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Abstract. Multiagent system control is a well-researched area of recent
years, since the cooperation of multiple agents opens up the possibility to
tackle more complicated problems and create finer scaling systems. Team
Coordination on Graphs with Risky Edges has been recently proposed and
provides a framework to model such systems. In this problem, multiple agents
traverse through a graph. Apart from the ordinary nodes and edges, the graph
also contains support nodes, where an agent can choose to support another
agent that is moving through a so-called risky edge, associated with the sup-
port node. Some solutions have already been proposed; however, all of them
assume zero cost of waiting, which is restrictive in many real-world problems.
In this paper, we generalize the problem, allowing non-zero cost of waiting,
make a solution proposal, and present our comprehensive simulation results.
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1. Introduction

Multiagent system control is an increasingly popular research area nowadays. The
reduction of price and size of hardware opened up the possibility of using multiple,
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in some sense simpler agents instead of a single, complex one. This leads to better
scalability and cost-effectiveness. However, the complexity is not avoided, only
moved to a new level, which raises the need for algorithms that are capable of
defining the behavior of multiple agents in order to reach the theoretical optimum
in practice.

One of the core problems of such systems in robotics is the Multiagent Path
Finding [9]. Its main application areas include public transport [1], package deliv-
ery [8] and general formation and swarm control [3]. Previously, most of these ap-
proaches looked at agents merely as obstacles that might make their own decisions,
but mainly they just have to be avoided. The line of research to which we would
like to contribute changes this by the introduction of coordination/cooperation,
which promotes interaction between agents.

The Team Coordination on Graphs with Risky Edges (TCGRE) problem pro-
vides a framework to model multiagent scenarios, where the action of an agent can
reduce the cost of the action of another agent. The agents operate on a weighted
graph, representing points of physical or state space, and each agent’s task is to
traverse from their start nodes to their respective goal nodes, inducing the lowest
possible cost. Some nodes of the graph, called support nodes are associated with
certain edges, called risky edges. If an agent in one of the support nodes chooses,
instead of moving, to support one of the associated risky edges of their current
node, the other agent, that is traveling through that edge in the same time step
can do so for a reduced cost.

An example graph is given in Figure 1. There are two agents, traveling respec-
tively from S1 to G1 and S2 to G2. Support nodes are C1, C2, and C3; the risky
edges are shown in red and the association between them as green dashed arrows.
The cooperation enables the agents to diverge from their individual shortest paths
(marked as orange and yellow) to achieve lower cost through cooperation (blue and
green).

Figure 1. Example of a graph, containing support nodes (C1, C2,

C3) and risky edges (red). While two agents are traveling from

S1 and S2 to G1 and G2, they might stray from their individual

shortest paths (orange and yellow), to cooperate and achieve lower
total cost (blue and green).
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This approach opens up the possibility to develop such robotics solutions, where
the agents are required to operate in a coordinated manner to increase efficiency.
There are, however, crucial limitations of the current TCGRE framework that limit
its practical applicability.

In our opinion, one of the most crucial discrepancies is the fact that the current
formulation cannot assign cost to delay. This shortcoming is evident in the search
and rescue area, but even delivery systems can benefit if it is possible to incorporate
such a metric in the model. Our goal with this paper is to close this gap. We
present an extended formulation of the TCGRE problem that allows the use of non-
zero cost self-loops, which can model the cost of staying still or delay. Previous
methodologies all took advantage of the costless delay, thus we propose a novel
extension to our previously published algorithm [4], and provide proof that it is
able to handle the extended problem.

First, we provide a brief overview of the recent research results around the TC-
GRE problem in Section 2. Then we move on to present our extension proposal in
Section 3, including a formal description and a solution algorithm in Section 4. We
close our paper by presenting the simulation results in Section 5 and summarizing
the completed work in Section 6.

2. Related work

The TCGRE problem has been introduced recently by Limbu et al. [6], along
with a solution outline for a two-agent scenario. Later, Zhou et al. have carried
out a mathematical analysis, proving the NP-hardness of the problem [10], thus
showing that a polynomial time algorithm is not to be expected. However, multiple
solution proposals have already been made, with various tradeoffs between runtime
and optimality. In this chapter, we provide a brief overview of them.

In addition to the NP-hardness proof, three algorithms were introduced in [10].

The Joint state graph (JSG) approach decomposes the problem into a coordi-
nation assignment and route finding part. First, a joint state graph is built, where
each node represents a configuration in the original problem. During this, the op-
timal coordination assignment for the movement between any possible neighbor
configurations can be calculated by an integer linear program. After the construc-
tion of the JSG, the optimal path can be found by any single-agent path finding
method.

The Coordination exhaustive Search (CES) method limits the maximum number
of occurrences for a coordination pair in the solution. This makes an exhaustive
search possible over the robot pairs, coordination pairs, and their ordering, resulting
in an optimal solution for the limited case. In our previous work, we were able to
improve the runtime of this search by precomputing paths between coordination
pairs [5].

The final algorithm of [10] was the Receeding Horizon Optimistic Coordination -
A* (RHOC-A*). This solution builds on top of the JSG, but it is constructed only
up to a limited horizon. This way, the planning is optimal up until the horizon, after
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which the agents plan their path individually, with the assumption that support
will be available on each risky edge.

To scale up the solution for more agents, Limbu et al. also introduced a rein-
forcement learning model [7]. They created a general representation that is able to
take any graph as input, with any support structure, but the cost is an explosion
of model size. They were able to achieve around 80% of the improvement gained
by the optimal solution relative to the agents working independently.

In an effort to compete with the reinforcement learning approach, we developed
a method [4], based on the Ant Colony Optimization (ACO) metaheuristic [2]. We
assigned pheromone values to each possible next action (robot pair, coordination
point assignment) for each relevant actual and goal location pair. Here relevant
locations include initial, goal and coordination nodes of the graph, since between
these each agent follows individually their optimal path. With this representation
we tuned the pheromone values based on the MZN — MAX ACO. Our approach
showed similar results as [7], but with significantly less resource usage.

3. Extension proposal

3.1. Limitation of current model

The TCGRE problem is a new and unique construction that enhances coordination
in multiagent systems. However, the underlying assumptions limit its power to
model practical scenarios.

The most critical one is that self-loops in the graph are always considered
with ¢;; = 0 costs. This essentially means there is no cost to delay, which is
often not the case in practice. Few such examples, which are often brought up
as applications of multiagent systems, are search and rescue operations, deliveries,
and transportation.

This, and the fact that collisions between agents are not considered, are utilized
in each previous solution approach, as this way the problem reduces to selecting
robot pairs, assigning coordination pairs to them, and choosing the order of exe-
cution. It doesn’t have to be considered if multiple agents use the same edge or
node simultaneously, or if one of the cooperating robots has to wait for their mate.
Because of this, a new approach or the significant modification of previous ones is
required to solve the non-zero self-loop TCGRE problem.

3.2. Problem formulation

In this section we give the formal description of the problem to solve. It is similar
to the one proposed in [4], except the self-loops have a constant, non-zero cost. We
give the full formal description, to ease comprehension.

Let G = (V,E) be the graph, on which N homogeneous agents move where
v; € V are the nodes, ¢; ; = (v;,v;) € E, (v;,v;) € E Vo; € V are the edges and
Je; ; € R1Ve; j € E,Ve;; = Cdelay traverse cost. Furthermore let E' C E, ¢;; & E/
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the set of risky edges, ¢;; € Rt Ve; ; € E’ the reduced cost, while support is
available, S C V the support nodes and SPP C S x E’ the association between
support nodes and risky edges, called support pairs. The location of agent n in
timestep ¢ is denoted as [, ;.

The goal is to find a series of actions that leads each agent from their respective
vo,n, initial node to their v, , goal node. These series consist of a € ({s,, | ¢ <n <
n}U{m;; | e;; € E}), where s,, denotes supporting the nth agent and m; ; the
movement from v; to v;, and has to minimize

N T
Ctotal = Z Z C(an,t) (31)

n=1t=1
such that
0 if Gt =5m Vipt =vgn
C(an,t) = éi,j if Qp,t = My 5 AN €i,j € E A Elamt = Sp, (32)
¢;,; otherwise
ln71 :UO,n Vn S {172,7]\7} (33)
Lo = Vg.n Ve {L,2,...,N} (3.4)
my if ln,t =V; = Vg,n
Uy = mi; Slyy=viNe; €EE vn,m,o € {1,2,..., N}, (3.5)
’ (lnty(lmtalmtJrl)) ESP Vt€{1727"~7T}
Sm PN ) ) )
Aot = Sm, T 7& o
lne fant=sm Yn,m e {1,2,...,N},
ln7t+1 - . (36)
vy  ifap=m; vte {1,2,...,T—1}

The cost function (3.1) states that the goal is to minimize the total cost, accumu-
lated over each agent and timestep, by selecting the right actions. The cost of each
action is given by (3.2), being 0 if the agent reached its goal or the action is to
support. This is possible since ours is a global planner, so the cost of support can
be moved to the reduced cost of traverse. If the agent is able to and does receive
support, its movement cost is the reduced travel cost; otherwise, the original.

Equations (3.3)—(3.6) summarize the constraints on selecting the actions. (3.3)
and (3.4) restrict the start and final locations of the agent, where vy, are given
initial, and v, are given goal locations for each agent. The possible actions are
given by (3.5). If the agent has reached its goal location, it must stay there and
cannot take other actions. When this does not apply, the action can select a
movement over an edge from its current location, or support another agent, if that
agent is moving through one of the risky edges, associated with the current location
and is not yet supported. Lastly, the agent’s location is updated according to (3.6).
If a support action is taken, the agent stays put; otherwise, its location is updated
according to the selected movement.
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4. Solution proposal

Now that the task is formally described, we would like to present our solution
proposal. The outline of the algorithm is given in Algorithm 1.

This is a direct extension of the one we published earlier in [4] by including
Cdelay in the cost calculation step. This is achieved by the introduction of the
function L(-), that maps the number of edges in a path of a graph to the path
itself. This way, the additional cost can be calculated as

Cwaiting = Cdelay * |L(p1) - L(p2)|v

where p; and py are the paths, given as a sequence of edges.

The input of the algorithm, using the notation presented in Section 3.2, are the
graph on which the agents move (G), the number of agents (N), the set of risky
edges (E’), the support pairs (SP) and the respective initial and goal nodes (vg 4,
vg,;) for each agent. Additionally, the algorithm can be adjusted by the following
parameters: number of ants (ngnts), selection probability coefficients (a, ) as
in (4.1), pheromone extreme values (Tmin, Tmaz) and the evaporation rate of the
pheromones (p).

The algorithm operates by storing the state of the agents and stochastically
selecting the next action for a single or a pair of agents jointly. We differentiate
between two kinds of actions, the support solution component (SSC) where an agent
pair is selected to cooperate next and the goal solution component (GSC) where a
single agent is selected that goes to its goal directly, without further cooperation.
The pheromones for these actions are stored in T® and TY respectively and are
initialized to 1 in lines 1-2. The best solution is set to an empty list and the cost
to infinity in line 3. To take advantage of the findings in [5], the shortest paths
between nodes that are relevant in action decision are precalculated in line 4.

The main loop constructs ng,,:s number of independent action lists in each cycle.
First, a possible next action is selected with probability

8
TSN
psc = —SClsC_ (4.1)
D rer Ty

where Tg¢c € T*UTY is the pheromone associated with the solution component SC,
7 is a heuristic value, inversely proportional to the cost of the solution component,
and F is the set of feasible solution components based on the state of the agents
(line 11).

If the selected solution component, SolComp is a support solution component,
there is a selected supporter agent r, receiver agent r,., support node vs and risky
edge e, = (Vfrom, Vo) Where vy, o, is the end of the edge where r, would arrive, and
vy is where it would be after the cooperation (line 13). In this case, the shortest
paths from the current location of the agents to their coordination pair can be
extracted from SP (lines 14-15) and the cost of the action list is extended with the
cost of traverse, coordination and delay (line 16). At last, the state of the agents
is updated in line 17.
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If the selected solution component is a goal solution component, then only the
agent going to the goal is selected. The cost only has to be updated by the traverse
cost, and the state update includes deactivating the agent (lines 19-21).

Each independent action list is extended until all agents reach their goals, indi-
cated by having all False values in bgesipe. At the end of a cycle, the best solution
and cost are updated if appropriate, as well as the pheromone values, based on
them (lines 23-30).

The stopping criteria of the iteration may include a limit on the maximum
number of steps or the settling of the best cost value. When this is reached, the
best found solution and its cost are returned in line 31.

5. Results

In this section we present proof that our solution proposal is capable of solving the
novel extension of the TCGRE problem.

Algorithm 1 has been tested on the graph, presented in Figure 2. The edges
of the graph are shown by solid lines, with the costs written over them (including
self-loops). For ease of analysis, all original costs are set to ¢; ; = 1, ¢ # j and
the cost of delay ¢;; = 0.1. Risky edges are presented in red, and each of them
has ¢; ; = 0.5 as reduced costs. The coordination pair assignments are marked by
green dashed lines.

Figure 2. The test graph that we used.

The agents’ initial and goal locations are shown in Table 1. They have been
selected, so multiple cooperations are required for an efficient solution. Since an
optimal algorithm is not yet available, the result has been compared to the indi-
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Algorithm 1: TCGRE-ACO for non-zero self-loops
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Input :G=(V,E), N,E, SP, vg;, vg,:Vi € {1,2,...,N}
Parameter: Nantsy O ﬂv Tmaxy Tmin, P
OUtPUt : SOlbestfsoffara COStbestfsoffar
TS « 1 € RCISPI+Vol)x (2[SP|+|Vo|) x Vol X[V] x[V,]
T9 « 1 € RCISPI+[Vo])x|Vo]
SOlbest—so—fa'r‘ — {}7 OOStbest—so—fa'r‘ <~ 00
SP < ShortestPathFor(G,VoUV,USU {v;,v;|Ve; ; € E'})
while stopping criteria is not reached do
SolCandidates < {{} X ngnts}
CostCandidates < 0 € R™ants
for ign: = 1 to napts do
Vagents < [UO,l vo,2 .- UO,N] y bactive < {T'rue}N
while any(bgctive) do
SolComp < SelectWeighted(G, Vagents: Pactives T, Ty)
if SolComp is Suppoort Solution Component then
(Ts,Tr, Vs, €r = (Ufrom, Vto)) < SolComp
p1 < SP from vagents[rs] to vs
p2 < SP from Vagents[rr] t0 Vrrom
CostCandidates[nants] < CostCandidates[ngnts) + Cost of
p1+ Cost Opr + 67" of er + Cdelay * |L(p1) - L(pQ)‘
L Vagents[rs] <~ Vs, Vagents[rr] — Vto
else
r < SolComp
CostCandidates[ngnts| < CostCandidates[ngnts] + SP from
Vagents[r] to Vg,r
B Vagents|SC.T] <= Vg r, Bactive[SC.1] < False

| append(SolCandidates[iant], SC)

Costpest—now < min(SolCandidates, CostCandidates)

Solpest—now  argmin(SolCandidates, CostCandidates)

if Costpest—now < C0Stpest—so—far then
COStbestfsoffar <~ COStbestfnow

| SOlbestfsoffar — SOlbestfnow

for T T°U T9 do
if 7 € Solpest—so—far then

Lﬂ_ {(1—p)'7+m}

Tmax

Tmin

return SOlbest—so—far; COStbest—so—far
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vidual shortest paths of the agents in order to observe the improvement achieved
through coordinated behavior.

Table 1. Initial and goal nodes of each agent during the tests.

n | Initial node | Goal node
1 0 7
2 0 8
3 0 9
4 4 3

The algorithm has been run on cases N € {2,3,4}, the obtained results are
shown in Table 2 and Figure 3. Parameters ngpts = 100, Tynaz = 5, Tmin = 0, p =
1075, o = B = 1 have been used through a maximum of 1000 iterations. Our results
show that for N = 2, the method is capable of finding the coordination improved
path every time. Resulting paths are shown in Figure 3a (Agent 1: orange, Agent
2: purple). However, for N = 3, the algorithm is much less successful, achieving
only the same value as the non-cooperative case. Increasing the number of ants
t0 Nants = 1000 yielded somewhat better results, but the algorithm wasn’t able to
take full advantage of the cooperation, utilizing a coordination pair only once, while
the 3rd agent moves directly to the goal as seen in Figure 3b (Agent 3: olive). In
case of 4 agents, we weren’t able to summon cooperation by change of parameters.
This is also visible on Figure 3¢ (Agent 4: cyan).

Table 2. Results of the repeated evaluation of Algorithm 1. Co-
operationless movement steps are merged together for brevity.

N ‘ Actions ‘ Chcoop ‘ Ceoop
2 (mo,1,mo,2), (M1,5,M22), (52, M2,8), (M5,7, D) 5 4.6
3 (mo,l,mo,g,mo,g),(m1,5,m2,2,®),(827m2’g,®),(m5’7,®,®) 8 7.6
4 (m0,7,m0,g,m07g,m473) 11 11

A possible reason for the decline of the performance, while increasing the num-
ber of agents, is due to the low selection probability of supporting components
compared to the goal components. This might be addressed with a non-linear
probability density function w.r.t. cost decrease, or adaptive « and S selection.
However, these results show that our proposal is applicable to the TCGRE prob-
lem with non-zero self-loops. Further refinement of the algorithm and parameter
recommendations will be the main goal of our future research work.

6. Conclusion

In this paper, we have presented a novel extension of the TCGRE problem, which
touches on important practical details. We have also proposed a solution algo-
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rithm, developed from our previous ACO-based solution [4], further showing the
importance of this approach.

The capability of the algorithm has been proven by simulation results. We
can state that the method is able to find an action list that reduces the cost of
traversal, compared to the individual solution in the extended case. The number
of agents that is effectively handled is, however, relatively low. We attribute this
to the greediness of the base algorithm.

Based on this, we conclude that this extension of the TCGRE problem can
be handled by the algorithm, and focus our future work on improving the base
algorithm.
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Figure 3. Resulting paths, marked on the graph. Agent 1: orange,
Agent 2: purple, Agent 3: olive, Agent 4: cyan.
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