Annales Mathematicae et Informaticae
61 (2025) pp. 55-67

DOI: 10.33039/ami.2025.10.021

URL: https://ami.uni-eszterhazy.hu

Using GNN for refactoring P4 programs®

Benedek Szabolcs Csiillog, Maté Tejfel

Eo6tvos Lorand University Budapest, ELTE
benedek.csullog@gmail.com
matej@Qcaesar.elte.hu

Abstract. P4 [2] is a domain specific language for programming the data
plane of network devices in a protocol independent manner. To analyze and
transform Programming Protocol Independent Packet Processors (P4) pro-
grams, we use P4Query[5], a tool that performs both syntactic and semantic
analyses and represents P4 source code as abstract syntax trees (ASTs) in
the form of directed graphs. In this paper, we explore how Graph Neural
Networks (GNNs) can be applied to these graph structured ASTs to learn
high-level code transformations. We introduce and evaluate three models: a
variable renamer that learns to propagate identifier changes across the AST,
a parameter reorderer that predicts function argument permutations, and a
detector for semantically empty else branches. These tasks demonstrate the
effectiveness of GNNs in understanding and transforming P4 code structures.
Such models can support code optimization and standardization efforts by
automating repetitive or error-prone transformations in P4 programs.

Keywords: P4, P4Query, GNN, networks

1. Introduction

The rapid evolution of computer networks has led to the increasing complexity of
network protocols and the need for flexible, programmable solutions. The Pro-
gramming Protocol Independent Packet Processors (P4) [2] language has emerged
as a powerful tool for defining how packets are processed in network devices. it
follows the Software Defined Networking (SDN) approach, so it allows develop-
ers to specify the behavior of the data plane independently of the control plane.
Unlike traditional programming languages, P4 mainly focuses on the data plane

*This research was supported by the project no. FK_ 21 138949 from the National Research
Development and Innovation Fund of Hungary.

Accepted: October 20, 2025
Published online: October 28, 2025

https://doi.org/10.33039/ami.2025.10.021
https://ami.uni-eszterhazy.hu
mailto:benedek.csullog@gmail.com
mailto:matej@caesar.elte.hu

Annal. Math. et Inf. B. Sz. Csiillég, M. Tejfel

and makes it fully programmable, enabling more dynamic and adaptable network
configurations.

As the use of P4 grows, so does the necessity for effective analysis and refactoring
tools that can assist developers in optimizing their code. The P4Query [5] tool
provides a robust framework for static analysis of P4 programs, generating abstract
syntax trees (ASTs) [3] that represent the structure of the code. These ASTs
serve as a foundation for various analyses and transformations, facilitating the
identification of potential improvements and refactoring opportunities.

In recent years, Graph Neural Networks (GNNs) [9] have gained prominence in
the field of machine learning, particularly for tasks involving graph structured data.
By leveraging the inherent relationships within graphs, GNNs can learn to predict
node attributes, modify graph structures, and uncover hidden patterns. This paper
explores the integration of GNNs with P4Query generated ASTs to enhance the
refactoring process of P4 programs. By training GNN models on these syntax trees,
we aim to develop a system that can intelligently suggest modifications, thereby
improving code quality and maintainability.

GNNs operate on graph structured data, where the input consists of a set of
nodes and edges that define the relationships between those nodes. Each node is
typically associated with a feature vector that encodes relevant information about
that node. During the training process, GNNs utilize a message passing mecha-
nism, where nodes exchange information with their neighbors iteratively. In each
iteration, a node aggregates the features of its neighboring nodes, allowing it to
update its own feature vector based on the collective information from its local
neighborhood.

This process enables GNNs to capture both local and global structural patterns
within the graph. After several iterations of message passing, the updated node
features can be used for various tasks, such as node classification, link prediction,
or graph classification. Ultimately, GNNs modify the input feature representations
by learning to emphasize important relationships and patterns within the graph,
leading to improved performance on tasks that require an understanding of complex
relational data.

The P4 programming language is widely used for describing packet processing
logic in programmable network devices. Due to its domain specific nature and
structural richness [4], refactoring P4 programs presents unique challenges that
cannot be effectively addressed with traditional string based or token based meth-
ods.

Our goal is to design a refactoring pipeline that learns from examples, general-
izes across P4 code bases, and ultimately provides maintainability and performance
improvements. In this paper, we focus on the graph representation learning task
and training process.

In summary, this research seeks to bridge the gap between advanced machine
learning techniques and the practical needs of network programming, contributing
to the development of more efficient and reliable network applications.

The practical value of these models lies in their ability to enable standard-

56

Annal. Math. et Inf. Using GNN for refactoring P4 programs

ization across large P4 codebases, ensure consistency in naming conventions, and
reduce manual effort in code cleanup. These improvements directly support better
performance, maintainability, and reduce potential bugs in programmable network
configurations.

2. Background and related works

The P4Query static analysis framework is centered around an extensible internal
graph representation where the results of the different static analysis methods are
also stored as part of the graph. The information in the knowledge graph is ac-
cessed using graph queries written in the Gremlin [7] query language. In this way,
the framework guarantees a unique standard representation both for the stored
data and for the data access mechanism. P4 programs can naturally be repre-
sented as abstract syntax trees (ASTs), which are directed graphs generated by the
framework. The framework can also be used to implement P4 specific refactoring
steps [8].

Figure 1 presents a simple P4 control declaration alongside its corresponding
abstract syntax tree (AST). On the left, the P4 code defines a control block that
assigns the Addr parameter to the dstAddr field. On the right, the simplified AST
captures the structure of the program as a directed graph, including all relevant
nodes, edges, and key node attributes such as nodeld, class, and value. The
class attribute specifies the type of the node; if the class is TerminalNodeImpl,
then the value attribute contains a string literal that appears explicitly in the
original P4 source code.

Graph Neural Networks (GNN) are designed to work with graph data struc-
tures. GNNs learn graph level representations by iteratively aggregating informa-
tion from neighboring nodes. The machine learning models try to modify the node
attributes or the structure of the graph. The outputs are the modified graph data
structures.

Code2Vec [1] is a framework that learns continuous feature representations for
nodes in a graph. In the context of abstract syntax trees, the authors transformed
the nodes of the syntax tree into vector representations. This allows machine
learning models to capture the structural and semantic properties of the programs
represented by the trees. By leveraging these vector representations, the model can
effectively recognize and classify specific programs based on their syntax trees.

Code2Vec accomplished this by training models capable of recognizing well-
known algorithms, such as sorting, searching, or counting — across multiple pro-
gramming languages, including Java, C++ and Python. This approach involves
generating a syntax tree from the source code, which is then analyzed by the
trained model to identify the underlying algorithm. After the analysis, the model
also provides a probability score for its prediction.

One notable example of applying Graph Neural Networks to program code anal-
ysis is Devign [10], in which the authors construct a code property graph (CPG)
by merging Abstract Syntax Trees (AST), Control Flow Graphs (CFG), and Data

57

Annal. Math. et Inf.

B. Sz. Csiillég, M. Tejfel

contol setDstAddr(Addr) {

dstAddr := Addr;

}

nodeld : 2

class : FunctionNameContext

v

nodeld : 3

class : NameContext

nodeld * 6

class - ParameterContext

v

nodeld : 7

class : NameContext

nodeld -0

class - DeclarationContext

v

nodeld - 1

class - ControlDeclarationContext

nodeld : 10
class - ControlBoddyContext
nodeld - 11

class : StatementContext

v

nodeld : 12

class : AssignmentStatementContext

v/_/gv

+ * nodeld ° 13 nodeld - 16
nodeld : 4 nodeld - 8 class : NameContext class : ExpressionContext
class : TypeOrldContext class : TypeOridContext + +
+ + nodeld ° 14 nodeld - 17
nodeld : 5 nodeld : 9 class - TypeOrldContext class : NameContext
class : TerminalNodelmpl class : TerminalNodelmpl * *
nodeld : 15 nodeld - 18
value : SetDstAddr value : Addr
class - TerminalNodelmpl class - TypeOrldContext
value - dstAddr *
nodeld - 19

class - TerminalNodelmpl

value - Addr

Figure 1. P4 function implementation and its AST.

Flow Graphs (DFG) into a single rich representation. The model — built upon
a Gated Graph Neural Network — learns comprehensive program semantics from
these graphs to identify security vulnerabilities in real world C code. In empir-
ical evaluations on large open source projects, Devign significantly outperformed
previous state-of-the-art vulnerability detection methods, improving accuracy by
over 10% and F1 score by approximately 8-9%. This work exemplifies how merging
multiple program structure views and leveraging GNNs enables robust, semantics
aware analyses, and inspires similar approaches in tasks like variable renaming or
parameter reordering in P4 ASTs.

A closely related work is the paper titled P4 Specific Refactoring Steps [8], which
introduces a set of rule based refactoring operations specifically tailored for P4 pro-
grams. The approach is built on the P4Query framework, utilizing its syntactic
and semantic graph based representations to perform transformations on abstract
syntax trees (ASTs). These refactorings include table splitting, merging, and exe-

58

Annal. Math. et Inf. Using GNN for refactoring P4 programs

cution reordering, all governed by static analysis and predefined preconditions to
ensure semantic correctness. While this method is based on manually designed
transformations, our work extends this line of research by applying machine learn-
ing — specifically Graph Neural Networks — to automatically learn transformation
patterns from data. This enables a shift from rigid, rule based systems toward
adaptive, data driven refactoring strategies that generalize across diverse P4 pro-
grams.

3. Methodology

3.1. Graph construction from P4 programs

To obtain structured representations of P4 programs, we rely on P4Query, a com-
prehensive analysis tool that extracts detailed abstract syntax trees (ASTs) and
other intermediate structures from P4 source code. The tool uses the official P4
language protocol to generate a standardized and richly annotated AST, which is
interpreted as a large directed graph. The AST’s structure is defined by the syn-
tactic rules of the language, and its edges encode diverse semantic relations; for
instance, control flow and data flow dependencies.

Each node in the graph has several attributes that capture both syntactic and
positional information. These include a unique nodeId, a line attribute indicating
the location in the source code, begin and end fields that mark the span of the
syntactic construct, a type field (e.g., TerminalNodeImpl), and, in the case of
terminal nodes, a value representing the literal content. When preparing this
graph for training a Graph Neural Network (GNN), we encode only the type and
value attributes (if present) to create initial node feature vectors. This selective
encoding strikes a balance between expressiveness and efficiency, allowing the model
to focus on meaningful structural relationships while leveraging the inductive bias
of the syntax driven graph topology.

3.2. Training of the GNN

To train our Graph Neural Network (GNN) models, we first generated several dif-
ferent P4 abstract syntax trees (ASTs) using P4Query. Each AST is treated as
a directed graph, representing the dataset. As described earlier, each node’s at-
tributes have to be auto encoded using its type and (if available) value attributes,
producing a lightweight yet expressive node feature representation suitable for neu-
ral processing.

During the training procedure each epoch, the GNN is presented with a modified
version of a graph and tasked with reconstructing the original structure. During
the first epoch, the full graph is shown to the model, establishing a baseline un-
derstanding of the node representations and their connectivity. From the second
epoch onward, we progressively apply structured degradation to the input graphs.
Initially, we remove only terminal nodes (i.e., nodes of type TerminalNodeImpl),

59

Annal. Math. et Inf. B. Sz. Csiillég, M. Tejfel

which are typically leaves of the AST. In later stages, the removal process tar-
gets increasingly complex subgraphs, thereby challenging the model to infer more
abstract syntactic patterns.

Importantly, the complexity of the removed subgraphs increases exponentially
as training progresses. That is, in each subsequent training phase, the size and
structural depth of the deleted subgraphs grow according to an exponential sched-
ule. For example, while early stages may remove only isolated leaf nodes or shallow
branches, later phases may eliminate entire nested control structures, such as if
else blocks, loops, or parameter lists. This exponential degradation ensures a cur-
riculum style learning process in which the model first learns to reconstruct simple
local patterns, and only later faces the challenge of recovering deeply structured
and semantically rich fragments of the AST.

The goal of this curriculum style training is to gradually force the model to
internalize deeper compositional structures in the input graphs. By learning to
predict missing parts of the AST across a variety of P4 programs, the GNN develops
a generalizable representation of the language’s syntactic structure. Throughout
training, the model is evaluated based on its reconstruction accuracy, which reflects
how well it can recover node identities and their connections.

Using this training strategy, we developed three distinct GNN models, each
targeting a specific code transformation or analysis task: a variable renamer, a
parameter reorderer, and an empty else block detector. Although these mod-
els share the same underlying graph based training framework, each addresses a
different aspect of code semantics.

These tasks were carefully selected to reflect realistic challenges in network code
development. By automating variable renaming, argument ordering, and dead code
detection, the models target areas where inconsistency and redundancy frequently
arise in practice. Their utility lies not only in code transformation, but also in
establishing and enforcing coding conventions across diverse teams and projects.

3.3. Variable renamer

The Variable Renamer model is trained to recognize and rename variables across
abstract syntax trees (see an example in Listing 1). It is implemented as a two layer
Graph Neural Network (GNN), which performs node classification over the AST
graph. Each node is represented by a simple feature vector encoding whether it is
a terminal node and whether it contains a value. The model learns to predict the
original value attribute of TerminalNodeImpl nodes based on their surrounding
context.

Listing 1. Renaming variables in P4 source code.

header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;

60

Annal. Math. et Inf. Using GNN for refactoring P4 programs

header ethernet_t {
macAddr_t destinationAddr;
macAddr_t sourceAddr;
bit<16> ethernetType;

}

During training, graphs are labeled by the original variable names of terminal
nodes, which serve as supervision targets. Once trained, the model takes as input
a complete AST graph and a variable name, and it modifies the value attribute
of all relevant nodes to a new name. This allows for consistent refactoring, such as
renaming egress_spec to egress_specific across all its occurrences in the graph.
After 20 epochs of training, the model successfully learned the graph structure and
renaming patterns by leveraging structural differences between input graphs.

The renaming decision is not based solely on the textual value of a node, but
also on its structural context. This enables the model to generalize and identify
semantically equivalent nodes in different programs, even when local syntax varies.
The GNN’s message passing mechanism allows it to aggregate information from
neighboring nodes, making the renaming behavior robust and context aware.

3.4. Parameter reorderer

The Parameter Reorderer model is designed to learn the correct ordering of function
parameters in P4 programs. Listing 2 shows an example of the transformation.
Unlike the Variable Renamer, this model is not a traditional GNN architecture.
Instead, it uses a learned embedding layer in combination with a small feed forward
neural network to predict the target position of each parameter.

The training is performed using pairs of AST graphs: one representing the
original parameter order, and one representing the desired (reordered) form. Each
parameter is represented by its subtree in the AST, and the model learns to assign a
position score to each based on its embedded identity. The loss function minimizes
the mean squared error between the predicted positions and the ground truth
permutation derived from the reordered graph. The model required 100 epochs of
training to learn the parameter reordering logic from structural graph differences.

Once trained, the model receives a new AST and infers a new permutation of the
parameters. It then rewrites the structure of the graph accordingly, updating the
‘start’ and ‘end’ positions of the affected nodes and regenerating comma separators
where needed. This results in a syntactically valid AST that reflects the learned
parameter order.

Listing 2. Reordering P4 function’s parameter order.

control MyDeparser (packet_out packet, in headers hdr) {
apply {
packet.emit (hdr.ethernet);
packet.emit (hdr.ipv4d);

61

Annal. Math. et Inf. B. Sz. Csiillég, M. Tejfel

}

control MyDeparser (in headers hdr, packet_out packet) {
apply {
packet.emit (hdr.ethernet);
packet.emit (hdr.ipv4);

The model’s ability to operate directly on AST node embeddings without re-
quiring handcrafted rules — enables flexible reordering strategies and supports the
standardization of function signatures across large codebases.

3.5. Empty Else Block Detector

The Empty Else Block Detector is a binary classification model built to detect
empty else branches (for example, those shown in Listing 3) in P4 program ASTs.
It is implemented as a two layer GNN, trained to classify specific nodes labeled as
else into two categories: empty or nonempty.

The model is trained on a dataset of P4 ASTs, where each graph is automatically
labeled using a rule based search for syntactically empty else branches. During
preprocessing, only nodes with the literal value "else" are included in the training
set, and are labeled according to whether they lead to an empty block in the AST.
Each node is encoded using a pair of categorical features: the class of the node
(e.g., TerminalNodeImpl, StatementContext) and the textual value (if present).
The model was trained for 100 epochs to capture the subtle structural patterns
associated with empty else branches.

The GNN learns to classify these else nodes based on their surrounding context
in the AST. Its performance is measured via accuracy on the classification task.
Once trained, the model can analyze unseen ASTs and assign a confidence score to
each else branch, indicating whether it is likely to be empty.

This model serves as a useful tool for detecting redundant or misleading con-
ditional structures in P4 programs. By identifying empty branches that serve no
semantic purpose, the model supports further code cleanup and optimization.

Listing 3. P4 if block with empty else

if (hdr.ipv415.isValid()) {
if (hdr.ipv416.isValid()) {
ipv415.1lpm.apply () ;
ipv416.1pm.apply () ;
} else {}
} else {}

62

Annal. Math. et Inf. Using GNN for refactoring P4 programs

4. Results

All models presented in this work were implemented using the PyTorch [6] and
PyTorch Geometric libraries, which provide efficient GPU accelerated operations
and high-level abstractions for graph based deep learning. These libraries enabled
rapid experimentation with neural architectures and streamlined the construction
and training of Graph Neural Networks. We used standard components such as
GCNConv layers, embedding modules, and training utilities provided by the frame-
work.

In our experiments, the abstract syntax trees (ASTs) generated by the P4Query
[5] tool were serialized as large JSON files. Each file contains a directed graph
with thousands of nodes and edges, representing detailed syntactic and semantic
information of a given P4 program. Due to the high complexity and richness
of these graphs, even a small number of training examples proved sufficient for
effective learning.

We observed that all three models trained on these AST graphs exhibited consis-
tently decreasing loss values throughout training, indicating convergence and suc-
cessful pattern extraction. The loss function approached values close to zero across
multiple epochs, demonstrating that the models were able to learn the structural
relationships within the graphs efficiently.

4.1. Variable Renamer results

The Variable Renamer model was trained on a set of 32 AST graphs, each repre-
senting a different P4 program. These graphs served as supervised input, where
variable renaming labels were provided for terminal nodes. Training was performed
over 20 epochs, which proved sufficient for the model to converge — the loss function
consistently decreased and reached zero by the end of training. This indicates that
the GNN successfully learned to encode the structure of a given variable’s repre-
sentation, identifying the relevant nodes and edges responsible for that variable
throughout the graph.

Once trained, the model was evaluated on 17 previously unseen AST graphs.
In all cases, the model was instructed to rename a variable per graph. The model
successfully performed all 17 renamings, modifying the corresponding value at-
tributes in the appropriate TerminalNodeImpl nodes. Importantly, the renamings
were consistent across all occurrences of the target variables within each graph.

These results highlight the model’s ability to generalize renaming patterns
across different P4 codebases, even when local syntactic variations are present.
This confirms the effectiveness of GNN based learning on AST structures.

4.2. Parameter Reorderer results

To evaluate the effectiveness of the Parameter Reorderer model, we trained it on 5
pairs (a total of 10) of P4 AST graphs. Each pair consisted of an original function
declaration with an incorrect or arbitrary parameter order, and a corresponding

63

Annal. Math. et Inf. B. Sz. Csiillég, M. Tejfel

target graph in which the parameters were reordered according to a preferred or
canonical sequence. Unlike the Variable Renamer, this model had to capture and
interpret more complex structural patterns, as parameters are represented by en-
tire subgraphs within the AST. As a result, learning the correct transformations
required more epochs (100 in total), and convergence was slower.

In cases where the function had only two parameters, the model achieved correct
reordering in 3 of the 5 example graphs, which were previously unseen ASTs. These
are effectively binary swaps, which the model was often able to predict reliably.
However, as the number of parameters increased, the model’s accuracy declined.
This was particularly evident in more complex declarations, where parameters had
compound types or nested substructures. In such cases, the model struggled to
infer the correct order, indicating a sensitivity to syntactic complexity.

These results suggest that while the model captures some general patterns of
parameter ordering, it may lack sufficient contextual awareness to handle more
elaborate structures. The approach, based on embedding and regression, shows
promise for approximating permutation tasks but could benefit from stronger re-
lational reasoning.

From these observations, we conclude that parameter reordering is more effec-
tively approached as a regression problem over continuous embeddings than as a
classification problem over discrete graph structures. Future improvements may
involve incorporating structural attention or hybrid GNN-MLP architectures to
better capture the interplay between parameter semantics and graph topology.

4.3. Empty Else Block Detector results

The Empty Else Block Detector model was trained on a dataset of 40 AST graphs,
each annotated with both empty and nonempty else branches. During training,
the model performed binary classification on nodes with the literal value "else",
predicting whether they led to an empty code block. Due to the complexity of
the task — which required the model to learn to recognize non trivial subgraph
patterns around each else node — the training process was conducted over 100
epochs. This extended training was necessary for the model to reliably capture the
subtle structural cues associated with empty branches. The final training accuracy
reached 78%, demonstrating the model’s ability to distinguish between semantically
relevant and irrelevant else constructs.

To evaluate the model’s generalization capability, we tested it on 13 previously
unseen P4 programs, whose corresponding ASTs contained a total of 28 else blocks,
including both empty and non-empty cases. The model correctly classified 23 out
of the 28 instances, resulting in an 82% accuracy on this test set. While this reflects
a slight increase compared to its training performance, the result is promising given
the structural variability of else constructs in real world P4 code.

These results suggest that the model successfully captures the contextual signals
that distinguish empty else branches from meaningful ones. Its ability to detect
redundant conditional structures can support automated refactoring pipelines and
contribute to cleaner, more maintainable P4 codebases.

64

Annal. Math. et Inf. Using GNN for refactoring P4 programs

Beyond demonstrating technical feasibility, our results indicate that GNN based
learning provides a scalable path toward automated code improvement. Even with
limited training data, the models extracted robust transformation patterns, sug-
gesting practical applicability in real world P4 codebases, where manual refactoring
is costly and time consuming.

5. Conclusion and future work

In this research, we have successfully developed three distinct Graph Neural Net-
work (GNN) models: the Variable Renamer, the Parameter Reorderer, and the
Empty Else Block Detector. Each of these models addresses specific aspects of
P4 program refactoring, showcasing the versatility and potential of GNNs in this
domain.

The Variable Renamer model receives the complete abstract syntax tree (AST)
of a program as input and is tasked with renaming a specific variable throughout all
its occurrences. It takes as parameters the graph representing the program and the
names of the variable to be renamed along with the new name. By modifying the
attributes of the relevant nodes in the AST, this model enhances code readability
and consistency, which are crucial for maintaining large scale software systems.

The Parameter Reorderer model operates at the level of function declarations,
where it modifies the structure of the graph to rearrange the order of parameters.
This capability is particularly beneficial for adhering to coding standards or manag-
ing default parameters, ultimately improving the clarity and readability of function
definitions. By ensuring that parameters are organized in a logical manner, this
model aids developers in writing more maintainable and understandable code.

The Empty Else Block Detector model focuses on prediction tasks within the
graph. It identifies patterns that indicate the presence of empty else branches,
which can be particularly useful for code optimization. By alerting developers to
these non essential branches, the model helps avoid unnecessary complexity in the
code, thereby enhancing overall code quality and maintainability.

Through the development and evaluation of these models, we have gained valu-
able insights into how GNNs can learn to capture and manipulate different aspects
of graph data. This experience lays the groundwork for future research, where we
aim to generalize these findings to create more complex models that integrate the
strengths of each individual approach. By combining the capabilities of modifying
node attributes, altering graph structures, and making predictions, we envision the
development of sophisticated GNN architectures that can tackle a wider range of
refactoring tasks.

The strength of graph neural network models, compared to traditional algo-
rithms, lies in their ability to generalize the structure of abstract syntax trees
through training on large datasets. Embeddings and heuristics play a major role
in this process. As a result, these models can perform their tasks effectively and
reliably, even in extreme cases. In contrast, traditional algorithms must explicitly
account for all such edge cases, which requires more development time. This can

65

Annal. Math. et Inf. B. Sz. Csiillég, M. Tejfel

increase the algorithm’s size, complexity, or reduce its clarity. Furthermore, when
a new edge case is discovered, the original algorithm must be revised or rewrit-
ten, further increasing development time and costs. Ultimately, although GNN
models typically require more storage space and computational power during ex-
ecution, they can successfully handle a wider range of situations than traditional
approaches.

Looking ahead, our goal is to explore the potential of hybrid models that lever-
age the strengths of the existing GNNs while introducing new mechanisms for
learning and adaptation. Such models could incorporate advanced techniques such
as attention mechanisms or reinforcement learning to further enhance their perfor-
mance and applicability. By pushing the boundaries of what GNNs can achieve in
the context of program analysis and refactoring, we hope to contribute to the cre-
ation of more intelligent and automated tools that assist developers in writing high
quality, maintainable code. By integrating these models into tooling pipelines, de-
velopment teams can achieve faster iteration cycles, reduce manual overhead, and
promote uniform, high quality code across network applications.

References

[1] U. ALoN, M. ZILBERSTEIN, O. LEVY, E. YAHAV: code2vec: learning distributed representations
of code, Proc. ACM Program. Lang. 3.POPL (Jan. 2019), po1: 10.1145/3290353.

[2] P. BossHART, D. DaLy, G. GiBB, M. 1zzARD, N. MCKEOWN, J. REXFORD, C. SCHLESINGER,
D. TALAYCO, A. VAHDAT, G. VARGHESE, D. WALKER: P4: programming protocol-independent
packet processors, SIGCOMM Comput. Commun. Rev. 44.3 (July 2014), pp. 87-95, ISSN:
0146-4833, DOI: 10.1145/2656877 .2656890.

[3] J. JONEs: Abstract Syntax Tree Implementation Idioms, Technical Report, PDF, University
of Alabama, 2003, URL: https://hillside.net/plop/plop2003/Papers/Jones-Implementin
gASTs.pdf.

[4] A. KHERADMAND, G. Rosu: P4K: A Formal Semantics of P4 and Applications, arXiv
preprint (2018), arXiv:1804.01468.

[5] D. LukAcs, G. TOTH, M. TEJFEL: P4Query: Static analyser framework for P/, Annales
Mathematicae et Informaticae 57 (2023), pp. 49-64, DOI: 10.33039/ami.2023.03.002.

[6] A. PaszkE, S. GRoss, F. MassA, A. LERER, J. BRADBURY, G. CHANAN, T. KILLEEN, Z. LIN,
N. GIMELSHEIN, L. ANTIGA, A. DESMAISON, A. KOpF, E. YANG, Z. DEVITO, M. RAISON, A.
TEJANI, S. CHILAMKURTHY, B. STEINER, L. FANG, J. BAl, S. CHINTALA: PyTorch: An Im-
perative Style, High-Performance Deep Learning Library, arXiv:1912.01703, NeurIPS 2019,
2019, URL: http://arxiv.org/abs/1912.01703.

[7] M. A. RODRIGUEZ: The Gremlin graph traversal machine and language (invited talk), in: Pro-
ceedings of the 15th Symposium on Database Programming Languages, DBPL 2015, Pitts-
burgh, PA, USA: Association for Computing Machinery, 2015, pp. 1-10, 1SBN: 9781450339025,
DOI: 10.1145/2815072.2815073.

[8] M. TEJFEL, D. LukAcs, P. HEGYL: P4 Specific Refactoring Steps, Acta Cybernetica 27.1
(Mar. 2025), pp. 5365, DOI: 10.14232/actacyb.308085, URL: https://cyber.bibl.u-szege
d.hu/index.php/actcybern/article/view/4465.

9] J. Zuou, G. Cui, S. Hu, Z. Zuang, C. YANG, Z. Liu, L. WaNG, C. L1, M. SuN: Graph
neural networks: A review of methods and applications, Al Open 1 (2020), pp. 57-81, ISSN:
2666-6510, DOI: 10.1016/j.aiopen.2021.01.001, URL: https://www.sciencedirect.com/sc
ience/article/pii/S2666651021000012.

66

https://doi.org/10.1145/3290353
https://doi.org/10.1145/2656877.2656890
https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://doi.org/10.33039/ ami.2023.03.002
http://arxiv.org/abs/1912.01703
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.14232/actacyb.308085
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4465
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4465
https://doi.org/10.1016/j.aiopen.2021.01.001
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012

Annal. Math. et Inf. Using GNN for refactoring P4 programs

[10] Y. ZHou, S. L, J. Stow, X. Du, Y. Liu: Devign: Effective Vulnerability Identification by
Learning Comprehensive Program Semantics via Graph Neural Networks, in: Advances in
Neural Information Processing Systems (NeurIPS), 2019.

67

