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Abstract. This paper presents some key outcomes of the European project
AiRobo, a collaborative initiative involving five universities from Romania,
Germany, Greece, Hungary, and France. This is an educational project tar-
geting higher education students, academic staff, and industry professionals.
This paper presents four real-world Al-based robotic applications designed
to serve as engaging teaching support materials, particularly for theoreti-
cal courses that students often find challenging to grasp. These practical
applications are designed to bridge the gap between theory and practice,
simplifying complex concepts and making them more accessible. They also
aim to enhance the learning and teaching process, making it more engaging,
motivating, and appealing for both students and academic staff. We present
four real-world Al-based robotic applications: two applications integrating
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ChatGPT in Pepper and NAO robots are designed to serve as learning as-
sistants for students, and two applications (one with the simulation of an
agriculture robot in Unity and an Al-based underwater robot controller) are
designed to serve as engaging teaching materials on Al-related subjects, but
also for theoretical courses that students often find challenging to grasp. For
each application, we outline its scope, model, and implementation code. In
addition, the implementation code will be openly accessible in the final ver-
sion of the paper, enabling academic staff and researchers to easily use and
adapt these case studies for their own educational or research tasks.

Keywords: Artificial Intelligence, robotics, higher education

AMS Subject Classification: 68T40 Artificial intelligence for robotics

1. Introduction

Robots are indispensable across industries, from manufacturing and agriculture to
research and healthcare, with AT further expanding their capabilities. Improving
the quality of education in related areas is important for the development of these
technologies and of the society in general. In education, applications as demon-
strators and illustrators are of utmost importance, but are rarely available.

In this paper, we present four applications we developed that may be useful
for researchers and teachers in subjects related to artificial intelligence, robotics,
and formal verification (for example: computational and mathematical logic, auto-
mated theorem proving, algorithm synthesis and mathematical theory exploration,
modeling and certifying algorithms, verification of hybrid systems, satisfiability
checking, machine learning, etc.), as well as serving as learning assistants for stu-
dents. The first two applications are Al-enabled robots to personalize learning and
serve as teaching assistants, enhancing academic outcomes. Two further applica-
tions are Al-controlled robots that can serve as educative case studies, for example
in machine learning, or for teaching formal methods to ensure safety and reliability.

Robots as student assistants. Al and robotics may enhance students’ cogni-
tive abilities through brain-computer interfaces (BCIs) [16-18]. Social robots [8]
have the potential to actively engage students and enrich their learning experi-
ence. For instance, chatbots can interact through text or voice using Al [23, 30]. A
comprehensive literature review for the use of Al in education is [32], which also
reviews the use of robots [21].

As a first application, in Section 2 we describe the Pepper robot [28], which
offers significant potential for improving student engagement, particularly in lan-
guage acquisition [2, 9]. ChatGPT has been used in education [11], as well as in
robotics applications [31]. The study [27] examines how integrating large language
models (LLMs), such as Google PaLM2 and ChatGPT, into the Pepper robot,
in conjunction with Reinforcement Learning with Human Feedback (RLHF), can
enhance the robot’s natural language processing (NLP) capabilities.
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Our second application presented in Section 3 is a NAO storyteller. The NAO
robot [29] can serve as an interactive teaching assistant [15], interactive storyteller
[10], catalyst for teamwork [33], and others [7].

Robots as use cases. There is not much material available to support teaching
in subjects related to Al-based robotics. Some loosely related research on the
importance of logic in higher education [24] and on teaching applied formal methods
[25] both address the verification of cyber-physical systems.

To provide further support, in Section 4 we present a plant-watering robot ap-
plication. There are very few tutorials or educational material available in the field
of agricultural robotics. For instance, [13] compares Gazebo and Unity for digital
twin simulation in the field of agriculture, and [19] describes a robotic application
using IoT (Internet of Things) for the intelligent watering of plants. Addressing
agricultural harvesting, [12] describes a pneumatic gripper for robotic use inspired
by gecko’s foot and human finger.

Our last application, presented in Section 5, is an autonomous underwater ve-
hicle. It can be used to illustrate, e.g., data gathering and processing, machine
learning, simulation, testing, and formal verification.

2. Student assistance: Pepper with ChatGPT

Use case. The integration of Al assistants into classrooms has opened new pos-
sibilities for student engagement, comprehension, and skill development. However,
many learners struggle with using Al-powered tools effectively due to a lack of
context or familiarity. We programmed the Pepper robot as an interactive learning
assistant, designed to support students in their academic journey, while fostering
an understanding of Al-driven tools like ChatGPT.

Methodology. When Pepper detects human presence, it introduces itself and
offers assistance to the user. It invites them to ask questions and provides relevant
support. If the user provides sufficient context for ChatGPT to confidently gener-
ate a clear and accurate response, Pepper reads out the answer and congratulates
the user. However, if the input lacks context, Pepper prompts the user to rephrase
their question with more details to ensure a more precise and meaningful response.
Thus Pepper assists by demonstrating how Al can be a valuable educational re-
source, explaining its strengths and limitations, while guiding students to frame
their queries for better responses.

Implementation. Executing applications on Pepper requires certain workarounds
due to the limitations of its underlying software. Pepper runs on NAOqi 2.5, an
outdated framework that supports only Python 2.7, which introduces constraints,
particularly in multi-lingual environments due to long-standing issues with Python
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2.7. This creates challenges when integrating modern AI models such as Chat-
GPT. To enable ChatGPT functionality on Pepper, an external proxy for Chat-
GPT requests is required to handle requests and process responses efficiently for
ChatGPT to function on Pepper’s hardware. Pepper’s Automatic Speech Recogni-
tion (ASR) system has inherent limitations, particularly with free-text input and
multilingual speech, which led us to employ an external transcription service. In
our implementation we used Google’s Cloud Speech-to-Text API, selected for its
higher recognition accuracy, stable latency (about 1-1.5 seconds in classroom use),
and straightforward integration with the Python proxy service. An audio stream of
student questions were transmitted to the API for transcription; to address privacy
and data protection concerns, no personal identifiers were included in the record-
ings, access was limited to authorized users, and API usage was logged for auditing.
This transcription is then forwarded to the ChatGPT API, where the response is
generated externally and relayed back to Pepper for delivery to the student.

These adjustments ensure that Pepper can assist students despite its software
constraints.

The source code for the robot is openly accessible at: https://github.c
om/KostasPapadopoulosUOM/AiRobo/tree/main/PepperAIAssistant. Our
implementation requires a ChatGPT API Key. The end user will need to create
an OpenAl account and then generate an API key. The API key is required to
be placed at the following path: /data/home/nao/chatgpt.key. An external ASR
engine is also required due to the before mentioned limitation. In this case Google’s
Transcription APT is used, which requires an additional Google API key with the
Cloud Speech-to-Text API enabled. The end user will need to place the API Key
in /data/home/nao/googleapi.key.

Teaching. A significant challenge in Al-assisted education is ensuring that stu-
dents develop critical thinking skills and understand the importance of context in
learning. Pepper facilitates discussions that encourage students to ask meaningful
questions and refine their approach when using Al tools. By doing so, it ensures
that students do not rely on Al blindly but instead use it as a complementary tool
to their own reasoning and problem-solving abilities.

3. Student assistance: Nao storyteller

Use case. We further leverage the NAO robot’s capabilities to create a dynamic
learning experience that fosters curiosity and engagement among students. By in-
tegrating Al-driven storytelling and vision recognition, we aim to enhance students’
understanding of both robotics and Al in an interactive manner.

Methodology. The NAO robot operates using its autonomous life mode, allow-
ing it to exhibit human-like behaviors such as looking around, adjusting its posture,
and responding naturally to stimuli. These features help to create a more immer-
sive and interactive experience for students. The key components of our methodol-
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ogy include computer vision, Al-generated storytelling, and embodied interaction
through gestures and speech. Additionally, we employ text-to-speech technology
to ensure the robot delivers narratives in a clear and expressive manner, and au-
tomatic speech recognition to allow students to interact with the robot through
spoken commands, further bolstering engagement.

Implementation. The NAO robot was programmed with the following func-
tionalities. (i) Face Detection: the robot identifies and acknowledges the pres-
ence of students, creating a more personalized interaction. (ii) Vision Recog-
nition: using its onboard camera, NAO recognizes images it has been trained
on. In this study, we employed cubes featuring images of ancient Greek gods.
(iii) Storytelling via AI: upon recognizing an image, the robot queries an Al
system to generate a humorous story about the identified Greek god. It then
reads the story aloud while performing subtle movements to maintain engage-
ment. The source code for this application is publicly available at: https:
//github.com/KostasPapadopoulosUOM/AiRobo/tree/main/NAO_Cube_Game.

This implementation requires a ChatGPT API key. To obtain one, the end
user must create an OpenAl account and generate an API key. The key should
be stored at the following path: /data/home/nao/chatgpt.key. This configuration
allows the NAO robot to interact with ChatGPT for generating educational content
and storytelling responses.

Teaching. The primary objective of this project was to introduce students to Al
and robotics in an engaging and interactive manner. By incorporating storytelling
and physical interaction, the students were encouraged to explore Al capabilities
while learning about ancient mythology. Observations suggest that the robot’s
interactive features improved student participation and interest.

4. Robots as use cases: Agriculture robot

Use case. In this section we present our plant-watering robot, whose control
is specified by the state machine depicted on Figure 1. The robot starts at its
charging station, where it recharges and refills its water tank before navigating to
water flowers at predefined locations. It encounters obstacles, classified as living
(e.g., animals) and non-living (e.g., rocks); and attempts to navigate around them.
If avoidance is impossible, it requests external assistance. When battery or water
levels are low, the robot returns to the charging station; if it depletes its energy
before reaching the station, it also requests help. To simplify the state machine, we
have a special state, called ALL_STATES, which describes the common behavior
of each state. We used the hardware platform SCOUT MINI [1], equipped with
GPS, a compass, two LiDAR sensors (front and rear), and a velocity sensor.

Methodology. The robot’s navigation relies on reinforcement learning (RL),
where the agent optimizes movement through action rewards, using the Proxi-
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Figure 1. Finite state machine of the plant-watering robot.

mal Policy Optimization (PPO) algorithm. The hyperparameters used for the
algorithm and training can be seen in Table 1. The observation space is an 11-
dimensional continuous vector representing the robot’s state. It includes the an-
gular difference between the robot’s orientation and the target vector, normalized
o [—1,1]. The linear velocity of the robot, also normalized to [—1,1]. The dis-
tance between the robot and the target, normalized by the initial distance at the
beginning of each episode to a range of [0,1]. There are two LiDAR sensors on
the robot. The forward facing sensor covers a 180°, from —90° to 90° relative to
the robot’s heading. It is divided into 4 equal sections, and the minimum reading
is taken in each section. The process is mirrored for the rear sensor, resulting in
a total of eight distance readings, each normalized to [0,1]. The action space is a
2-dimensional continuous vector, defining the rover’s linear and angular velocity,
each component normalized to [—1, 1].

The reward function is designed to guide the agent towards its target while
avoiding obstacles. More formally, the reward R; at each timestep ¢ is defined as:

+200 if di < €target  (goal reached)
R —200 if collision occurs
t =
—150 if t > Thax  (timeout)

10 - (di—1 — d¢) otherwise
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Table 1. List of hyperparameters.

Hyperparameter Value

Algorithm Parameters

Number of epochs 8
Batch size 1024
Discount () 0.99
GAE parameter (\) 0.95
PPO clip range (¢) 0.2
Critic Loss Coefficient 0.5
Network Architecture
Number of hidden layers 2
Hidden layer size 128
Hidden Layer Activation ReLU
Actor Output Activation Tanh
Optimizer algorithm Adam
Training parameters
Initial learning rate 3e-4
Learning rate decay linear decay
Learning rate decay frequency (in episodes) 250
Minimum learning rate le-8
Standard deviation of selected actions 1

Here, d; is the distance to the target at timestep ¢, €;arget is the success threshold
distance set to 0.1 meters, and Ti,,x is the maximum episode length, set to 1500
steps. A penalty is applied immediately upon any collision. The term (d;—1 — d;)
provides a reward for moving closer to the target and a penalty for moving away
in non-terminal states.

To enhance training, we apply curriculum learning [22], gradually increasing
task complexity. RL agents often struggle with generalization. To address this,
elements of the training environment are randomized.

The first stage involves point-to-point navigation. Here, the environment is a 10x 10
meter plane. For each episode, the position of the target and the starting pose of
the robot are randomly selected within this area. During this phase, the RL agent
only uses the relative heading, velocity and distance to the target as observations.
The training continues until 90 out of the last 100 episodes are successful.

The second stage introduces obstacles in the form of walls, to teach avoidance
behavior. These walls are parallel to the direct path to the target and are positioned
to form a 1.5-meter-wide corridor. The length of each wall is randomized for each
episode, ranging from 0.1 to 15 meters. Here, the agent uses the full observation
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vector including LiDAR data.
The final stage is a randomly generated but static garden resembling real-world
conditions. The walls are replaced by randomly placed flowers. There is a moving
dog to test the agent’s robustness to changing conditions. It is used to evaluate
the RL agent’s behavior in a previously unseen and more realistic setting.
Catastrophic forgetting [14] is another challenge, where learning a new task
degrades previously learned behaviors. This is mitigated by periodically revisiting
earlier tasks, ensuring stable performance across different environments. Specifi-
cally, during the second stage, the environment alternates between the first and
second stage every 100 episodes.

Implementation. The system consists of a Unity-based simulation and a Python
module for RL training and testing. Running the simulation requires installing
Unity. The final implementation is publicly available at https://github.com/c
sokapeter/Agricultural-Robot.

Teaching. This project serves as an educational tool for reinforcement learning
and robotics. Students gain hands-on experience with RL-based navigation, dig-
ital sensor integration in Unity, and training methodologies. It allows them to
experiment with reward functions, agent parameters, and real-world deployment
challenges. Additionally, it highlights hardware limitations and safety considera-
tions when transferring trained agents from simulation to physical robots.

5. Robots as use cases: Underwater robot controller

Use case. Autonomous underwater vehicles (AUVs) provide a promising tech-
nique to perform underwater exploration missions autonomously [4, 5]. To success-
fully operate in an uncertain, a priori unknown environment, a rule-based algorithm
proposed in [20] relies on specific sensor measurements — such as depth, altitude
and forward distance — to estimate the steepness of the seafloor (), allowing the
robot to adjust its pitch (8) accordingly (see Figure 2). Using these sensor values,
bottom tracking maintains the distance to the seafloor as constant as possible, to
increase the reliability of sensor data gathering, and obstacle avoidance recognizes
rocks, walls etc. to avoid collisions.

While this method performs reasonably well in smooth environments, it is highly
sensitive to noise, and it requires highly complex code, making it difficult to debug
and maintain. To address these limitations, in [3] the authors propose an alternative
Al-based controller to overcome these challenges.

Methodology. The Al-based controller [3] utilizes a neural network, which uses
the observed sensor values within some time window to issue control commands
within a long short-term memory (LSTM) architecture (see Figure 2). These con-
trol commands adjust the pitch of the AUV, facilitating bottom tracking with more
efficient obstacle avoidance (less braking) and better robustness.
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Figure 2. Left: Illustration from [20] for the rule-based obstacle
avoidance method. Right: The LSTM controller system architec-
ture.

A key challenge of [3], is the lack of labeled data for the training. To address this,
the authors used sensor data of logs from previously executed real world missions,
and employed signal processing techniques for labeling each timestamp. Further
improvements were achieved through online re-training using a simulator, and the
employment of a simplex architecture [6, 26] to revert to the rule-based method
in case the Al-based control would not prevent a collision. The controller was de-
ployed on an AUV of OceanScan MST and two real world surveys were conducted.
These demonstrated that the Al-based controller produced better efficiency (i.e.,
shorter mission time, less battery usage), while maintaining safety (no collisions)
throughout the mission.

Implementation. The code implementation, the trained neural network in ONNX
format, and further instructions on how to setup and use the simulator with the
neural network controller is openly accessible at: https://github.com/antalla
sz1lo011/improved-AUV-obstacle-avoidance.

Teaching. This application can be used to illustrate the development of Al-
based controllers, including the preparation of training data, the training and re-
training of neural networks, knowledge distillation, and the embedding of Al-based
controllers in a simplex architecture for fall-safe functioning. Besides simulation
and testing, formal methods can be applied to assess the reliability and safety of
the AUV behavior.

6. Conclusions
In this paper we presented four real-world, Al-based robotic applications specifi-

cally designed to enhance the learning experience for students. These applications
not only serve as interactive assistants, making the learning process more engaging,
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but also provide practical solutions for complex theoretical courses that students
often struggle with, helping them grasp challenging concepts more effectively. A
key contribution of this work is the free availability of the application implementa-
tions, empowering academic staff and researchers to seamlessly integrate or adapt
these resources into their own teaching or research activities.

As future work, the authors consider: Integrating various generative Al en-
gines, such as DeepSeek, which offers the advantage of self-hosting at no cost; In-
corporating alternative transcription engines with a focus on self-hosted solutions,
potentially leveraging OpenAI’s Whisper model, as well as evaluating different de-
ployment strategies and optimizing model performance for real-time transcription
in educational contexts; Implementing additional sensors in the agricultural robot
simulation to better reflect real-world conditions and allow students to experiment
with different configurations of the robot.
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