Annales Mathematicae et Informaticae
61 (2025) pp. 94-107

DOI: 10.33039/ami.2025.10.011

URL: https://ami.uni-eszterhazy.hu

Multi-objective genetic and memetic
algorithms in flexible flowshop scheduling

Levente Aron Fazekas’, Karoly Nehéz"

“Institute of Information Technology, University of Miskolc
levente.fazekas@uni-miskolc.hu
karoly.nehez@uni-miskolc.hu

Abstract. Flowshop scheduling problems are classic examples of schedul-
ing where the objective is to minimize makespan — the total manufacturing
time. Only the processing times required for each operation are considered.
Since the general flowshop problem is NP-hard, multiple heuristic and meta-
heuristic approaches have emerged over the years. Most practical applica-
tions, however, require a much more nuanced approach: multiple — some-
times contradictory — objectives must be considered simultaneously along-
side a plethora of additional constraints. Flexible flowshop problems are an
abstraction of classic flowshops, where each stage can consist of multiple par-
allel machines, referred to as work centres. Commonly, models also have to
consider a broader range of manufacturing restrictions and variables, such
as setup times, machine eligibility restrictions, and due dates. This study
aims to demonstrate the application of genetic and memetic metaheuristic
algorithms on the FFc | sijk, dj, M; | Cmaz, Tmaz, Y, Tj, D_; U flexi-
ble flowshop scheduling problem. It also outlines a dynamic decoding method
for permutation or random key representations to alleviate controllability and
tightness problems during genotype-phenotype conversion. Common genetic
crossover and mutation operations are showcased alongside the simulated an-
nealing local search algorithm to form memetic algorithms. To handle multi-
ple objectives, a modified version of the relative distance method is employed.
The findings are demonstrated via the Taillard benchmark set.

Keywords: genetic algorithm, memetic algorithm, simulated annealing, multi-
objective scheduling, flowshop scheduling.

AMS Subject Classification: 90B35, 90C23

1. Introduction

Flowshop scheduling problems are classic examples of constrained multi-resource
and multi-operation scheduling [12]. Classically, the objective is to minimize make-

Accepted: October 8, 2025
Published online: October 28, 2025

https://doi.org/10.33039/ami.2025.10.011
https://ami.uni-eszterhazy.hu
mailto:levente.fazekas@uni-miskolc.hu
mailto:karoly.nehez@uni-miskolc.hu

Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

span — the total manufacturing time — where only the processing times required
for each operation are considered. Since the general flowshop problem is NP-hard,
multiple heuristic and metaheuristic approaches have emerged over the years. Most
practical applications, however, require a much more nuanced approach: multiple
— sometimes contradictory — objectives must be considered simultaneously along-
side a plethora of additional constraints. Flexible flowshop problems [10, 20] are
an abstraction of classic flowshops, where each stage can consist of multiple par-
allel machines, referred to as work centres. Commonly, models also have to con-
sider a broader range of manufacturing restrictions and variables, such as setup
times, machine eligibility restrictions, and due dates [21, 23]. This study aims to
demonstrate the application of genetic and memetic metaheuristic algorithms on
the FFc | sijk, dj, M; | Craz, Tmaz Ej T;, Ej U; flexible flowshop schedul-
ing problem. It also outlines a dynamic decoding method [29] for permutation or
random key representations [26] to alleviate controllability and tightness problems
during genotype-phenotype conversion. Common genetic crossover and mutation
operations are showcased alongside the simulated annealing local search algorithm
to form memetic algorithms. To handle multiple objectives, a modified version of
the relative distance method [14, 15] is employed as opposed to common weighted
sum or e-constraint methods [2] or non-dominating sorting genetic algorithms [5,
19]. The findings are demonstrated via the Taillard benchmark set [24], where the
original problem has been transformed to accommodate the denoted problem.

Most flexible flowshop studies choose to focus on throughput-related perfor-
mance indicators, such as minimizing makespan or flow time. In particular cases,
throughput may not be the most important or the only objective. In make-to-order
manufacturing, a late order implies a penalty in the form of loss of goodwill, and
the magnitude of the penalty depends on the tardiness of the delivery [20]. In
many circumstances, managing on-time delivery has significance alongside improv-
ing the system’s throughput. Optimizing due-date-related schedule metrics, such
as the number of tardy orders, total tardiness, and maximum lateness, is crucial
for manufacturing firms.

In the literature, algorithms for solving the flexible flowshop problem can be
categorized into exact and heuristic approaches. Exact methods, including math-
ematical programming and branch and bound, create optimal solutions. Due to
the lack of efficient lower bounds, the branch and bound approach is limited to
simple shop configurations. Exact methods require a long time for solving large
instances. Both facts limit the practical application of these methods. A more
practical method is to search for a quasi-optimal solution in a reasonable amount
of time. For this reason, the trend is to solve flexible flowshop problems using
heuristics, especially metaheuristics.

2. Problem formulation

A scheduling problem can be described by a triplet «|S|y notation [23]. The « field
describes a machine environment and usually contains just one entry. The § field

95

Annal. Math. et Inf. L. A. Fazekas, K. Nehéz

details the processing characteristics and constraints of operations. This £ field
may contain multiple, single, or no entries. The ~ field describes the performance
metric or metrics to be minimized.

PUNCHING MACHINE o PUNCHING MACHINE + I

PRESS BRAKE PRESS BRAKE

MANUAL ASSEMBLY
MANUALWELDING

Blanking

MANUAL ASSEMBLY

MANUALWELDING o

KBXS$50-50 Blanking -
: T 9 - 9 KBXS100-150 Blanking
| KBXS75-100
Makesp: L
(a) An example of the first job contin- (b) An example of first machine contin-
gency in the classic flowshop problem. gency in the classic flowshop problem.
Oun s 10 15 0 25 B 3 T 0me
PUNCHING MACHINE e o Saniire PUNCHING MACHINE
Exs100-150 G
oxs75-100
PRESS BRAKE e e Sede PRESS BRAKE
KEXS100-150 Sendg
KXS75-100
MANUAL ASSEMBLY fosemoing e . MANUAL ASSEMBLY
KBXS100-150 Revering
Kexs75-100
MANUAL WELDING oS s H MANUAL WELDING

Welding
KBXS100-150 Welding
KBXS75-100

*
Onours 5 10 15 20 25 30 35 40naurs

Kxsso 50 Kexs100-150
Fiied Fiied
Makespan

(¢) An example of the flow-shop problem.

Figure 1. A classic flowshop problem.

Consider a flowshop F' environment with n jobs and m machines: p;; represent
the processing times. ¢ € {1, 2, ..., m} is the ith machine in the production line,
S;.; is the starting time of job j on machine ¢, C;; is the completion time of job j
on machine 7. A resource can only process one job at a time; therefore, the start
time of the next job must be equal to or greater than the completion time of its
predecessor on the same resource. A job can only be present on one resource at
any given time, meaning that the start time of the same job on the next machine
must be greater than or equal to the completion time of its predecessor operation.

Cji < Sjtr,i
Cji 2 Cjit

1
Cl,i = Zpl,k
k=1

96

Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

j
Cj1= ij,z

=1
Cji = max(Ci—1,5,Ci j-1) + pij

The first scheduled job does not have to wait for other jobs and is available from
the start 577 = 0. The completion time of the first job on the current machine is
always the sum of its previous operations on the preceding machine in the chain and
its processing time on the current machine. Figure la shows how the first sched-
uled job has only one contingency - its operations on previous machines. Jobs on
the first machine are only contingent on jobs on the same resource. Therefore, the
completion time of the job on the first machine is the sum of previously scheduled
jobs plus its own and S;; = C;_1,1. Figure 1b illustrates that the first machine
has only one contingency, and operations can follow without delay. Considering
subsequent jobs on subsequent machines (4,7 > 1), the completion times are con-
tingent on the same job on previous machines and previously scheduled jobs on
the previous machines in the chain. Figure 1c illustrates the solution for a classic
flowshop problem using a Gantt chart.

The classic flowshop problem aims to minimize the completion time of the last
job called the makespan. Therefore, the aim is to minimize the completion time of
the last scheduled machine on the last machine in the manufacturing line:

Cmaz = Cpm — min

2.1. A flexible flowshop example

A flexible flowshop is a generalization of the classic flowshop (Fm) and parallel
machine (Pm) environments. Instead of m machines in series, there are ¢ stages
with several identical machines in parallel. Each job must be processed first at
stage 1, then stage 2, and so on. A stage functions as a bank of parallel machines;
at each stage, job j requires processing on only one machine, and any machine can
do it. The queues between the various stages may or may not operate according
to the First Come First Served (FCFS) principle. In literature, flexible flowshops
have also been referred to as hybrid and multiprocessor flowshops. The following
flexible flowshop problem is presented as an example:

Fre | Si, 5,k dj; Mj | Oma;m Traz, Zij ZUJ
J J

In this paper, we present a problem with identical parallel machines at each
stage (F'F'c), machine eligibility constraints (M;), sequence-dependent setup times
(8i,5,5), due dates (d;), and multiple objective functions. Machine eligibility indi-
cates that not all machines can process any job in a stage due to certain limitations
— this characteristic is significant in the modern industry but rarely considered by
the literature [23].

97

Annal. Math. et Inf. L. A. Fazekas, K. Nehéz

For example, a four-stage flexible flowshop, a sheet metal manufacturing envi-
ronment, is shown. The system consists of four stages: blanking, bending, welding,
and assembling. Metal sheets enter the blanking stage, cutting the raw mate-
rial into two-dimensional parts with a laser cutting machine or punching press.
Then, the parts are transferred to the bending stage to be bent into specific three-
dimensional parts. After bending, the welding and assembling stages take the parts
to a completed - final product - state. In the cutting stage, a laser cutting machine
may not be able to be used for all types of materials. Bending requires specific
tool sets and work ranges, which may rule out specific machines for a particular
part. Figure 2b illustrates such a four-stage flexible flowshop environment and a
possible path in the system as opposed to the classic flowshop example illustrated
in Figure 2a.

2.Bending

Bending
1. Blanking automated cell
Press brake
2.Bending | | pchin
3. Welding
1. Blanking
SN
4. Assembling
3. Welding \
Assembly
Punching Welding e
machine (manual)
4. Assembling
]
A

Assembly

(manual) <]

]

/ (b) A four-stage flexible flowshop with
unrelated machines and machine eligi-
(a) A classic flowshop environment. bility.

Figure 2. Comparison of Fm and FF'c models.

3. Encoding and decoding methods

Encoding is a representation of a solution by a vector of values representing key
decision variables on which an algorithm operates. This vector is often called a
genotype or chromosome in case of genetic algorithms. Most generally, schedules
are represented by each operation’s start and finish times on every corresponding
machine. This view allows for an infinite solution space. Since scheduling often
involves minimizing makespan, flowtime, and lateness, all operations are commonly
started as early as possible. This goal makes the schedule a semi-active schedule
[20], in which no operation can be completed earlier without change the processing
order. In such schedules, the decision variables are reduced to the machine assign-
ment of each operation and the sequence of operations on each machine. A large
encoding scheme in a large-scale solution may result in inefficient searching. Urlings

98

Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

et al. [26] studied different encoding schemes in genetic algorithms and deducted
that more detailed encodings result in worse scheduling performance. For this rea-
son, most use a permutation encoding scheme, where a solution is represented as
a job order s € §,,. Alternatively, random keys can replace direct permutations by
mapping real valued vectors s € [0,1)™ to job orders via sorting.

Decoding derives a schedule (phenotype) from the encoded solution (genotype).
Permutation encoding does not contain all necessary decision variables when con-
structing a flexible flowshop schedule. These missing variables, like machine se-
lection, are determined by heuristics during decoding; for this reason, decoding
methods are crucial to solution quality. The most adopted method is List Schedul-
ing (LS), where jobs are executed in the order given in the encoding on the first
stage and using the first-come-first-served (FCFS) principle on all subsequent ones.
With List Scheduling, the original ordering’s influence on the schedule is diminished
by the FCFS rule through the various stages. This limited influence is known as
the controllability problem. Another widely used method is Permutation Scheduling
(PS), as adopted by Ruiz and Stiitzle [22]. As opposed to List Scheduling, Per-
mutation Scheduling keeps the initial, global ordering for all stages. This method
improves control, making it easier to handle urgent jobs, but it can cause idle time
when stages desynchronize. This inefficiency is called the tightness problem.

Despite their broad application, permutation and list scheduling both have ob-
vious drawbacks. In scheduling, one may want to handle urgent jobs without the
delay caused by synchronization. For this reason, Chunlong et al. [29] utilized per-
mutation encoding and Dynamic Scheduling with first available machine selection
to minimize the total tardiness > ;T while maintaining tightness and controlla-
bility. In Dynamic Scheduling, both the completion time on the previous machine
Cj,i—1 and the global order s are used. When a machine finishes a job, it chooses
from jobs available at that time, but in the order given by the initial order s. This
method combines List Scheduling and Permutation Scheduling by modifying the
machine’s buffer into a priority-queue.

Table 1. A 2-stage scheduling problem.

Job Stage 1 Stage 2 Due
Eligibility Processing time Eligibility = Processing time

1 {Mi1,Mi2} 2 {M2,1} 4 9

2 {My1,M12} 2 {Ma2,1} 3 12

3 {M1’1,M172} 5 {Mg’l} 2 8

Table 1 presents a two-stage flowshop problem as an illustrative example. Sup-
pose the solution is given by the Earliest Due Date (EDD) heuristic, resulting in
the job sequence s = {3, 1,2}. List Scheduling is depicted in Figure 3a. Due to dif-
fering completion times in stage 1, the job order in stage 2 changes to s = {1, 2, 3}.
The resulting performance indicators are: makespan Cp.x = 11, total tardiness
Zj T; = 3, maximum tardiness Tiax = 3, and number of late jobs Zj U; =1
(Job 3). Figure 3b shows the outcome of applying permutation-based scheduling.

99

Annal. Math. et Inf. L. A. Fazekas, K. Nehéz

To maintain the original sequence s across both stages, the start times of Jobs 1
and 2 in stage 2 are delayed. The resulting objective values are: Cha.x = 14,
Zj T; = 4, Timax = 2, and Zj U; = 2. In contrast, Figure 3c illustrates the re-
sult of Dynamic Scheduling. Here, when Job 1 completes stage 1, it immediately
proceeds to stage 2 and is assigned to machine My ;. Later, when M, becomes
available, both Job 2 and Job 3 are waiting. Since Job 2 has higher priority ac-
cording to s, it is selected for processing before Job 3. This dynamic adjustment
achieves the same makespan as List Scheduling, Ci,.x = 11, but crucially, it was
able to uphold Job 2’s priority, eliminating all tardiness: »_ ;T3 =0.

(b) Permutation schedul-
(a) List-scheduling. ing. (¢) Dynamic scheduling.

Figure 3. Different decoding methods.

4. Examined algorithms

This paper focuses on three prominent methods: Simulated Annealing (SA), Ge-
netic Algorithms (GA), and Memetic Algorithms (MA).

Simulated Annealing (SA), introduced by Kirkpatrick et al. [13] and Cerny [3], is
a probabilistic variant of hill climbing that accepts worsening moves with decreasing
probability. Inspired by thermodynamic cooling, it explores a cost landscape via an
inhomogeneous Markov chain. The cooling schedule T'(t) is a monotonic function
impacting convergence quality [16]. For benchmarking, Multiplicative Exponential
cooling was used.

Genetic algorithms are search algorithms that mimic natural selection and ge-
netics [11]. The Swap2, Swap3, Adjacent, Reverse segment, Shift segment, Shuffle
segment mutations were considered. Recombination operators combine parts of
two parent solutions to generate one or more offspring. The following operators
were considered: Order 1 Crossover (OX1) [4, 9], Order 2 Crossover (0X2) [7,
9], Partially Mapped Crossover (PMX) [8, 9], Cycle Crossover (CX) [18], Edge
Recombination Crossover [27].

Selection mechanisms fall into fitness-proportionate (e.g., roulette) and ordinal
(e.g., tournament, truncation) categories [7].

Memetic Algorithms (MA) enhance GAs by integrating local search. Inspired
by Moscato’s model [17], they apply local refinement to globally guided search,
improving both quality and convergence speed [25]. Hybrids with nested SA as
inner search and MA as outer search have demonstrated superior approximation

100

Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

performance [1, 6, 28]. Figures 4a and 4b illustrate the core steps of GA and MA,
respectively.

;Aaéa S

ek

1

(a) Genetic algorithm. (b) Memetic algorithm.

Figure 4. Comparison of memetic and genetic algorithms.

For multi-objective optimization a modified relative distance method was used
[14]. The method utilizes two feasible solutions simultancously and generates a
numeric value based on their relative distances. This value is derived from K
fitness function value pairs, which are compared and scaled. These scaled values are
then multiplied by a weight that signifies an objective’s importance. The resulting
scaled and multiplied values are then summed. The signedness of the sum signifies
dominance or equality.

F:$* >R

k
F(s2,8y) = ZD(sw,sy)
fi(sy)_fi(sz) if max(fi(s (s
Diss,) = max(Fu(aa), fu(sy)) A Al Z0

0 otherwise

Our modified version uses an ideal point f = min{f;(s) : s € P} to derive a
distance for every individual in a population P(S) and sorts them accordingly —
the closer an individual is to the ideal, the better. The D function is also made
to use the total of absolute values of each objective function value. Therefore, our
F:SxP(S) = Rand D: S x P(S) = R can be applied to an entire population.
Equation (4.2) formulates our modified approach as opposed to the original method
detailed in Equation (4.1).

k
F(sy,P) =Y D(sy, P)
i=1

SE=Silse) e (4.2)
D(vap) = |fz*| =+ |fz(8x)| ! |fl | + ‘f1(5$)| #0,
0 otherwise

5. Benchmark sets

The basis of all benchmarks was the dataset published by Taillard [24]. To generate
machine configurations (work centres), constants from the set 1,2, 4 were selected,

101

Annal. Math. et Inf. L. A. Fazekas, K. Nehéz

resulting in two scenarios: a standard case, where all stages have the same number
of machines, and a bottleneck case, where the last stage contains only a single
machine, simulating a bottleneck in the production flow. Notably, when all stages
consist of a single machine, the problem reduces to the classical flowshop variant.

Due dates were generated with a looseness factor [= 1.3, using the upper bound
U B of each problem as a reference. The due date bounds were computed as dj, =
0.75-UB-l and dy, = 1.25-UB-l. Each due date d; was then sampled uniformly as
an integer from the interval [djp, dyp]. Setup times s; ; 1, were generated randomly
as integers in the range [0, 20]. For simplicity, total eligibility was assumed — i.e.,
all jobs are eligible for all machines at every stage.

All random generation was performed using C++’s std::mt19937 pseudo-
random number generator, initialized with the original seed used by Taillard.

6. Results

All mutation, crossover combinations were run on all problems in the 20 job, 5
machine Taillard set (1tai20_5). All algorithms were run 10 times — totaling 8100
runs — with the following parameters:

Table 2. Benchmarking parameters.

Parameter Value
GA generations 1000
MA generations 100
Chromosome count (GA & MA) 20
SA iteration count (MA) 100
SA initial temperature 3000
SA « 0.1

Distance values were calculated similarly to Equation (4.2), using the entire
result set from all algorithms on a specific problem, stage, bottleneck configuration.
Figure 5 clearly shows how memetic algorithms edge out genetic algorithms on
standard benchmarks and Inversion mutation was the operator that benefitted the
most from the introduction of a local search algorithm.

A percentile difference w from the best known solution is also used. The measure
for comparison is the upper bound, the best solution known so far. From the

obtained final makespan Cgg and the upper bound Cy g, a difference is calculated

w = €us=CUB 0.
TableU§ presents the best configurations for Genetic Algorithms (GA) and

Memetic Algorithms (MA) across varying numbers of machines per stage and bot-
tleneck settings. Configurations were selected based on the lowest total distance
from ideal objective values. For each condition, the GA and MA configurations are
compared side by side to highlight their relative performance.

102

Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

(a) Heatmap on the stan- (b) Heatmap on the bottle-
dard case. neck case.

tions | standard case Total distance ranking o cossoves mutaton combinations | otteneck case

G S e

EESERE. Sty
S S

—

CEEEE- S

(c) Ranking slopegraphs for (d) Ranking slopegraphs for
the standard case. the bottleneck case.

Figure 5. Relative distance comparison per mutation, recombina-
tion for each machine count on standard and bottleneck cases.

In the case of one machine per stage without bottlenecking, the Memetic Algo-
rithm using the Inversion/CX combination outperforms its genetic counterpart in
all metrics. It achieves a lower makespan (Ci,qz), reduced total tardiness (3T,
fewer late jobs (> U), and a lower w value, although the genetic configuration
with Shift/OX1 remains competitive with a marginally better total distance. Un-
der the same machine configuration but with a bottleneck present, the Genetic
Algorithm demonstrates superior performance across all evaluated objectives. The
configuration using Shift/Position achieves the best results, with minimal Cy,qz,
tardiness, and late jobs, as well as the lowest w and total distance, indicating GA’s
adaptability in constrained environments at this scale.

With two machines per stage and no bottleneck, both algorithms perform near
optimally. The Genetic Algorithm with the Swap3/OX1 configuration achieves
perfect scheduling, indicated by zero tardiness and no late jobs. The Memetic
Algorithm also reaches optimality with a nearly identical performance, showing
both methods to be equally effective under these conditions.

103

Annal. Math. et Inf. L. A. Fazekas, K. Nehéz

Table 3. Best configurations by total distance per stage.

Alg. M! B? Crmag T YU w F Config?

GA 1 F 1712.82 302.31 3.06 40.70 0.01 Shift/OX1

MA 1 F 1636.28 245.25 2.43 34.23 0.02 Inversion/CX
GA 1 T 1693.31 254.16 2.43 38.76 0.01 Shift/Position
MA 1 7T 1723.82 282.51 3.06 41.50 0.02 Shuffle/CX

GA 2 F 981.94 0.00 0.00 -19.39 0.01 Swap3/0OX1
MA 2 F 985.26 0.00 0.00 -19.18 0.01 Inversion/Position
GA 2 T 1379.80 42.93 0.63 13.05 0.18 Shift/Position
MA 2 T 1389.63 69.48 0.72 13.72 0.19 Shift/OX2

GA 4 F 609.87 0.00 0.00 -49.98 0.01 Shuffle/OX1
MA 4 F 607.59 0.00 0.00 -50.19 0.01 Shuffle/Position
GA 4 T 1356.70 56.88 0.36 10.95 0.39 Shift/OX2

MA 4 T 1377.07 30.60 0.54 12.79 0.40 Swap2/Edge

When a bottleneck is introduced at the same stage count, the Genetic Algorithm
once again proves more robust. Its Shift/Position configuration yields better results
in every objective, outperforming the memetic counterpart and reinforcing GA’s
advantage under more constrained and complex processing.

At four machines per stage with no bottleneck, the Memetic Algorithm takes
the lead. The configuration with Shuffle/Position outperforms GA’s best setup by
achieving slightly better values for C,,.., w, and total distance, suggesting that
memetic search strategies scale more effectively with increased stage parallelism.

Finally, in the most complex case — four machines per stage with a bottleneck
— both algorithms show strengths in different aspects. The Genetic Algorithm
configuration yields a better makespan and fewer late jobs, while the Memetic
Algorithm significantly reduces total tardiness and produces a more favorable w
value. Although the Genetic Algorithm has a marginally better total distance, the
overall results indicate a trade-off between the two strategies depending on the
specific scheduling objective.

These findings suggest that Genetic Algorithms tend to perform better in
low-stage or bottlenecked environments, while Memetic Algorithms excel as sys-
tem complexity increases and resources are less constrained. The mutation and
crossover pairings also play a critical role, with combinations like Shift/Position,
Shuffle/OX1, and Inversion/CX consistently appearing among the top-performing
configurations.

Selection of a parameter set for Memetic Algorithms must also consider the
runtime overhead introduced by the additional local search operation. This creates
a balancing act in CPU time-management between local and global search.

IMachines per stage
2Bottleneck configuration
3Mutation/Crossover

104

Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

7. Conclusion

This study presented a comparative evaluation of Genetic and Memetic Algorithms
for solving flexible flowshop scheduling problems under varying machine stage
counts and bottleneck conditions. The results indicate that Genetic Algorithms
tend to perform better in constrained environments, especially when bottlenecks
are present or stage counts are low, while Memetic Algorithms show superior scal-
ability and robustness as the degree of parallelism increases. The evaluation across
multiple objective functions — makespan, total tardiness, number of late jobs, and
an aggregate w metric — highlighted the importance of pairing crossover and mu-
tation operators effectively with the problem structure.

8. Future research

These findings are compelling and provides ample room for future research. Fu-
ture work will explore several extensions of this study, including integrating both
fine-grained and coarse-grained parallel algorithms to reduce runtime and improve
scalability. Adding realistic constraints such as setup times, machine eligibility, and
maintenance. Combining metaheuristics with Constraint Programming could offer
better feasibility guarantees. Using neural networks to guide job and machine selec-
tion within metaheuristics, enabling adaptive scheduling policies. Extending with
algorithms to explore trade-offs between makespan, tardiness, and other objectives.

References

[1] A. AcArpi, K. NEHEZ, O. HORNYAK, L. T. K6czy: A Hybrid Discrete Bacterial Memetic
Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem,
Symmetry 13.7 (2021), p. 1131, poI: 10.3390/sym13071131.

[2] S. AGHAKHANI, M. S. RAJABL: A new hybrid multi-objective scheduling model for hierarchical
hub and flexible flow shop problems, AppliedMath 2.4 (2022), pp. 721-737, DOI: 10.3390/ap
pliedmath2040043.

[3] V. CERNY: Thermodynamical approach to the traveling salesman problem: An efficient sim-
ulation algorithm, Journal of optimization theory and applications 45 (1985), pp. 41-51, poI:
10.1007/BF00940812.

[4] L. Davis ET AL.: Applying adaptive algorithms to epistatic domains. In: IJCAI, vol. 85,
Citeseer, 1985, pp. 162—-164, 1SBN: 0934613028.

[5] K. DEB, M. EHRGOTT: On Generalized Dominance Structures for Multi-Objective Opti-
mization, Mathematical and Computational Applications 28.5 (2023), 1sSN: 2297-8747, DOI:
10.3390/mca28050100, URL: https://www.mdpi.com/2297-8747/28/5/100.

[6] L. Fazekas, B. TU0-SzaBO, L. T. Kéczy, O. HORNYAK, K. NEHEZ: A Hybrid Discrete
Memetic Algorithm for Solving Flow-Shop Scheduling Problems, Algorithms 16.9 (2023),
ISSN: 1999-4893, DOI: 10.3390/a16090406, URL: https://www.mdpi.com/1999-4893/16/9/40
6.

[7] D. E. GOLDBERG, B. KORrB, K. DEB: Messy genetic algorithms: Motivation, analysis, and
first results, Complex systems 3.5 (1989), pp. 493-530, 1SsN: 0891-2513.

105

https://doi.org/10.3390/sym13071131
https://doi.org/10.3390/appliedmath2040043
https://doi.org/10.3390/appliedmath2040043
https://doi.org/10.1007/BF00940812
https://doi.org/10.3390/mca28050100
https://www.mdpi.com/2297-8747/28/5/100
https://doi.org/10.3390/a16090406
https://www.mdpi.com/1999-4893/16/9/406
https://www.mdpi.com/1999-4893/16/9/406

Annal. Math. et Inf. L. A. Fazekas, K. Nehéz

[8] D. E. GOLDBERG, R. LINGLE JR: Alleles, Loci, and the Traveling Salesman Problem, in:
Proceedings of the 1st International Conference on Genetic Algorithms, 1985, pp. 154-159,
DOI: 10.4324/9781315799674.

[9] Y. GuaN, Y. CHEN, Z. GAN, Z. Zou, W. DiNG, H. Zuang, Y. Liu, C. OUYANG: Hybrid
flow-shop scheduling in collaborative manufacturing with a multi-crossover-operator genetic
algorithm, Journal of Industrial Information Integration 36 (2023), p. 100514, 1SSN: 2452-
414X, por: 10.1016/j.jii.2023.100514, URL: https://www.sciencedirect.com/science/a
rticle/pii/S2452414X23000870.

[10] J. N. GuPTA, S. K. GUPTA: Single facility scheduling with nonlinear processing times, Com-
puters & Industrial Engineering 14.4 (1988), pp. 387—393, 1ssN: 0360-8352, DOI: 10.1016/03
60-8352(88)90041-1, URL: https://www.sciencedirect.com/science/article/pii/036083
5288900411.

[11] J. H. HOLLAND: Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence, MIT press, 1992, 1SBN: 9780262275552,
DOI: 10.7551/mitpress/1090.001.0001.

[12] S. M. JOHNSON: Optimal two-and three-stage production schedules with setup times included,
Naval research logistics quarterly 1.1 (1954), pp. 61-68, DOI: 10.1002/nav.3800010110.

[13] S. KIRKPATRICK, C. D. GELATT JrR, M. P. VECCHI: Optimization by simulated annealing,
science 220.4598 (1983), pp. 671-680, DOI: 10.1126/science.220.4598.671.

[14] G. KULCSAR, F. ERDELYI: A new approach to solve multi-objective scheduling and reschedul-
ing tasks, International Journal of Computational Intelligence Research 3.4 (2007), pp. 343—
351.

[15] K. MrHALY, G. KULCSAR: A New Many-Objective Hybrid Method to Solve Scheduling Prob-
lems, International Journal of Industrial Engineering and Management 14.4 (2023), pp. 326—
335, DOI: 10.24867/IJIEM-2023-4-342.

[16] J. Miuiczki, L. FazEkAs: Comparison of Cooling Strategies in Simulated Annealing Al-
goithms for Flow-shop Scheduling, Production Systems and Information Engineering 10.3
(2022), pp. 129-136, DOI: 10.32968/psaie.2022.3.10.

[17] P. MoscATO: On evolution, search, optimization, genetic algorithms and martial arts: to-
wards memetic algorithms, Technical Report, Caltech Concurrent Computation Program
Report 826, (1989).

[18] I. M. OLIVER, D. J. SmitH, J. R. C. HOLLAND: A study of permutation crossover opera-
tors on the traveling salesman problem, in: Proceedings of the Second International Con-
ference on Genetic Algorithms on Genetic Algorithms and Their Application, Cambridge,
Massachusetts, USA: L. Erlbaum Associates Inc., 1987, pp. 224-230, 1SBN: 0805801588.

[19] A. Opmis, D.-C. DaNG, F. NEUMANN, D. SUDHOLT: Runtime Analyses of NSGA-III on
Many-Objective Problems, in: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’24, Melbourne, VIC, Australia: Association for Computing Machinery,
2024, pp. 1596-1604, 1SBN: 9798400704949, DOI: 10.1145/3638529.3654218.

[20] M. L. PINEDO: Scheduling, Theory, Algorithms, and Systems, 6th ed., Springer Cham, 2022,
ISBN: 9783031059216, DOI: 10.1007/978-3-031-05921-6.

[21] I. RiBAs, R. LEISTEN, J. M. FRAMINAN: Review and classification of hybrid flow shop schedul-
ing problems from a production system and a solutions procedure perspective, Computers &
Operations Research 37.8 (2010), Operations Research and Data Mining in Biological Sys-
tems, pp. 1439-1454, 1SSN: 0305-0548, DOI: 10.1016/j.cor.2009.11.001, URL: https://wuw
.sciencedirect.com/science/article/pii/S0305054809002883.

[22] R. Ruiz, T. STUTZLE: A simple and effective iterated greedy algorithm for the permuta-
tion flowshop scheduling problem, European Journal of Operational Research 177.3 (2007),
pp- 2033-2049, 1ssN: 0377-2217, DOI: 10.1016/j.ejor.2005.12.009, URL: https://wuw.scie
ncedirect.com/science/article/pii/S0377221705008507.

106

https://doi.org/10.4324/9781315799674
https://doi.org/10.1016/j.jii.2023.100514
https://www.sciencedirect.com/science/article/pii/S2452414X23000870
https://www.sciencedirect.com/science/article/pii/S2452414X23000870
https://doi.org/10.1016/0360-8352(88)90041-1
https://doi.org/10.1016/0360-8352(88)90041-1
https://www.sciencedirect.com/science/article/pii/0360835288900411
https://www.sciencedirect.com/science/article/pii/0360835288900411
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.24867/IJIEM-2023-4-342
https://doi.org/10.32968/psaie.2022.3.10
https://doi.org/10.1145/3638529.3654218
https://doi.org/10.1007/978-3-031-05921-6
https://doi.org/10.1016/j.cor.2009.11.001
https://www.sciencedirect.com/science/article/pii/S0305054809002883
https://www.sciencedirect.com/science/article/pii/S0305054809002883
https://doi.org/10.1016/j.ejor.2005.12.009
https://www.sciencedirect.com/science/article/pii/S0377221705008507
https://www.sciencedirect.com/science/article/pii/S0377221705008507

Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

23]

[24]

(25]

[26]

27]

28]

29]

R. Ruiz, J. A. VAZQUEZ-RODRIGUEZ: The hybrid flow shop scheduling problem, European
Journal of Operational Research 205.1 (2010), pp. 1-18, 1SsN: 0377-2217, DOI: 10.1016/j.ej
or.2009.09.024, URL: https://www.sciencedirect.com/science/article/pii/S037722170
9006390.

E. TAILLARD: Benchmarks for basic scheduling problems, European Journal of Operational
Research 64.2 (1993), Project Management anf Scheduling, pp. 278-285, 1ssN: 0377-2217,
DOI: 10.1016/0377-2217(93)90182-M, URL: https://www.sciencedirect.com/science/arti
cle/pii/037722179390182M.

B. T0-SzaBO, P. FOLDESI, L. T. Kéczy: An efficient evolutionary metaheuristic for the
traveling repairman (minimum latency) problem, International Journal of Computational
Intelligence Systems 13.1 (2020), pp. 781-793, DOI: 10.2991/ijcis.d.200529.001.

T. UrLINGS, R. Ruiz, F. S. SERIFOGLU: Genetic algorithms with different representation
schemes for complex hybrid flexible flow line problems, International Journal of Metaheuris-
tics 1.1 (2010), pp. 30-54, DOI: 10.1504/IJMHeur.2010.033122.

L. D. WHITLEY, T. STARKWEATHER, D. FUQUAY: Scheduling Problems and Traveling Sales-
men: The Genetic Edge Recombination Operator, in: Proceedings of the 3rd International
Conference on Genetic Algorithms, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1989, pp. 133-140, 1SBN: 1558600663.

A. J. WILsON, D. PALLAVI, M. RAMACHANDRAN, S. CHINNASAMY, S. SOWMIYA: A review
on memetic algorithms and its developments, Electrical and Automation Engineering 1.1
(2022), pp. 7-12, DOL: 10.46632/eae/1/1/2.

C. Yu, Q. SEMERARO, A. MATTA: A genetic algorithm for the hybrid flow shop scheduling
with unrelated machines and machine eligibility, Computers & Operations Research 100
(2018), pp. 211-229, 1SsN: 0305-0548, DOI: 10.1016/j.cor.2018.07.025, URL: https://www
.sciencedirect.com/science/article/pii/S030505481830217X.

107

https://doi.org/10.1016/j.ejor.2009.09.024
https://doi.org/10.1016/j.ejor.2009.09.024
https://www.sciencedirect.com/science/article/pii/S0377221709006390
https://www.sciencedirect.com/science/article/pii/S0377221709006390
https://doi.org/10.1016/0377-2217(93)90182-M
https://www.sciencedirect.com/science/article/pii/037722179390182M
https://www.sciencedirect.com/science/article/pii/037722179390182M
https://doi.org/10.2991/ijcis.d.200529.001
https://doi.org/10.1504/IJMHeur.2010.033122
https://doi.org/10.46632/eae/1/1/2
https://doi.org/10.1016/j.cor.2018.07.025
https://www.sciencedirect.com/science/article/pii/S030505481830217X
https://www.sciencedirect.com/science/article/pii/S030505481830217X

