builds
on these insights, using mutual information-weighted thresholding and adaptive
noise estimation to retain more than 98% of minority samples even under severe
noise conditions. Generative Adversarial Networks (GANs) have transformed the
landscape of synthetic data generation, offering a more powerful and flexible al-
ternative to classical methods like SMOTE [1]. Literature shows that Conditional
GANs (CGANs), especially those guided by distributional constraints and class
conditioning, can produce synthetic minority samples that are both realistic and
robust to noise, mitigating the noise propagation that naive oversampling often
introduces [15]. Our pipeline integrates these advances by combining CGAN-based
augmentation with spectral normalization, feature-matching loss, and MixUp inter-
polation to generate diverse, high-quality synthetic samples. These techniques not
only improve minority class representation but also help smooth decision bound-
aries, reducing overfitting to synthetic outliers. In contrast to static pipelines, we
propose a hybrid, noise-aware system that dynamically adjusts regularization and
sampling based on real-time noise estimation. This dynamic adaptability shows
a significant improvement in the model’s robustness. Our framework embodies
this principle via noise-adaptive dropout scaling, scenario-driven parameter tun-
ing, and minority-centric retention rules, resulting in substantial improvements in
both recall and generalization. Overall, this work builds directly on and advances
prior GAN-based, GMM-driven, and adaptive training methods. Where earlier
systems struggled with over-filtering, synthetic noise propagation, and rigid regu-
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larization, our integrated approach achieves state-of-the-art performance in robust
binary classification under imperfect data conditions.

3. Methodology and results
Our proposed methodology introduces a comprehensive pipeline for addressing
noisy, imbalanced datasets through three key components: data preprocessing,
noise filtering, and sampling (see Figure 1).

Figure 1. Overview of the Proposed Noise-Resilient Pipeline Ar-
chitecture.

Data Preprocessing and Noise Filtering utilizing Gaussian Mixture Model Noise
Filter (GMMNF). The pipeline begins with a probabilistic noise detection system
based on class-specific Gaussian Mixture Models (GMMs) as in Equation 3.1. For
each class c, the data distribution is modeled as:

P (x|c) =
k∑

i=1
πc,i N(x|νc,i, Σc,i), (3.1)

where

• P (x|c) denotes the probability density of sample x given class c,

• πc,i is the mixture weight of the ith Gaussian component for class c,

• N(x|νc,i, Σc,i) is the multivariate normal distribution with mean vector νc,i

and covariance matrix Σc,i for the ith component of class c,

• k is the total number of Gaussian components per class.
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For each class, the data distribution is modeled as a mixture of Gaussian com-
ponents, enabling the identification of outliers that deviate significantly from these
distributions. Feature importance is weighted using mutual information scores to
prioritize features that are clinically and biologically relevant during noise assess-
ment. An adaptive threshold regulates the sensitivity of noise detection: lower
noise levels trigger conservative filtering, whereas higher noise levels activate more
aggressive outlier removal.

θ(n) = θbase + β · n,

Where θ(n) denotes the noise-adaptive threshold, θbase is the base threshold, β ∈
R is the sensitivity coefficient and n ∈ [0, 1]. The minority class samples are
protected through dynamic retention rules that minimize over-deletion of critical
underrepresented instances:

Keep(x) =


True, if s(x) ≥ θ(n),
True, if y(x) = cminority ∧ rankc(s(x)) ≤ Nc,

False, otherwise,

Where zi denotes the latent index of the ith Gaussian component in the mixture,
and s(x) = maxi p(zi | x) is the GMM posterior score of sample x (higher means
more in-distribution). Minority samples are additionally ranked by δ(x) = 1−s(x),
and the top Nc are always preserved. The quota Nc is set adaptively based on class
size and noise level.

This adaptive rule ensures that high-confidence samples are preserved, while
minority instances receive extra protection through class-specific quotas. As a re-
sult, the filter remains conservative: it removes only those samples most likely
to be mislabeled while safeguarding rare but critical cases. Empirically, overall
removal stays low (0.52–2.86% across 0–32% noise), with minority removal consis-
tently around 1.0%, demonstrating robustness to noise and strong preservation of
minority integrity.

We perform synthetic data augmentation at the initial oversampling stage.
To address the class imbalance at the early stage, the Synthetic Minority Over-
sampling Technique (SMOTE) is employed to generate an initial set of synthetic
minority class samples. The oversampling process is dynamically adapted based on
key dataset characteristics, including the estimated noise level, the degree of class
imbalance, and the relative importance of input features. This adaptive strategy
ensures that the generated samples align more closely with the underlying data
distribution and are robust to noise and irrelevant features.

Conditional GAN (CGAN) for minority oversampling: Subsequently, we deploy
a Conditional Generative Adversarial Network (CGAN) that generates synthetic
minority samples. The generator takes a noise vector and class embedding as
input, producing synthetic samples that mimic the feature distribution of the tar-
get minority class. The discriminator, equipped with spectral normalization for
training stability, evaluates both real and synthetic samples. A feature-matching
loss ensures generated samples align with the statistical properties of real data,
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while gradient penalty regularization prevents mode collapse. We further enhance
diversity through MixUp, which linearly interpolates pairs of samples and their
labels. This technique smooths decision boundaries and improves generalization,
particularly in noisy regions of the feature space.

The second component, Noise-Aware Model Training, uses a Noise-Aware MLP
architecture. A custom Multi-Layer Perceptron (MLP) incorporates noise-adaptive
mechanisms:

• Adaptive Dropout: Dropout rates scale with detected noise levels (0.3–0.5),
increasing regularization under high uncertainty.

• Recall-Optimized Loss: A composite loss function combines binary cross-
entropy with recall-focused penalties to prioritize minority class accuracy.

• Dynamic Initialization: Weight initialization scales with noise intensity to
stabilize early training.

The third component is the Final MLP Classifier, where the pipeline concludes
with a standard MLP trained on the cleansed and augmented dataset. Key features
include:

• Spectral Normalization: Applied to hidden layers to constrain model com-
plexity.

• Focal Loss: Addresses residual class imbalance by down-weighting well-classi-
fied majority samples.

• Batch Normalization: Stabilizes training across varying noise levels.

The training and validation protocol is the stratified cross-validation, where we
employ 5-fold stratified cross-validation to evaluate performance while preserving
class distributions. Each fold uses:

• Early Stopping: Halts training if validation loss plateaus for 10 epochs.

• Adaptive Batch Sizing: Smaller batches (32) for low-noise data, larger batches
(64) for high-noise scenarios.

We used the following performance scores: F1-score (balances of precision and
recall), G-Mean (geometric mean of class-specific recalls, emphasizing minority
class performance), Generalization Gap (difference between validation and test F1-
scores to detect overfitting).

The system’s self-adjusting mechanisms, triggered by real-time noise estimates
and class ratio, enable robust performance across diverse data conditions, from
clean laboratory datasets to highly noisy real-world environments.
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3.1. Results
Our experimental evaluation demonstrates the effectiveness of the proposed pipe-
line in handling noisy imbalanced datasets across varying noise levels (0–32%).
The results are structured into four key analyses. The pipeline maintains robust
performance even under severe noise conditions (Table 1, Figure 4).

F1-score peaks at 0.9255 (4% noise), with only a 2.1% decline at 32% noise. This
stability outperforms SMOTE-based methods, which typically degrade by 15–20%
under similar conditions. The highest G-Mean value (0.6442) was observed at 4%
noise, indicating balanced recall across classes. At 32% noise, the G-Mean remains
above 0.54, demonstrating resilience to extreme class imbalance. The difference
between validation and test F1-scores remains small (<0.26), confirming minimal
overfitting.

3.2. Experimental setup
The experimental setup was designed to rigorously evaluate the proposed pipeline’s
performance on noisy, imbalanced datasets using synthetic data. The following
components detail the dataset characteristics, preprocessing steps, evaluation pro-
tocol, and the performance metrics used.

• Dataset: Synthetic data were generated using make_classification with
2000 samples, 20 features, and a severe class imbalance (90% majority, 10%
minority class).

• Noise Injection: Experiments were conducted across multiple label noise lev-
els (0%, 4%, 8%, 16%, 32%) by randomly flipping the labels of a specified
proportion of samples.

• Feature Scaling: All features are standardized using StandardScaler.

• Evaluation Protocol: 5-fold stratified cross-validation is used for all experi-
ments to ensure robustness.

• Advanced Pipeline: Includes noise filtering (GMMNF), synthetic data gener-
ation (CGAN), and noise-aware MLP classifiers.

• Metrics: F1-score, G-Mean, Recall, Precision, and synthetic sample quality
metrics (mean and standard deviation differences).

• Reproducibility: Experiments are repeated with multiple random seeds for
statistical reliability.

• Visualization: Performance and class distribution plots are generated for com-
parative analysis.
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3.3. Minority class protection
The effectiveness of the proposed noise-filtering mechanism is further demonstrated
by its ability to preserve minority class integrity across varying noise levels (Ta-
ble 1, Figure 2). Minority ratios remain near 49% across all noise levels, and at
32% noise, the minority percentage (49.61%) slightly exceeds the original value
(49.04%), reflecting effective synthetic augmentation. Furthermore, minority class
removal remains low, staying below 1.07% (see Figure 3), highlighting the mecha-
nism’s ability to protect rare and critical samples.

Table 1. Performance comparison across noise levels.

Noise Level F1-score G-Mean Global Removal (%) Minority Removal (%)
0% 0.923 0.6416 0.47 0.83
4% 0.9255 0.6442 0.56 0.97
8% 0.9201 0.6187 0.59 0.92
16% 0.9165 0.6002 1.13 1.01
32% 0.9071 0.5434 2.51 1.07

Table 2. Synthetic sample quality metrics for all features.

Noise Level Worst Mean Diff Reported Avg Mean Diff
0% 1.6831 0.2934
4% 1.6506 0.2799
8% 1.5659 0.2926
16% 1.3929 0.2608
32% 1.0977 0.2111

Figure 2. Class distribution before and after noise injection.
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Figure 3. Minority sample removal across noise levels.

Figure 4. Total sample removal across noise levels.

3.4. Regularization and stability
To evaluate the overall stability and performance of our proposed pipeline, we
analyze its internal stabilization techniques, the quality of synthetic samples, and
comparative performance against classical methods. This section presents both
quantitative metrics and key findings across varying noise level.

The pipeline integrates multiple stabilization techniques:

• Gradient Penalty (CGAN): Prevents the discriminator from overfitting.

• Feature Importance Weighting (GMMNF): Guides noise filtering using do-
main-relevant features.

• Spectral Normalization (MLP): Limits parameter magnitudes to improve gen-
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eralization.

Synthetic sample quality. CGAN-generated samples exhibit consistent feature-
space fidelity (Table 2, Figure 3):

• Average Mean Difference: Decreases from 0.2934 (0% noise) to 0.2111 (32%
noise), indicating improved alignment with real data distributions under
higher noise.

• Worst-Case Deviation: Peaks at 1.6831 (0% noise) but remains stable at
1.0977 under 32% noise, demonstrating robustness.

Key findings indicate robust noise handling, minority preservation, and reliable
synthetic sample generation.

• Noise Robustness: The pipeline maintains F1-scores >0.90 across all noise
levels, outperforming SMOTE and cost-sensitive SVM.

• Minority Preservation: Adaptive filtering protects >98.93% of minority sam-
ples, critical for medical applications.

• Synthetic Quality: CGAN-generated samples show 21–29% feature-space de-
viation, comparable to state-of-the-art augmentation.

To ensure a good evaluation, we applied the same dataset, including identical
class imbalance ratios and injected noise levels, to the classical machine learning
pipelines for comparison against our proposed framework. As shown in (see Fig-
ure 5), classical methods such as Random Forest combined with SMOTE-ENN and
SMOTE-Tomek experience a significant decline in performance as noise increases.
Both F1-score and G-Mean deteriorate noticeably, particularly under moderate to
high noise conditions. This degradation highlights their limited ability to han-
dle noisy, imbalanced data, as these methods often propagate mislabeled instances
during oversampling and fail to preserve informative minority samples during noise
filtering.

4. Conclusion
This study introduces a hybrid pipeline combining Gaussian Mixture Model Noise
Filtering (GMMNF), Conditional GAN (CGAN) augmentation, and a Noise-Aware
MLP classifier to address noise and class imbalance in binary classification. Across
five noise levels (0%, 4%, 8%, 16%, 32%), the framework maintains high perfor-
mance, with F1-scores exceeding 0.90 and peaking at 0.9255 at 4% noise level. The
G-Mean also remains stable, with values above 0.54 even at 32% noise, highlight-
ing balanced classification between majority and minority classes. Importantly,
the adaptive filtering mechanism protects more than 98.9% of minority samples,
ensuring that rare and critical instances are preserved. CGAN-based augmentation
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Figure 5. Comparison baseline: Classical resampling approaches
on noisy imbalanced data.

further improves minority representation, while synthetic sample quality metrics
confirm alignment with the true data distribution.

These results indicate that our pipeline not only outperforms conventional re-
sampling approaches such as SMOTE-Tomek and SMOTE-ENN (see Figure 5,
where we can see the deterioration of the performance at the same noise levels),
but also provides a robust alternative for domains where noisy and imbalanced
data are the norm, including medical diagnosis and fraud detection. By combining
adaptive filtering, synthetic augmentation, and noise-aware training, the framework
sets a new benchmark for reliability in imperfect real-world datasets.

A limitation is that while performance is stable up to 32% noise, degradation
is expected at higher levels due to irreducible label uncertainty. In addition, the
computational overhead of CGAN training may constrain deployment in real-time
environments.

Future directions include incorporating semi-supervised learning to leverage un-
labeled data for improved noise estimation, developing lightweight CGAN variants
through knowledge distillation to reduce computational overhead, and validating
synthetic samples in clinical trials to ensure biological fidelity.
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