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Abstract. This paper presents the design and implementation of an adap-
tive testing system for assessing university students’ programming skills in
Python, C#, Java, JavaScript, and SQL. Adaptive testing dynamically ad-
justs question difficulty based on individual performance, enabling more pre-
cise and efficient assessment compared to traditional fixed-form tests. We
provide an overview of adaptive testing principles and the Item Response
Theory (IRT) models (1PL–3PL) that underpin the system. Our approach
integrates continuous, categorical, and accelerated adaptive methodologies
to optimize both accuracy and test length. The system is implemented as a
Flask-based web application that selects questions from a customizable bank,
adapting to the learner’s estimated knowledge level in real time. Key features
include topic-based item selection, immediate scoring, detailed post-test ana-
lytics, and end-of-test formative recommendations (tailored by language/level
with estimated study time). The system demonstrates how IRT-based adap-
tive programming assessment supports personalized, data-driven evaluation
in higher education and hiring.
Keywords: adaptive testing, Item Response Theory, programming proficiency,
computer science education

1. Introduction
Computer-based testing offers several advantages over traditional paper-based meth-
ods [30], such as multimedia-enhanced questions, instant evaluation with rapid feed-
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back, and integrated practice tools. While general online platforms (e.g., Google,
Microsoft) support basic testing, adaptive testing provides a more sophisticated
solution by matching question difficulty to the learner’s current ability [9]. This
ensures that low-performing participants avoid discouragingly difficult items and
high-performing ones are challenged appropriately, leading to efficient and equi-
table assessment.

Adaptive testing has applications well beyond education. In business, it sup-
ports market research and campaign evaluation by tailoring questions to respondent
profiles [24], while in sports, it can assess athlete performance and guide individual-
ized training [15]. Popular learning platforms like Duolingo [1] and Khan Academy
[23] already use adaptive methods to personalize content and pacing.

In our work, we apply a combined adaptive testing strategy to programming
languages (Python, C#, Java, JavaScript, SQL), blending continuous, categorical,
and accelerated approaches [3]. The system, built on Item Response Theory (IRT),
estimates both item parameters and learner ability, enabling precise and efficient
skill measurement. This approach aims to provide richer, more accurate profiles
of programming proficiency for education, hiring, and beyond, with potential to
inform teaching strategies, curriculum design, and recruitment processes.

2. Related works
Adaptive testing has been widely studied for its potential to personalize assessment.
Recent innovations include Bayesian and bandit-based approaches [6, 26], precision-
focused methodologies [11, 27], and the integration of domain-specific knowledge
with IRT models [5, 20]. Other developments explore multidimensional modeling
and skill assessment [16, 19] as well as advanced question selection techniques.

In computer science education, Čisar et al. [9] applied Item Response Theory
(IRT) to improve measurement accuracy, while Lazarinis et al. [17] incorporated
both knowledge level and learning style in web engineering courses. Reviews such
as Chrysafiadi and Virvou [8] underline the growing use of learning analytics in
adaptive e-learning.

Programming language proficiency presents unique challenges. Ihantola et al.
[14] reviewed automatic assessment tools, emphasizing the role of feedback, while
Guo et al. [12] combined multiple-choice and coding tasks for adaptive difficulty
adjustment. Ala-Mutka [2] stressed the need to measure both theoretical and
practical skills.

IRT remains central to adaptive testing. Extensions by Wang et al. [30] and
Vie et al. [28] adapt the model to programming contexts, with multidimensional
approaches offering richer skill profiling. However, many systems lack scalability,
real-time adaptation, or domain-specific tuning [7, 18].

Our work integrates IRT with programming-specific item pools and adaptive
logic, targeting programming proficiency explicitly and supporting multiple adap-
tation strategies. Unlike popular platforms (e.g., challenge-based sites such as
HackerRank or LeetCode, or LMS plugins like Moodle) where difficulty tiers are
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largely static and psychometric modeling is limited [2, 14, 17], our Flask-based sys-
tem applies 1PL–3PL estimation with Bayesian updating and distribution-driven
selection [3, 28, 30], and provides end-of-test formative recommendations [8, 12].
This positions it as both a research tool and a practical educational platform.

3. Item Response Theory
IRT provides a probabilistic framework linking latent ability to response accuracy
across education and testing [4, 10, 13, 21, 22, 25, 29, 31]. We focus on the
dichotomous logistic models: 1PL, 2PL, and 3PL.

The 3PL model defines the probability of a correct response as:

P (Xij = 1 | θj , ai, bi, ci) = ci + (1 − ci)
1

1 + e−ai(θj−bi) ,

where θj is the ability of examinee j, ai is the discrimination parameter, bi is the
difficulty parameter, and ci is the pseudo-guessing parameter for item i.

In the 2PL model, ci is fixed to zero, and in the 1PL (Rasch) model, ai is
constant across all items.

Ability estimation is performed using Maximum A Posteriori (MAP) estimation,
incorporating weakly informative priors to stabilize estimates in short tests. The
log-likelihood for a given examinee is:

L(θj) =
∑
i∈Ij

[xij log Pij + (1 − xij) log(1 − Pij)],

where Ij is the set of administered items for examinee j, and xij is the binary
response.

Item selection follows a maximum Fisher information criterion:

I(θ) = a2
i (1 − Pij)Pij

(
1 − ci

Pij − ci

)2
,

choosing the item that maximizes I(θj) at the current estimate θ̂j .
Stopping occurs when the standard error (SE) of θ̂j falls below a threshold (τ =

0.3) or a maximum length is reached, over a multi-language item bank spanning
difficulty levels.

This implementation leverages the efficiency of IRT for adaptive testing while
integrating detailed logging of behavioral metrics (e.g., response time, clicks), en-
abling multi-faceted performance analysis beyond ability alone.

4. Adaptive testing system implementation
To assess adaptive learning in programming skills, we have developed a test system.
The web application is a Flask-based adaptive testing system containing questions
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on for example, Python, C#, Java, JavaScript, SQL. The purpose of the application
is to dynamically select the next question based on the users’ answers, thereby
adapting to their knowledge level. The adaptive algorithm in our system selects
the next question based on the user’s performance and the current question’s topic
and difficulty. If the user answers the current question correctly, the algorithm
picks a question from the same topic but with a higher difficulty level. If the
user answers incorrectly, the next question will be from the same topic but with a
lower difficulty level. This approach ensures that users are challenged appropriately
based on their demonstrated knowledge level.

4.1. System architecture
The test system’s architecture is designed to be flexible and easily expandable. It
consists of a question bank, currently stored in a CSV file but replaceable with a
database for larger-scale use; a Flask-based web application that manages the adap-
tive testing logic; an HTML template–driven user interface for presenting questions
and summarizing results; and an adaptive algorithm that selects subsequent ques-
tions based on the user’s performance and the topic–difficulty profile of the current
item. The current item bank consists of 600 programming questions, with 120
items each for Python, C#, Java, JavaScript, and SQL. Every question is tagged
by language, topic, and difficulty level, and difficulty classifications were assigned
through expert review to ensure content validity.

The structure of the adaptive testing framework is illustrated in Figure 1. This
architecture supports dynamic question selection, performance monitoring, and
model-based strategy switching, ensuring a flexible and scalable assessment envi-
ronment.

4.2. Result analysis
At the end of the test, users navigate to the /test_results page where they
can see a tabular format of how they responded to each question, along with a
summary diagram. This provides immediate feedback and allows users to review
their performance.

For data analysis purposes, we provide the option to save the responses to CSV
format. This feature is particularly useful for researchers and educators who want
to perform more in-depth analysis of test results.

4.3. Scoring and formative feedback
While the system provides immediate scoring, it also includes formative feedback
at the end of the test. Specifically, the platform generates language- and level-
specific recommendations, including books, video tutorials, and online resources,
as well as an estimated study time based on accuracy and item difficulty. This
functionality enhances the pedagogical impact of the system without compromising
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Figure 1. System architecture of the Flask-based adaptive testing
platform. The architecture consists of (1) a question bank stored
in a relational database, (2) an adaptive engine applying IRT and
Bayesian updating, (3) distribution-based item selection strategies,
(4) a test session manager handling user interactions, and (5) a feed-
back and analytics module providing scoring, visualizations, and

formative learning recommendations.

the validity of the adaptive measurement. Future extensions may incorporate real-
time explanatory feedback during the test; however, such interventions require
careful validation to avoid construct-irrelevant variance.

4.4. Future enhancements

The current adaptive testing system offers a strong foundation, with several op-
portunities for growth. Technically, integrating multidimensional IRT and selective
machine learning could refine item selection and stopping criteria. Pedagogically,
expanding the item pool, adding multilingual support, and enhancing analytics
would broaden applicability and improve feedback quality.

Priority enhancements include user profiles for tracking progress and database
integration for efficient storage and large-scale deployment. These would enable
personalized learning experiences and advanced analytics, though they require care-
ful attention to data privacy, performance, and user interface design.
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5. General statistical analysis of test-taking behavior
A well-designed adaptive testing system must not only dynamically select content
based on latent ability estimates, but also be capable of capturing and analyzing
user behavior patterns to enhance personalization. In this section, we present a
statistical summary and interpretation of the test-taker behavior recorded by the
system. The analysis is based on a dataset comprising 486 test sessions, each
capturing user interaction metrics and performance indicators.

5.1. Key Descriptive Indicators
The dataset includes several essential features:

• clicks – total number of interactions during the session,

• total_time – total test duration in seconds,

• avg_time_per_question – average time spent per question,

• correct_answers – number of correctly answered questions,

• total_questions – total number of attempted questions.

From these variables, we derive the accuracy rate as a performance indicator:

Accuracyi = CorrectAnswersi

TotalQuestionsi

This derived variable ranges from 0 to 1 and serves as a normalized measure of
success.

Table 1. Descriptive statistics of adaptive test results.

Metric Mean Std. Dev. Min 25% Median 75% Max
Clicks 53.16 25.25 10.00 32.00 52.50 74.00 100.00
Total Time (s) 563.68 262.26 103.8 331.64 579.69 793.78 995.30
Avg. Time / Question (s) 46.78 34.26 4.35 22.22 38.47 61.88 198.20
Correct Answers 7.53 5.66 0.00 3.00 7.00 11.00 25.00
Total Questions 14.91 5.99 5.00 10.00 15.00 20.00 25.00
Accuracy 0.51 0.29 0.00 0.25 0.50 0.75 1.00

5.2. Behavioral and pedagogical interpretation
The observed variance in metrics is not a flaw of the system, but rather a key ad-
vantage of adaptive testing – it adjusts to users with diverse profiles. For instance,
high-performing users often encountered more challenging items, increasing their
time per question. Conversely, struggling users received easier items, potentially
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finishing faster but with fewer correct answers. The pattern resembles a tailored
staircase of difficulty.

Furthermore, the metric of accuracy can serve as a dependent variable in subse-
quent models aimed at predicting student success or clustering learner types. The
normal distribution assumption for raw scores may not hold in such settings; in-
stead, analysis of distribution skewness and kurtosis would help identify anomalous
user behavior, such as gaming the system or random guessing.

5.3. Mathematical considerations
To estimate population parameters and validate assumptions, future analysis may
consider modeling accuracy as a Bernoulli-distributed response in a generalized
linear model (GLM), where predictor variables include time per question and click
count:

logit(P[Correcti = 1]) = β0 + β1 · AvgTimei + β2 · Clicksi + ϵi

This formulation aligns with Item Response Theory’s probabilistic foundation and
allows the inclusion of behavioral covariates in ability estimation.

5.4. Implications for adaptive systems
The exploratory statistical analysis offers a strong empirical foundation for the
personalization logic of the adaptive system. By capturing and interpreting user
interaction patterns, we can:

• Identify subgroups with different test-taking behaviors,

• Develop feedback strategies based on pacing and accuracy,

• Improve question selection algorithms by incorporating behavioral data.

In the next phase of analysis, we proceed to apply unsupervised learning methods
to uncover latent clusters of user behavior, which may further support differentiated
learning strategies and personalized feedback.

5.5. Evaluation of test performance visualizations
The overall performance of participants was further analyzed using summary plots
derived from the adaptive testing data. Figure 2 presents the distribution of correct
answers. It reveals a near-normal distribution centered around the median of 8 to
10 correct responses. This suggests a reasonably balanced test, with both lower
and higher performing participants well represented in the dataset.

Figure 3 compares the average time spent per question across different program-
ming languages. Participants answering Java questions showed lower response time
variance, while those attempting Python and SQL questions had more dispersed
results, possibly reflecting varied familiarity or question complexity.
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As shown in Figure 4, the Advanced group achieved the highest average ac-
curacy, while the Beginner group recorded the lowest. Intermediate and Expert
participants performed at comparable levels. These findings highlight the need for
refined calibration of item difficulty across levels.
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Figure 2. Distribution of correct answers across all participants
(n = 486 participants; Shapiro–Wilk p = 0.23).
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Figure 3. Average time per question by programming language (n
per language shown; ANOVA p < 0.05; * indicates significance).
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Figure 4. Average accuracy grouped by difficulty level.

5.6. Tabular summary of participant performance
Table 2 summarizes key performance indicators such as average accuracy, average
response time, and the number of questions completed, grouped by programming
language and difficulty level. The data reveal that Beginner-level students using
C# achieved the highest mean accuracy, while Intermediate-level learners consis-
tently performed lower, regardless of language. These insights may guide future
refinements in adaptive strategy assignment and question selection.

6. Conclusion
This paper presents the design and evaluation of an adaptive testing system for
programming proficiency in Python, C#, Java, JavaScript, and SQL. Built on
Item Response Theory (IRT) with one-, two-, and three-parameter logistic models,
it selects questions in real time based on user performance, combining continuous,
categorical, and accelerated adaptation strategies to improve accuracy, efficiency,
and fairness.

Implemented in Flask, the system supports topic-specific delivery, adaptive dif-
ficulty control, and immediate feedback. A CSV-based question bank enables easy
content management, while results are stored for analysis, serving both psycho-
metric and educational purposes. Descriptive analytics – such as clicks, response
times, and accuracy – highlight variability among learners and show the value of
integrating behavioral indicators (e.g., pacing, engagement) into adaptation logic.

Pedagogically, combining performance and behavioral data can uncover learner
profiles, guide adaptive feedback, and align assessments with individualized learn-
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Table 2. Summary of performance metrics by programming lan-
guage and difficulty level.

Avg Avg Time per Avg
language level Accuracy Question (s) Questions
C# Advanced 0.55 45.26 15.00
C# Beginner 0.62 47.14 12.60
C# Expert 0.50 41.12 16.96
C# Intermediate 0.34 59.59 12.05
Java Advanced 0.55 39.88 15.80
Java Beginner 0.58 50.13 12.46
Java Expert 0.47 35.65 16.45
Java Intermediate 0.40 56.73 11.65
Python Advanced 0.43 62.70 14.20
Python Beginner 0.50 49.92 13.09
Python Expert 0.49 44.80 15.76
Python Intermediate 0.45 60.09 12.34
SQL Advanced 0.39 47.62 14.13
SQL Beginner 0.53 42.73 12.30
SQL Expert 0.47 38.28 15.40
SQL Intermediate 0.43 58.52 11.71

ing paths. Limitations include reliance on a manually curated item pool, the ab-
sence of real-time explanatory feedback during item administration (while end-
of-test formative recommendations are provided), and no current backend scala-
bility. Planned improvements involve database integration, secure authentication,
machine learning–based item generation, and advanced analytics for longitudinal
tracking and real-time clustering.

In summary, the system merges IRT-based assessment with behavioral analytics
to create learner-aware testing. Future work includes ML-based item generation
with automatic difficulty estimation and longitudinal tracking to build learner pro-
files across sessions, enabling trajectory analysis, clustering, and adaptive curricu-
lum design.Feasibility challenges include content validity, privacy, and scalability,
which will be addressed in future work.
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