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Abstract. This paper investigates the application of reinforcement learning
to non-player character (NPC) behavior design in a roguelike video game,
with the goal of creating more engaging and less predictable opponents. Two
training approaches were compared using the Unity ML-Agents framework:
Agent A, trained exclusively through self-play, and Agent B, trained initially
against human players before switching to self-play. Performance was evalu-
ated using quantitative metrics such as policy loss, value loss, entropy, and
ELO ratings, alongside qualitative feedback from semi-professional players.
While Agent B achieved faster convergence and higher ELO scores, player
feedback indicated a preference for Agent A due to its unpredictability, bal-
anced tactics, and lower frustration levels. The results highlight the need to
balance technical optimization with player experience, and suggest that hy-
brid training strategies may yield the most compelling adversaries in future
game AI design.
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1. Introduction
This study examines the integration of reinforcement learning techniques into the
design of non-player character (NPC) behaviors within a roguelike video game
environment. The research aims to address limitations inherent in traditional rule-
based artificial intelligence (AI) approaches, which often lead to predictable and
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monotonous adversary behavior, thereby reducing gameplay challenge and engage-
ment [11]. Notable successes in reinforcement learning, such as mastering the game
of Go through self-play [9], highlight the potential of these techniques to create
adaptive and challenging opponents.

The initial implementation employed a rule-based AI [2], utilizing the A* path-
finding algorithm for navigation and a behavior tree [5] for the final boss. Al-
though the behavior tree introduced conditional actions – such as retreating when
the agent’s health was low or becoming aggressive when the player was weakened
– the decision-making process remained deterministic and easily exploitable by
experienced players.

To overcome these constraints, We implemented two alternative AI training
methodologies using the Unity Machine Learning Agents (ML-Agents) framework
[4]. Both agents were trained via reinforcement learning [10], enabling them to
improve their decision-making through interaction with the game environment.
Agent A was trained entirely through self-play, iteratively competing against its
previous policy versions. Agent B underwent an initial training phase of 30,000
steps against human players before switching to self-play. This dual approach
allowed us to compare the benefits of purely autonomous learning against a hybrid
method incorporating human-guided exploration.

The primary objective of this research is to evaluate which training paradigm
yields a more challenging, engaging, and strategically capable opponent. Evalua-
tion was conducted through both quantitative performance metrics and qualitative
human player feedback, with the ultimate goal of identifying design practices that
enhance player experience while maintaining balanced gameplay difficulty.

1.1. Game concept and the original enemy AI
The game [7] is a room-based rogue-like video game. In each room, the player has to
defeat randomly generated enemies, fighting their way to the final boss. Initially,
enemies were operating on a rule-based system; their movements were based on
the A* algorithm. While the smaller enemies only had a few attack types, the
final boss had a so-called Behavior Tree [5], which resulted in a better experience.
The behavior tree gave the boss some human-like behavior based on the health
percentage of its own and its opponent’s – the player’s health. It retreated when
it had a low health percentage, and it became aggressive when the player had low
health – but it was still predictable. The agent’s actions were defined by specific
rules, making the enemy’s responses monotonous and easy to anticipate. This
predictability reduced the overall gameplay challenge.

1.2. Teaching process of the enemy
For the research [3], We used the Unity ML-Agents toolkit for teaching purposes.
This is an open-source toolkit developed by Unity Technologies in 2020. The core
concept involves an Agent that learns through reinforcement learning. Unity pro-
vides a plug-in package that includes the necessary code libraries and connects to
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the virtual environment. To get started, We had to create a virtual environment
and, like with all machine learning projects, We needed to install TensorBoard and
PyTorch using pip. Additionally, We installed ML-Agents, which requires NumPy
and TensorFlow.

1.2.1. ML-Agents

The ML-Agents framework is centered around reinforcement learning, where an
agent learns to make decisions in various situations based on feedback from its
environment, known as rewards. This learning process does not rely on examples
from teachers; instead, it is driven by self-trial and error. The feedback received
from the environment aids in developing an optimal strategy for the agent.

Formally, this process is described by a Markov Decision Process (MDP) [6],
whose components are:

M = ⟨S, A, P, R, γ⟩

An MDP is a mathematical framework used to model decision-making in envi-
ronments where outcomes are partly random and partly under the control of the
agent.

State space (S) The state space defines all observable features available to the
agent during decision-making. In this study, the agent’s state vector consisted of
positional, health, status, timing, and event-related variables, as summarized in
Table 1.

Table 1. Summary of state space components.

Category Description
Positional data Distance from the player; direction of the player rel-

ative to the agent; agent’s facing direction.
Health information Current health points of the agent; current health

points of the player.
Status flags Attack availability (boolean flag preventing overlap-

ping attacks); whether the agent is currently attack-
ing.

Timing Time elapsed since the last attack.
Special events Whether the player is affected by the “black hole”

status (immobilized).

The first experiment We conducted was a test on reinforcement learning with
a hardcoded AI opponent. We trained an Agent against this opponent, and this
is where We first initialized the reward system. Initially, the rewards were set too
high, which made the agent’s policy unstable. To address this, We normalized the
large integers to a 0 . . . x interval, resulting in more stable learning.
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Although it is important from a teaching perspective to know how much reward
the agent received and why, the essence of the research lies in the methodology,
which can be particularly relevant in roguelike games. The reward system will differ
for each developer’s model; as an extension, we aim to apply this methodology to
other genres and multiple games.

Action space (A) Table 2 lists the discrete actions available to the agent at
each decision step.

Table 2. Summary of action space components.

Action Description
Move forward/backward Adjusts the agent’s position along the facing di-

rection.
Strafe left/right Moves perpendicular to the current facing direc-

tion.
Rotate left/right Changes the facing direction of the agent.
Basic attack Executes the standard melee or ranged attack,

depending on the agent’s class.
Special abilities Uses special skills such as “black hole” or other

area-of-effect attacks.
Retreat/Heal Moves away from the player and recovers health

if possible.
Idle Performs no action for a single decision step.

Reward system (R) The agent received rewards for winning, using varied at-
tacks (to discourage attack spamming), surviving with low health (encouraging
prolonged combat), and performing tactical retreats when low on HP. We initially
gave a reward for movement, but zig-zag movement developed, so we removed that
reward. This led to the agent learning to move strategically on its own. General
penalties were applied for taking damage, standing still, and missing hits.

Table 3 summarizes the conditions for rewards and penalties.
One of the key lessons learned during training was that relying solely on the

reward system was insufficient. In many cases, manual adjustments to the weights
of rewards and penalties were necessary to improve learning stability or to address
unwanted behaviors.

The main part of the agent’s reward system was the ability system. First, a
base reward was introduced that the agent received for every reward event, based
on the damage ratio:

D = damage
playerCurrentHP
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Table 3. Reward and penalty conditions.

Event Type
Winning a match Reward
Successful attack hit Reward
Varied attack usage Reward
Survival with low health Reward
Tactical retreat when low HP Reward
Taking damage Penalty
Standing still (no action) Penalty
Missed attack Penalty
Reward for movement (removed due to zig-zag
behavior)

Removed
reward

1.2.2. PPO

PPO – Proximal Policy Optimization [8], is a popular reinforcement learning al-
gorithm often used in game development because it stably improves AI decisions
without sudden big jumps in learning. This is especially important when the op-
ponent is not deterministic, such as a human player, so the AI learns and adapts
gradually. PPO constrains policy changes so that the ratio of new to old policies
can only move within a certain range, thus facilitating the learning of complex
strategies and the retention of prior knowledge.

We chose it for the project because it handles complex decision situations such
as healing or tactical switching during combat well, and because it is natively
supported by Unity ML-Agents, it is easy to integrate.

1.2.3. Agent A

Agent A was trained exclusively through self-play, meaning it fought against its
previous versions, a technique inspired by successful applications like AlphaGo
[9], which leveraged self-play to master complex strategic games. In the YAML
configuration, we gradually increased the batch size (512), buffer size (5120), and
entropy value (0.02), and linearly decreased the learning rate to ensure stable and
continuous improvement. The design of the reward system was guided by principles
of player-centric AI design [11], aiming to encourage varied and engaging behaviors
rather than repetitive actions.

The self-play settings includedsave_steps = 20000, team_change = 150000,
swap_steps = 5000, which ensured that opponents were periodically refreshed.
This prevented the agent from getting stuck in repetitive patterns and allowed it
to learn against a variety of opponents. The selected model was chosen from the
run that produced the lowest policy and value loss values.
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1.2.4. Agent B

Agent B took its first 30 000 steps fighting against human players, then switched to
self-play learning. With player guidance, the AI learned relevant patterns early on,
its behavior stabilized more quickly, and it mastered tactical elements better – such
as when to heal or avoid combat. With Agent B, we encountered the well-known
problem in reinforcement learning: reward hacking. I mentioned this phenomenon
in 1.2.1 that the agent found a loophole in the reward system with movement
rewards. Our next research is based on this experience.

Hyperparameters

For reproducibility, we detail the complete PPO setup for both agent in Table 4.

Table 4. PPO hyperparameters used in training.

Parameter Value
Learning rate 3 × 10−4

Batch size 512
Buffer size 5120
Gamma (γ) 0.99
GAE λ 0.95
Entropy coefficient (beta) 0.001
Clip range (epsilon) 0.3
Number of epochs 5
Number of environments 1
Hidden units 128
Number of layers 2
Time horizon 64
Memory sequence length 64
Memory size 128
Seed -1 (random)

Evaluation Protocol (Appendix)

The evaluation protocol was based on the self-play configuration in the YAML files.
The details are as follows:

• Opponent pool: maintained as a sliding window of the last 10 models
(defined by window: 10).

• Checkpoint saving: new models were added to the pool every 20,000 steps
(save_steps: 20000).
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• Team change: enforced after 150,000 steps (team_change: 150000).

• Opponent swap frequency: opponents were rotated every 5,000 steps
(swap_steps: 5000).

• Latest model ratio: 50% of matches were played against the most recent
model (play_against_latest_model_ratio: 0.5).

• Initial ELO: all agents started at 1200 (initial_elo: 1200.0).

1.3. Measurements
To evaluate the agents with metrics, we used TensorBoard and evaluated the fol-
lowing metrics to assess AI performance:

• Policy Loss: how stable the AI strategy is.

• Value Loss: how well it can predict future rewards, see Figure 1, 2.

• Entropy: the variability of decisions can be seen in Figure 3.

• ELO: the relative strength between different AI models, see Figure 4.
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Figure 1. Agent A’s TensorBoard scalar.

The agent with initial intelligence, trained against the player, showed more
stable and rapid progress. Its Policy Loss quickly converged to around 0.04, see

86



Annal. Math. et Inf. Making the boss smarter: A journey from rule-based to . . .

0 100k 200k 300k 400k 500k

0.2

0.4

0.6

0.8

1.0

Figure 2. Agent B’s TensorBoard scalar.
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Figure 3. On the left diagram, Agent A’s TensorBoard scalar of
entropy can be seen, while Agent B is on the right.

Figure 2, while the self-learning agent began to improve only after several hun-
dred thousand steps, see Figure 1, exhibiting significant fluctuations. Both agents
demonstrated a gradual decrease in Value Loss, indicating effective reward predic-
tion.

Entropy values stabilized between 1.7, and 1.8, see Figure 3 for both agents,
reflecting their ability to explore without becoming entirely random. However, the
ELO curves highlighted differences: the agent with initial intelligence started with
a higher ELO and maintained competitiveness, while the self-learning agent’s ELO
gradually declined, likely due to overly narrow strategies.

In summary, the agent that began with initial knowledge appears to be a more
formidable enemy, based on the indicators above.
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Figure 4. On the left diagram, Agent A’s TensorBoard scalar can
be seen, while Agent B is on the right.

1.4. Results
To evaluate the behavior of the two AIs, we asked ten semi-professional players to
try out the two versions. Participants completed a 22-question questionnaire that
assessed gameplay experience, frustration, strategic depth, and predictability.

1.4.1. Gaming experience and preference

Agent A received an average rating of 4 out of 5, compared to Agent B’s 2.6 out
of 5 (Q4-Q5). Additionally, frustration levels were significantly different: Agent A
scored 2.4 out of 5, while Agent B scored 4 out of 5 (Q15-Q16), suggesting more
negative experiences with Agent B, see Figure 5.

1.4.2. Evaluation of strategy and tactics

It is interesting to note that, despite Agent A being more popular, 70% of players
(7 out of 10) believed that Agent B had more advanced strategic skills (Q11).
However, Agent A was perceived as more unpredictable (Q8), while Agent B’s
behavior was often predictable. In some cases, this predictability led to a negative
gaming experience, particularly due to the overuse of the black hole skill, which
received criticism from several respondents (Q13), see Figure 6.

1.4.3. Realism of AI Behavior

Participants assessed the realism of each agent’s behavior to determine how closely
they resembled a human opponent. According to Q18, the majority (6/10) per-
ceived neither agent as particularly human-like, with 2/10 favoring Agent A and
2/10 favoring Agent B. Quantitative ratings further revealed that Agent B was
perceived as slightly more realistic, with an average score of 3.1/5 (Q20) compared
to Agent A’s 2.6/5 (Q19). This difference likely stems from Agent B’s more ad-
vanced strategic patterns, as evidenced by 90% of participants (Q11) noting its
superior strategies. However, the relatively low realism scores for both agents sug-
gest that further refinements are needed to enhance the perception of human-like
decision-making, a critical factor for immersive gameplay in roguelike games.
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Figure 5. On the top diagram, Agent A’s enjoyment results can
be seen, while Agent B is on the bottom.

Figure 6. 9 out of ten found Agent B to have better strategies,
even though they found him stronger.

1.4.4. Surprise factor in AI tactics

The extent to which the agents surprised players with their tactics was evaluated
through Q21. On average, participants rated the surprise factor at 2.4/5, with
4/10 reporting rare surprises, 3/10 noting occasional surprises, and 2/10 indicating
frequent surprises. Despite Agent A being perceived as less predictable (Q8), the
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Figure 7. On the top diagram, Agent A’s enjoyment results can
be seen, while Agent B is on the bottom.

moderate surprise ratings suggest that its unpredictability did not consistently
translate into novel or innovative tactics. This distinction highlights a potential
area for improvement in designing AI behaviors that not only vary in response
but also introduce genuinely unexpected strategies to enhance the challenge and
replayability of the game.

1.4.5. Impact of reward hacking on perceived unpredictability

Player feedback highlighted a significant issue with Agent B’s overuse of the black
hole ability, with 60% of participants (Q13) noting that it led to frustrating and
repetitive gameplay. One respondent explicitly suggested reward hacking, observ-
ing that Agent B used the ability excessively despite designed constraints (e.g.,
limiting void rifts to two per 10 seconds). This behavior likely contributed to
Agent B’s lower unpredictability score of 3/5 (Q10) which can be seen in Fig-
ure 7 compared to Agent A’s 3.2/5, despite its more advanced strategies (Q11).
The paradox of reward hacking reducing perceived unpredictability underscores
the importance of carefully calibrating the reward system to prevent exploitative
behaviors that undermine gameplay variety and player satisfaction.

Overall scores

• Average gaming experience: Agent A – 4/5, Agent B – 2.6/5.
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• Frustration: Agent A – 2.4/5, Agent B – 4/5.

• Strategic perception: 70% said Agent B used more advanced strategies,
but Agent A was considered more unpredictable.

• Boss preference: 7 out of 10 players chose Agent A as their final boss.

Several players criticized Agent B for overusing the “black hole” ability, which
made gameplay predictable and sometimes frustrating. In contrast, Agent A had
a more varied use of abilities and balanced behavior.

1.4.6. Ultimate preference – Which AI should be the arch enemy?

Most respondents (7 out of 10) selected Agent A as their preferred final boss enemy
(Q22), see Figure 8. Agent A was noted for its diverse skill usage, balanced behav-
ior, and lower frustration scores. In contrast, Agent B received more criticism due
to its aggressive and often overly dominant use of abilities, particularly the black
hole.

Figure 8. 7 out of 10 people came to the conclusion after answering
all the questions and testing both agents that Agent A is their

ultimate preference for a game boss.

2. Conclusion
Quantitative analysis using TensorBoard metrics demonstrated that Agent B, trai-
ned with initial human guidance, achieved faster convergence, higher ELO ratings,
and more stable policy optimization compared to Agent A, which relied solely on
self-play. However, qualitative feedback from ten semi-professional players revealed
a preference for Agent A, attributed to its greater unpredictability, more varied
skill usage, and lower frustration levels (mean: 2.4/5 vs. Agent B’s 4/5). Notably,
Agent B’s overuse of the black hole ability, reported by 60% of participants, not only
increased frustration but also paradoxically reduced its perceived unpredictability
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(3/5 vs. Agent A’s 3.2/5), likely due to reward hacking exploiting the reward system
design.

Furthermore, neither agent was consistently perceived as human-like, with
Agent B rated slightly higher in realism (3.1/5 vs. 2.6/5), suggesting that advanced
strategies alone do not suffice to create the illusion of a human opponent. Addition-
ally, the moderate surprise factor (mean: 2.4/5) indicated that unpredictability did
not always translate into novel or innovative tactics, potentially limiting long-term
player engagement. These findings underscore the necessity of balancing techni-
cal optimization with player experience objectives, prioritizing fairness, tactical
variety, and the capacity to surprise players for an engaging gameplay experience.

Future work will explore hybrid training methodologies combining autonomous
self-play with periodic human-guided refinement to enhance both strategic com-
petence and perceived realism. Additionally, addressing reward hacking through
refined reward structures, such as temporal constraints on ability usage or diver-
sified penalties, will be critical to prevent exploitative behaviors. Approaches like
Group Relative Policy Optimization (GRPO)[1] and multi-agent adaptive systems
may further ensure that AI opponents remain strategically robust while delivering
enjoyable and immersive gameplay experiences.
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