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Abstract. One of the problems that schools or organizers of STEAM (Sci-
ence, Technology, Engineering, Arts, and Mathematics) camps face to is the
balanced distribution of students according to gender, skills, and academic
background in a fair manner. In this study, we used a Satisfiability Modulo
Theories (SMT) approach to solve the problem of fair team formation. Our
implementation of the approach uses the Z3 SMT solver. In our prelimi-
nary experiments, we successfully generated fair and balanced teams from 50
students across different scenarios. Using SMT in educational settings saves
time and effort for school administrators and organizers of STEAM events,
and it also provides an efficient and effective solution to distribute students
equitably across teams.

Keywords: Automated Team Formation, Fairness, STEAM Education, Satis-
fiability Modulo Theories (SMT)

1. Introduction

STEM (Science, Technology, Engineering, and Mathematics) and its extension
STEAM (which incorporates the Arts) have become essential educational frame-
works for preparing students to address real-world challenges through interdisci-
plinary thinking and collaborative problem-solving [1]. STEAM is widely recog-
nized as a modern and effective approach to teaching that deepens subject under-
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standing. Developed countries have increasingly adopted STEAM in their national
strategies. According to recent rankings, Canada leads in STEM graduate output,
followed by Russia, Japan, South Korea, the United States, Ireland, the United
Kingdom, Australia, Finland, and Luxembourg [1]. These programs often rely on
collaborative, team-based projects, making fair and effective team formation a key
requirement.

Despite the global rise of STEM and STEAM education, there remains a signif-
icant lack of structured data, digital tools, and research in some regions, including
Iraq. Although many Iraqi schools have started organizing STEM-style camps and
student activities, the process of forming student teams is typically done manu-
ally by teachers. This method is often time-consuming, subjective, and prone to
imbalances in gender representation, skill levels, and academic backgrounds. To
bridge this gap, we propose a novel approach using Satisfiability Modulo Theories
(SMT), implemented through the Z3 solver developed by Microsoft Research [16].
Our model encodes fairness constraints — such as skills, gender balance, and back-
ground diversity — and efficiently solves them using Z3 to generate well-balanced
student teams [14].

In this study, we report on developing and experimenting with our SMT-based
tool on a dataset of 50 students. Most of the cases, the tool successfully generates
10 diverse and balanced teams in a very short time frame. This demonstrates the
efficiency, scalability, and fairness of our approach, which can be readily integrated
into STEAM-based education environments.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the dataset and team formation constraints. Section 4 provides
details on how the model is encoded into SMT. Section 5 presents the implemen-
tation of our approach and reports on experimental results. Section 6 provides a
discussion and concludes the paper with future directions.

2. Related work

Team formation has been studied in various fields such as education, human re-
sources, and project management [12]. Traditional approaches often rely on manual
selection or random assignment, which may lead to unfair or unbalanced teams and
might be time consuming [2, 4].

In recent years, researchers have explored some approaches for team formation
using optimization, machine learning, and constraint programming. For example,
some studies use genetic algorithms [7, 13] or clustering techniques to group stu-
dents based on skills or personality traits [11]. While these methods can improve
team balance, they often require tuning and may not enforce hard constraints like
gender or background diversity.

Satisfiability Modulo Theories (SMT) has emerged as a powerful tool for solving
constraint-based problems in scheduling, verification, testing [5] and education [8].
For instance, an SMT-based scheduling system was successfully designed and tested
using real university data to solve course timetabling problems with the Z3 solver,
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demonstrating its practical utility in academic environments [15]. Z3, a state-
of-the-art SMT solver developed by Microsoft Research, is capable of handling
complex logical and arithmetic rules efficiently [14].

Some researchers have used SMT for course timetabling, project group alloca-
tion, and fair scheduling [3], but its application in STEAM team formation remains
limited.

Our work builds on this foundation by applying SMT to form fair and diverse
student teams. Unlike earlier methods, our model guarantees constraint satisfaction
for team size, skill levels, gender balance, and background diversity. To the best of
our knowledge, this is one of the first applications of SMT in fair team assignment
for STEAM education settings.

3. Dataset and constraints

Due to the absence of publicly accessible datasets concerning team formation in
STEAM-focused activities, especially within Iraqi school environments, a synthetic
dataset [9, 10] was created to reflect realistic student characteristics. This dataset
includes representative features such as gender, educational background, and skill
levels across key STEAM disciplines. It was thoughtfully constructed to capture
diversity and ensure that all constraints were feasible. To verify its effectiveness, the
dataset was tested using our SMT-based team formation model, which confirmed
that the generated teams met all specified requirements.

3.1. Dataset description

Our dataset contains information on students who participated in the program.
Each student record is stored in JSON format, as shown in Table 1.

Table 1. Dataset attributes.

ID Unique numeric identifier

Name Student’s first name (anonymized)
Gender Female (F), Male (M)

Background | Arts, Engineering, Science

Skills Rated from 1 (lowest) to 5 (highest):

e Programming (technical ability)
e Design (visual creativity)

o Math (quantitative skills)

o Creativity (original thinking)

e Science (theoretical knowledge)

The dataset consists of 50 records. For example, a student may have a Pro-
gramming score of 4 and a Design score of 2. These skill scores help measure each
student’s strength in different areas. This dataset allows us to create teams that
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are diverse in gender, background, and skill levels. By analyzing this information,
we can use a solver to build balanced teams that meet specific fairness goals.

3.2. Fairness constraints

To make sure teams are fair, we defined a set of constraints that the solver must
follow. These constraints help to create balanced and diverse teams. The fairness
constraints are as follows, where the scalars might differ in different scenarios, see
Section 5.2.

e Team Size: Each team must have exactly 5 students.
e Minimum Skill Totals:
— Programming > 10
— Design > 10
Math > 8
Creativity > 6
— Science > 8

These totals are the sum of individual student scores in each team. For
example, if five students each have a Programming score of 2, the total will
be 10.

¢« Gender Balance: Each team must include at least 2 males and at least 2
females.

e Academic Background Diversity: Each team must include at least one
student from each of the 3 backgrounds (Arts, Engineering, Science).

These constraints ensure that every team has a mix of students with different
strengths and experiences. They help promote equal opportunities and diverse
collaboration in STEAM activities.

4. Problem encoding into SMT

Satisfiability Modulo Theories (SMT) is an approach used to solve problems that
involve both logic and arithmetic constraints [6, 14]. In our model, we used Boolean
constraints and linear integer arithmetic constraints to create fair and diverse teams
based on student data. We introduce the following parameters, including the deci-
sion variable g ¢:

e S: set of students

e T: set of teams

e K: set of skills

e B: set of backgrounds

e min_ skillp: minimum required total for skill k& € K in a team, where
min__skill, € N
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e min_bg: minimum number of backgrounds in a team, where min_bg € N

e min_ gen: minimum number of students of the same gender in a team, where
min_gen € N

o skills j: score of student s € S in skill k € K, where skills € {1,2,3,4,5}
o gens: gender of student s € S, where gen, € {0,1}
o bgsp: student s € S has background b € B, where by, ;, € {0,1}

e x,,: binary decision variable, where

1, if student s € S'isin teamt €T,

b
Ts,t =

0, otherwise.

Using these parameters, we encode the following fairness constraints:

e Each student must be assigned to exactly one team:

Vs e S. sz’t =1.

teT
This constraint can be further translated to the Boolean constraint

Vs € S. (\/ xs,t> A /\ (_‘CCs,tl V _‘xs,tg)-

teT t1,to€T
t1#£t2

e FEach team must contain exactly five students:

VEET. Y x,, =5
seS

¢ Fach team must meet minimum skill totals in each skill:

Vte T Vk € K. Y skillyy - w44 > min_skilly.
seS

e Each team must include at least min__gen males and females, respectively:

vteT. Z gens - Tsy > Min__gen.
seS

vVteT. Z(l — geng) - Tgy > Min__gen.
ses
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e Each team must include students from at least min_ bg different academic
backgrounds. To express this, we first need to introduce new binary variables

bg:p to express if a team ¢ has at least one student with background b.

V€T, Vb€ B.bgry & \/ (bgsn A a).
ses

Then, the original constraint can be easily expressed as

VteT. Z bge, > min_ bg.
beB

Note that the above constraints are universally quantified. In our tool, we
intend to only apply quantifier-free logics, therefore all universal quantifiers get

expanded, due to a relatively small domain.

5. Experimental results

5.1. System architecture

SMT Solver @

Initialize Z3 ‘ |
‘Cr' ization Solver Create
| with (timeout) ‘ |

Load
students.json \ ( \
‘ Add Constraints H Solver.Check [)‘ I (I

Result = SAT? ‘

- Strict Constraints. il
- Medium Constraints
- Soft Constraints —
" YES l \—1 X no

- Diversity Constraints
Print "No Solution™

Extract Model
+ Reason

JSON File l Website

Format and Print Teams + iar
Skills Statistics @@

-

Figure 1. System architecture showing the main modules of our
team formation tool.

We integrated and incorporated our SMT model in a tool that we developed in
Python using the Z3 SMT solver. The architecture follows a modular structure:

e Input Module: Loads the student dataset from a JSON file.
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o Constraint Module: Defines all SMT variables and constraints (e.g., skills,
gender, background).

e Solver Module: Uses the Z3 engine to compute valid team assignments
based on all constraints.

¢ Output Module: Displays or saves the team assignments.

Figure 1 shows an overview of the system workflow.

We built a web application to display the results generated by the SMT solver.
The platform provides summary statistics and allows students to see which team
they have been assigned to, as shown in Appendix A.

5.2. Setup

We tested our team formation model using a synthetic dataset containing 50 stu-
dent records. All experiments were conducted on a machine equipped with an Intel
Core i5 processor and 8GB of RAM.

To evaluate the impact of varying fairness and diversity constraints, we designed
four distinct scenarios. The details of each scenario’s constraints and logic are
provided below. As Section 5.3 reports on it, the solver successfully generated fair
and diverse team assignments in all feasible cases, except in Scenario 2, where no
feasible solution was found. These results demonstrate the model’s efficiency and
responsiveness to different constraint settings.

Scenario 1: Skill Thresholds, Gender Balance, and Background Diversity

This scenario enforces constraints across skills, gender, and academic backgrounds.
Each team must consist of exactly five students and satisfy all the constraints under
those settings:

e Minimum Skill Totals:

— min__ Programming = 10
— min__Design = 10

— min_Math =8

— min_ Creativity = 6

— min__Science = 8
e Gender Diversity: At least 1 females and 1 males: min_gen =1

o Background Diversity: At least two backgrounds per team: min_bg = 2
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Scenario 2: Stricter Skill Thresholds with Gender and Background Di-
versity

Scenario 2 maintains the same diversity constraints as Scenario 1 but applies signif-
icantly higher skill requirements. Each team must consist of exactly five students
and satisfy all the constraints under those settings:

¢ Minimum Skill Totals:

— min_ Programming = 16
— min__Design = 16

— min_Math = 14

— min_ Creativity = 12

— min__ Science = 15
e Gender Diversity: At least 1 females and 1 males: min_gen =1

e Background Diversity: At least two backgrounds per team: min_bg = 2

Scenario 3: Skill Thresholds and Background Diversity (No Gender Con-
straint)

Scenario 3 maintains the same skill requirements as Scenario 1 and enforces back-
ground diversity, but it removes the gender constraints. The aim is to evaluate
whether relaxing gender requirements affects the feasibility and composition of the
resulting teams. Each team must consist of exactly five students and satisfy the
constraints under those settings:

e Minimum Skill Totals:

— min_ Programming = 10
— min__Design = 10

— min__Math =8

— min_ Creativity = 6

— min_ Science = 8
e Background Diversity: At least two backgrounds per team: min_bg = 2

By removing the gender constraint, this scenario allows us to test the flexibility
of the model when only academic and skill-based diversity are prioritized.
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Scenario 4: Full Diversity with Skill Thresholds

Scenario 4 enforces all fairness dimensions by combining skill thresholds, gender
diversity, and academic background diversity. The constraints are equivalent to
those in Scenario 1, but this scenario is designed to explicitly test the model’s
ability to enforce full diversity in a uniform and rigorous manner. Each team must
consist of exactly five students and satisfy all the constraints under those settings:

e Minimum Skill Totals:
— min__ Programming = 10
— min__ Design = 10
— min__Math =8
— min_ Creativity = 6
— min_ Science = 8
¢ Gender Diversity: At least 2 females and 2 males: min__gen = 2

e Background Diversity: All the backgrounds in each team: min_bg = 3

5.3. Performance

We evaluated our tool’s performance across the four scenarios on the dataset of 50
students. Each scenario was tested in terms of feasibility (whether a valid team
assignment could be found under the given constraints) and solver runtime. The
results are summarized in Table 2.

Table 2. Performance of team formation in different scenarios.

Scenario | Feasible Solution | Solving Time (s) | Notes

Scenario 1 Yes 0.08

Scenario 2 No 120.00 No solution found due to strict skill thresholds
Scenario 3 Yes 0.02 Same solution as in Scenario 1

Scenario 4 Yes 0.01 Same solution as in Scenario 1

Scenario 1, which includes skill thresholds, gender balance, and academic
background diversity, produced a feasible solution in 80 milliseconds. Scenario 3,
which removes the gender constraint, and Scenario 4, which enforces full diversity,
also returned feasible solutions with faster runtimes of 20 ms and 10 ms, respec-
tively. All three scenarios resulted in the same team composition, indicating that
the team found in Scenario 1 already satisfied the relaxed constraints in Scenarios
3 and 4.

In contrast, Scenario 2, which applied stricter skill thresholds, did not yield
a feasible solution. Even with a timeout set to 120 seconds, the solver was unable
to find any valid team assignment. This demonstrates the model’s sensitivity to
constraint tightness and the importance of realistic skill thresholds when ensuring
solvability.
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5.4. Illustrative example of fair team formation

Our SMT-based team formation model was tested across four different scenarios us-
ing a synthetic dataset of 50 students. Because this evaluation relies on only a single
dataset instance, the results should be understood as an illustrative example that
demonstrates how the model responds to different constraint configurations—not
as findings that can be broadly generalized.

In Scenarios 1, 3, and 4, the solver produced the same team composition, as-
signing exactly five students per team. Each of these teams met all the fairness
criteria, including required totals for five skills (Programming, Design, Math, Cre-
ativity, and Science), balanced gender representation, and academic diversity with
members from Arts, Engineering, and Science.

To provide a concrete example, Table 3 shows one of the teams generated un-
der Scenario 1, which also satisfied the stricter constraints of Scenarios 3 and 4.
Although the team composition remained unchanged, the computation time varied
depending on the scenario’s complexity: 80 milliseconds for Scenario 1, 20 millisec-
onds for Scenario 3 and 10 milliseconds for Scenario 4.

Table 3. Example of a fair team 10 generated in Scenarios 1, 3 and 4.

Member | Gender | Background | Prog. | Design | Math | Creat. | Sci.
Umar Male | Engineering 5 2 5 1 4
Vera Female | Art 1 5 1 5 1
Will Male Science 4 1 5 2 5
Xena Female | Art 3 4 3 4 2
Yusuf Male | Science 2 4 2 5 2
Total | 15 | 16 | 16 | 17 | 14 |

Team Skills Comparison

20.0{ ™= Programming
B Design
. Math
17.5 mmm Creativity
B Science

Skill Value

R
N &

~
/\??&

Figure 2. Team skills comparison across Scenarios 1, 2, and 4.

10
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Team1 -

Team2

Team3 - 13 15 18
Team4 -
Team5
Team6 -
Team7 - -15

Team8 -14

Team9 - 13 15

-13

Team10 - 15 14

] i -12

Programming Design Math Creativity Science

Figure 3. Heat map of individual skill contributions in the same
team.

Figure 2 and Figure 3 present visual analyses of the generated teams: a total
skill comparison chart and a heat map of individual skill contributions, respectively.
These figures are identical across Scenarios 1, 3, and 4, as the solver produced the
same team in each of these scenarious. The visuals confirm that the skill levels are
well-balanced and fairly distributed within the team.

6. Conclusion and future work

This study introduced an automated and efficient framework for forming equitable
student teams in STEAM education using Satisfiability Modulo Theories (SMT).
By integrating diverse constraints such as team size, minimum skill levels, gen-
der balance, and academic background diversity, our model ensures fair and well-
rounded team formations. The use of an SMT solver allowed us to encode complex
rules with clarity and generate satisfying teams in under a second, significantly re-
ducing the manual effort typically required by educators. Our experiments demon-
strated that the system consistently satisfied strict constraints and met diversity
goals, making it a practical tool for real-world applications. A user-friendly web
interface was also developed to support visualization of team assignments and con-
straint satisfaction. While the results are promising, the effectiveness of the system
is closely tied to the quality of the input data. Inaccurate or incomplete student
information can affect the fairness and balance of the resulting teams. Addition-
ally, scalability may become a concern as dataset sizes and constraint complexity
increase. Looking ahead, we plan to evaluate the framework on larger and more
heterogeneous student datasets and explore customizable constraint weighting, en-
abling educators to prioritize specific fairness criteria based on their institutional
goals.

These consistent outcomes across different configurations underscore the solver’s
capability to uphold fairness principles with minimal computational cost, demon-
strating both its scalability and effectiveness.

Looking forward, we plan to extend the tool to accommodate larger and more

11
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heterogeneous student datasets. Future enhancements will include support for soft
constraints with adjustable priority levels, allowing educators to tailor team for-
mation preferences dynamically. Additionally, feedback from real-world classroom
use will be incorporated to improve the system’s usability, adaptability, and edu-
cational value.

Data availability

Researchers or educators interested in using the dataset for replication or educa-
tional purposes may contact the corresponding author Ali Adil Adil at ali.adil
@inf.unideb.hu.
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A. Web application

To interact with our SMT-based team formation tool, users are first prompted
to upload a dataset in ‘json‘ format. The web interface, built using Streamlit,
automatically validates the structure of the file to ensure it contains:

o A list of students, each with attributes like ID, name, gender, background,
and skill ratings.

e A project requirements section specifying the team size and minimum re-
quired skills.

Once uploaded, the system checks for the presence of all required keys and values.
If the dataset is valid, the solver begins processing, and the user is presented with:

e A summary of team sizes and total number of teams.

o Charts showing gender balance and skill distribution across all teams.

e A download button to export the results in Excel format.
This interactive design allows educators or administrators to quickly validate stu-
dent team assignments and analyze team diversity before final implementation as

shown in Figure 4, the interface provides a simple and intuitive way to upload and
validate the dataset before team formation begins.
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The platform provides summary statistics and allows students to see which
team they have been assigned to, as shown in Figure 5.
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additional computational overhead due to motion gradient calculations and
masked reconstructions. However, the trade-off is justified by significant im-
provements in anomaly detection performance. The results demonstrate that
our framework enhances both accuracy and interpretability, making it a viable
solution for real-world applications such as surveillance, traffic monitoring,
and industrial security.

Keywords: video anomaly detection, hybrid deep learning models, multi-frame
anomaly detection, surveillance systems, masked autoencoder

AMS Subject Classification: 68T07, 68T45, 68U10, 68W10, 68M14, 68P30

Accepted: October 15, 2025
Published online: October 28, 2025


https://doi.org/10.33039/ami.2025.10.015
https://ami.uni-eszterhazy.hu
mailto:mohammed.iqbal.dohan.almurumudhe@student.uni-miskolc.hu
mailto:oliver.hornyak@uni-miskolc.hu

Annal. Math. et Inf. M. I. Almurumudhe, O. Hornydk

1. Introduction

Video anomaly detection is a critical problem in computer vision with applications
in surveillance and safety systems [16]. VAD refers to the automated detection of
unusual or unexpected events in video footage, such as security or safety violations.
Despite its importance, VAD faces challenges due to the rarity of anomalous events
and the limited availability of large-scale labeled datasets [22].

Recent studies have shown that when only normal data is available for training,
unsupervised learning is essential for VAD. Two primary unsupervised VAD ap-
proaches include reconstruction-based methods, which minimize reconstruction er-
rors for normal patterns [27], and prediction-based methods, which identify anoma-
lies by measuring discrepancies between predicted and actual frames. Reconstruc-
tion-based methods [17] minimize errors for normal patterns, while prediction-based
methods identify anomalies by comparing predicted and actual frames.

Traditional autoencoder-based methods for anomaly detection have been en-
hanced with hybrid scoring mechanisms that improve accuracy and reduce false
positives. These mechanisms combine multiple evaluation techniques to address
the limitations of relying solely on reconstruction errors. Motion-based scoring pri-
oritizes dynamic regions by using motion gradients, ensuring that moving anomalies
receive higher anomaly scores while reducing false alarms from background varia-
tions. Masked autoencoder scoring enhances anomaly localization by forcing the
model to reconstruct only selective occluded regions, focusing on foreground objects
where anomalies are more likely to occur. Additionally, spatially weighted recon-
struction loss assigns greater importance to motion-rich areas, minimizing false
positives caused by minor background changes [25]. Finally, temporal consistency
analysis detects anomalies based on frame-to-frame motion patterns, allowing the
model to identify unexpected behavioral changes over time rather than isolated
frame discrepancies. By integrating these techniques, hybrid scoring mechanisms
significantly improve the accuracy, robustness, and interpretability of video.

Generative Adversarial Networks (GANs) [24], such as VALD-GAN (Video
Anomaly Detection using Latent Discriminator-Augmented GAN) [24], divide-and-
conquer strategies decompose VAD into smaller sub-problems, improving detection
by integrating spatial, temporal, and multi-modal fusion techniques [31]. The self-
distilled masked autoencoder approach further enhances detection efficiency by
incorporating synthetic anomaly augmentation and motion-based weighting tech-
niques, achieving state-of-the-art performance while maintaining high-speed pro-
cessing [18, 26]. These advancements highlight the shift toward interpretable deep
learning models, capable of detecting diverse anomalies across real-world surveil-
lance scenarios.

This paper aims to improve the accuracy and interpretability of VAD by inte-
grating reconstruction-based estimation methods with hybrid methods [4], which
use motion gradients and masked autoencoders to prioritise foreground objects over
static backgrounds [14, 19]. In the proposed framework, we train autoencoders to
learn and reconstruct jointly the normal patterns and apply anomaly scoring to
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detect deviations.
The proposed VAD framework consists of three main stages: data preprocessing,
model training, and evaluation, which are as follows:

o Data Preprocessing: It includes resizing video frames, normalisation and aug-
mentation to have consistent input.

e Model Training: It applies convolutional layers for feature extraction, dropout
layers to prevent overfitting [21], and masked autoencoders for anomaly de-
tection [2]. These components work together to focus on dynamic regions
while reducing background noise, thereby improving anomaly detection.

o Evaluation and Metrics: We assess the performance of the model using ROC
AUC [26] and precision-recall curves. Reconstruction errors and anomaly
maps are visualized to provide insights into the system’s effectiveness.

In the following sections, these stages will be described in detail.

2. Data preprocessing and visualization

2.1. Dataset overview

This project uses well-known video anomaly detection benchmarks: ShanghaiTech
Campus [11] and UCSD Ped2 [22]. ShanghaiTech captures diverse scenes in a
university campus, featuring varying crowd sizes and occlusions that complicate
anomaly detection [26], while UCSD Ped?2 focuses on pedestrian-only zones, where
anomalies include bicycles and vehicles [15]. Both datasets predominantly con-
tain normal activities, with anomalies comprising a small fraction [23]. In UCSD
Ped2, normal events involve pedestrians on paths, while anomalies include bicycles
crossing them [10], compared to typical actions like walking or standing [9].

ShanghaiTech is large-scale, filmed in outdoor campus settings with complex
backgrounds, objects, and variable lighting conditions [28]. It includes 330 training
and 107 testing videos, resized to 128 x 128 pixels with a 70 : 30 train-test split.
UCSD Ped2, in contrast, is smaller and recorded in a controlled pedestrian zone
with consistent lighting and low background complexity [3]. Its 16 training and 12
testing videos (also 128 x 128 pixels, 70 : 30 split) include clearly defined anomalies,
though its small size can lead to overfitting in deep learning models.

Preprocessing scripts addressed frame rate and resolution inconsistencies for
uniform video loading [20], and visual anomalies were verified for consistency with
dataset labels and definitions [21].

2.2. Visualizations

Visualization techniques were employed to better understand the dataset and assess
model behavior. Sample frames from UCSD Ped?2 illustrated the distinction be-
tween normal pedestrians walking and anomalous activities bicycles or skateboards,
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helping verify label accuracy and provide visual evaluation references. Graphs
and charts revealed a dataset imbalance: normal frames vastly outnumber anoma-
lous ones, which may hinder model generalization.Reconstruction error histograms
showed higher errors for anomalies, validating the autoencoder’s effectiveness, while
precision-recall curves illustrated detection trade-offs.

Anomaly maps overlaid on frames used heatmaps red for anomalies, blue for
normal to localize abnormal regions. The model focused on moving foreground ob-
jects, reducing false positives from background changes, though high-motion areas
still caused occasional misclassification. Motion-based scoring improved localiza-
tion by prioritizing dynamic elements (see Figures 1, 2, 3).

Figure 1. Sample normal training and testing frames from the
UCSD Ped2 Dataset.

Figure 2. Sample non normal training and testing frames from
the UCSD Ped2 Dataset.

Feature maps, generated via Grad-CAM, highlighted regions influencing the
model’s decisions. In UCSD Ped2, they confirmed the model’s focus on relevant
anomalies like bicycles or vehicles on walkways [7]. Loss curves tracked training
and validation performance to detect overfitting or underfitting [5], while frame-
wise anomaly scores visualized anomaly timing and model confidence across video
sequences [1].
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Figure 3. Anomaly Maps.

2.3. Preprocessing techniques

Preprocessing ensures consistency across datasets, enhances model performance,
and improves generalization. Raw video frames often contain variations in resolu-
tion, lighting conditions, and noise, which can negatively impact model training.

By applying systematic preprocessing techniques, we create a standardized in-
put format that enables effective learning and robust anomaly detection. In this
section, we describe the preprocessing pipeline applied to the datasets used in this
study. The key steps include image resizing, normalization, data augmentation and
splitting data to train and test sets. The preprocessing technique used in the paper
is frame sampling, which was applied to optimize computational efficiency while
preserving essential motion information. Instead of processing every frame in high-
frame-rate videos, key frames were selected at fixed intervals to maintain temporal
coherence and capture relevant motion dynamics. This approach helped reduce re-
dundancy in the dataset while ensuring that the anomaly detection model focused
on meaningful variations in the video sequences. By carefully selecting frames, the
model was able to learn normal motion patterns effectively, improving its ability to
detect anomalies while keeping computational costs manageable. To standardize
the data and improve model performance,

3. Model architecture and methodology

3.1. Autoencoder architecture

An autoencoder is a neural network used mainly in unsupervised learning to learn
efficient representations of input data. It has two main parts: encoder and decoder.
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The network is trained to minimize the difference between the input and its recon-
struction, allowing it to learn efficient data representations. Autoencoders are used
for tasks such as dimensionality reduction, anomaly detection, denoising images,
and feature extraction. These layers use small filters (kernels) of size 3 x3 to extract
local features from the input images. They help identify edges, textures, and other
patterns crucial for understanding the image content. Immediately following the
convolutional layers, max pooling reduces the dimensions (both width and height)
of the feature maps. This downsampling helps to focus on the most prominent
features and reduces the computational load. A convolutional autoencoder (CAE)
is trained to reconstruct normal patterns, while anomalies are detected based on
higher reconstruction errors. During training, we incorporate dropout layers with
a 0.2 rate to prevent overfitting. To provide a clearer understanding of our au-
toencoder’s structure and how each layer contributes to the feature extraction and
reconstruction process, Table 1 presents a detailed breakdown of the network ar-
chitecture, including layer types, output dimensions, and parameter counts.

Table 1. Autoencoder architecture with layer types, output shapes,
and parameter counts.

Layer (Type) Output Shape Param #
Input Layer (None, 200, 200, 1) 0
Conv2D (None, 200, 200, 32) 320
MaxPooling2D (None, 100, 100, 32) 0
Conv2D_1 (None, 100, 100, 64) 18,496
MaxPooling2D_ 1 (None, 50, 50, 64) 0
Conv2D_ 2 (None, 50, 50, 128) | 73,856
MaxPooling2D_2 | (None, 25, 25, 128) 0
Conv2D_ 3 (None, 25, 25, 128) 147,584
UpSampling2D (None, 50, 50, 128) 0
Conv2D_4 (None, 50, 50, 64) 73,792
UpSampling2D_1 | (None, 100, 100, 64) 0
Conv2D 5 (None, 100, 100, 32) | 18,464
UpSampling2D_ 2 | (None, 200, 200, 32) 0
Conv2D 6 (None, 200, 200, 1) 289

This table details how the model progressively compresses and reconstructs
input frames, enabling effective anomaly detection. The resulting design guaran-
tees that the network can learn robust representations of normal data, without
sacrificing computational efficiency. The hybrid approach builds upon the baseline
CAE by integrating additional layers that enhance anomaly detection. Specifically,
motion-based scoring is implemented through a gradient-based attention module
that assigns higher importance to dynamic regions. Masked autoencoders introduce
a spatial masking layer, which selectively occludes portions of the input to force
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the network to reconstruct only key regions, improving sensitivity to anomalies.
Additionally, a spatial weighting layer is applied to the loss function, prioritizing
reconstruction errors in foreground areas over static backgrounds. These enhance-
ments has been seamlessly integrated into the encoder-decoder pipeline, ensuring
that anomaly detection is guided by both spatial and motion-aware features. Ta-
ble 1 provides a layer-by-layer breakdown of this hybrid architecture, illustrating
its improvements over the standard autoencoder. A hybrid activation function is
used in the autoencoder to improve anomaly detection.
To train the model and improve anomaly detection, a weighted loss is used:

S = aLyeconstruction T BLmotion
Where:
e « and [ are weights to balance the losses
e Licconstruction 1S the standard pixel-level loss
e Liotion reflects motion-based scoring

The model is designed to learn normal patterns by encoding input video frames
into a compressed latent representation and then reconstructing them. The encoder
consists of a series of convolutional and max-pooling layers that progressively re-
duce the spatial dimensions while capturing essential features. The decoder mirrors
this structure using upsampling and convolutional layers to reconstruct the origi-
nal frame. Each layer plays a crucial role in learning hierarchical representations,
from low-level edges to high-level semantic features. Dropout is used to prevent
overfitting, and hybrid activation functions (ReLU in hidden layers, Sigmoid in
the output layer) ensure non-linearity and normalized output. The design bal-
ances model complexity and reconstruction accuracy, enabling robust detection of
anomalies based on deviations in reconstruction quality.

3.2. Training procedure

The model was trained with an Adam optimizer with a learning rate of 0.001 for
training due to its adaptive learning capabilities and efficiency on complex datasets.
Adam combines the benefits of momentum and RMSProp by adaptively updating
learning rates for each parameter using estimates of first and second moments of
gradients [12]. To prevent overfitting, early stopping was used. Adam optimizer
was selected due to its adaptive learning rate properties, which improve stability
in training non-stationary datasets. A learning rate decay of 0.95 was applied
every 10 epochs to ensure stable convergence. During training, we minimized the
reconstruction loss function, Training was monitored using validation loss, with
early stopping applied if the loss did not decrease for 10 consecutive epochs. The
Mean Squared Error, as you can see on Figure 4, improves the model’s ability to
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separate normal and anomalous frames.

1 < .
MSE = — E; — E))?
SE= 3 (- B

i=1

Where:
o n is the number of pixels (or features) in the frame
e F; is the original pixel value at position ¢
o E; is the reconstructed pixel value at position i
o The summation ) computes the squared error for each pixel
e The division by n averages the error over all pixels

In Figure 4, the validation loss is observed to be slightly lower than the train-
ing loss. This behavior, while uncommon, can occur due to several factors. First,
the training process employs dropout and data augmentation (cropping, flipping,
and rotation), which increase the difficulty of reconstruction on the training data
but improve generalization to validation samples. Second, the hybrid loss func-
tion combines reconstruction and motion-based components; since the validation
sequences often exhibit smoother motion patterns and less noise, the model incurs
smaller motion-based penalties. Similar effects have been reported in regularized
autoencoder training, where strong regularization and early stopping can result in
lower validation loss compared to training loss. Therefore, this observation reflects
good generalization rather than model overfitting.

Training Loss
Validation Loss
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Figure 4. Training and validation loss curves.
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3.3. Hybrid approach

The hybrid approach to video anomaly detection improves traditional reconstruc-
tion-based methods by integrating motion-based scoring and masked autoencoders.
Although autoencoders typically learn to reconstruct normal patterns, they often
struggle to differentiate between subtle anomalies and normal variations, leading
to false negatives.

To address this, motion gradients are incorporated to assign higher importance
to dynamic regions, ensuring that moving objects receive greater attention than
static backgrounds. Additionally, masked autoencoders force the model to focus
on reconstructing only partially visible regions of frames, improving its ability to
detect abnormalities by prioritizing key foreground objects.

This hybrid strategy not only improves the accuracy of anomaly detection,
but also reduces false positives by ensuring that only significant deviations from
normal patterns are flagged. By combining reconstruction loss, motion-based scor-
ing, and masked autoencoders, the proposed model provides a robust and inter-
pretable solution for real-world surveillance applications, such as traffic monitoring
and security systems. This approach effectively bridges the gap between deep
learning-based anomaly detection and practical deployment, making it a reliable
choice for various safety-critical environments. However, the hybrid model en-
hances anomaly detection accuracy. To improve the autoencoder’s ability to de-
tect anomalies, we integrate a hybrid anomaly scoring mechanism that addresses
the limitations of traditional reconstruction-based methods. This hybrid approach
introduces motion-based scoring, which prioritizes dynamic regions, masked au-
toencoders, which reconstruct selectively occluded areas to improve sensitivity to
anomalies, and spatially weighted loss, which reduces false positives by focusing on
motion-rich regions. These modifications enhance the interpretability and robust-
ness of the autoencoder, making it more effective in distinguishing anomalies from
normal variations.

Table 1 outlines the detailed architecture, illustrating how these enhancements
are embedded within the model. Our proposed hybrid deep learning framework for
video anomaly detection (VAD) enhances anomaly detection by combining auto-
encoder-based reconstruction with hybrid anomaly scoring mechanisms. The model
preprocesses video frames through resizing, normalization, and augmentation to
ensure consistency across datasets; it introduces additional computational overhead
due to motion gradient calculations.

Shybrid = @Lyec(t) + BSmotion (t)
Where:
e « and [ are weighting factors
o Lycc(t) is the reconstruction loss at time ¢

o Smotion(t) is the motion-based scoring term at time ¢
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3.4. Evaluation metrics

To evaluate the performance of the model in detecting anomalies, we used standard
metrics: ROC-AUC, precision-recall curves, and reconstruction error distribution.
ROC-AUC measures how well the model separates normal and abnormal frames see
Tables 2, 3, while the precision-recall curve highlights the trade-off between detect-
ing true anomalies and avoiding false alarms [8]. We also analyzed reconstruction
error distributions to confirm that the autoencoder effectively reconstructs normal
data and flags deviations. The use of hybrid scoring, combining motion and spatial
cues, improved detection accuracy and reduced false positives [30].

Table 2. Precision-Recall Evaluation Metrics.

Threshold | TP | FP | FN | Precision | Recall | F1 Score
0.1 318 | 45 84 0.88 0.79 0.83
0.3 339 | 28 63 0.92 0.84 0.88
0.5 351 | 19 51 0.95 0.87 0.91
0.7 360 | 11 42 0.97 0.89 0.93
0.9 297 4 105 0.99 0.74 0.85

Table 3. Performance comparison of different model types on the
UCSD Ped2 dataset.

Avg. Error | Avg. Error

Model Type Dataset (Normal) (Anomaly) False Positives | ROC-AUC
Standard Autoencoder UCSD Ped2 0.013 0.038 High 0.89
GAN-Based Model UCSD Ped2 0.011 0.036 Medium 0.91
Hybrid Model (Proposed) | UCSD Ped2 0.012 0.041 Low 0.95

Reconstruction Error Distribution: Reconstruction error distribution plays a
crucial role in video anomaly detection, particularly in deep learning models that
rely on autoencoder-based frameworks. In an anomaly detection system, an au-
toencoder is trained to learn the normal patterns of video frames by minimizing
the reconstruction error—the difference between the original frame and the recon-
structed output. Since the model is only trained on normal data, it can effectively
reconstruct familiar frames with low error values [32]. However, when an anoma-
lous event occurs, the autoencoder struggles to accurately reconstruct the frame,
leading to significantly higher reconstruction errors (see Figure 5).

High reconstruction errors indicate anomalies. However, some normal frames
also produce high errors, leading to false positives. By incorporating hybrid scoring,
false positive rates were reduced by 15%, and the reconstruction error distribution
is further enhanced through the integration of hybrid scoring mechanisms. By in-
corporating motion-based scoring techniques and Masked autoencoders are a type
of autoencoder that reconstruct only selected parts of an input frame,typically
focusing on important or dynamic regions. where anomalies are likely to occur)
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and ignore static backgrounds, see Table 3, the system prioritizes dynamic re-
gions and foreground objects while reducing the influence of static backgrounds.
This approach improves the model’s sensitivity that may otherwise be difficult to
detect [1]. The study demonstrates that this technique outperforms traditional
reconstruction-only methods, achieving superior anomaly detection performance
across various datasets such as UCSD Ped2 and ShanghaiTech. Our model achieved
an ROC-AUC of 0.97 on ShanghaiTech and 0.95 on UCSD Ped2, outperforming
traditional autoencoders. The effectiveness of the method is confirmed by high
ROC-AUC scores, precision-recall curves, and visual anomaly maps, all of which
indicate a robust ability to detect deviations from learned normal patterns [2].

4. Results and discussion

4.1. Results

Understanding the distribution of keywords across datasets provides insight into
their structure and focus [2]. Terms such as ‘pedestrians’, ‘normal’ and ‘anomaly’
are very prominent terms used in this dataset owing to the dataset’s focus on
pedestrian behaviour and the primary objective of identifying normal activities
from anomalous. Additionally, these keywords help us define dataset labels as well
as create any semantic embeddings to be used during the data preprocessing stage
[29]. The datasets that contain normal activities, such as walking and running, are
ShanghaiTech Campus and Ped2, examples of abnormal events are the presence of
a bicycle or an unattended object. Such terms occur with some frequency, giving a
clue as to how best to perform feature extraction and interpret models. This enables
the design of feature representations that are aligned with the semantic nature of
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the dataset, such that the proposed model can learn to capture the deviation from
normal patterns [26].

4.2. Model performance

The performance of the proposed model was evaluated using widely recognized
metrics, providing a comprehensive assessment of its effectiveness:

ROC-AUC Score: A score of 0.97 was achieved. This means that the model
is very good at discriminating between normal and anomalous frames. The steep
rise in the curve indicates that this model will reduce false positives at a low cost
of true positives.

Confusion Matrix: A robust classification performance is depicted in Fig-
ure 6, as shown in the confusion matrix. It correctly identified 6,561 normal frames
and 359 anomalous frames and had a very small amount of false positives and nega-
tives. Finally, these results confirm the reliability of the model in case of anomalies,
even in more complex scenarios with overlapping patterns [18].

6000
50 5000
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4000

= 3000

True Labels

- 2000
Anomaly - 30 359

<1000

Normal Anomaly
Predicted Labels

Figure 6. Confusion matrix for video anomaly detection.

Reconstruction Accuracy: Among the testing datasets, the model itself
attained an overall accuracy of 95.3%. The fraction of anomaly signals it flags is
this value, which underscores its robustness and precision in determining anomalies,
comparable to today’s best methods [10].

Comparative Analysis: Finally, we evaluate the proposed model with exist-
ing benchmarks and find that they outperform existing methods on datasets such
as UCSD Ped2. These reconstruction loss with motion-based scoring designs, a
hybrid design that integrates reconstruction loss with motion-based scoring, out-
perform traditional reconstruction-only approaches in both speed and accuracy, see
Table 4.
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Table 4. Benchmark comparison for video anomaly detection.

Method Dataset ROC-AUC Precision | Recall
Score
Our Proposed Model UCSD Ped2 97 94 92
Autoencoder-Based Approach ShanghaiTech 89 86 83
GAN-Based Approach UCSD Ped2 91 89 87
Transformer-Based Model Avenue 95 93 91
Hybrid Model (Reconstruction + Motion) ShanghaiTech 96 95 94
Motion-only (Optical Flow Magnitude) UCSD Ped2 80 75 70
Motion-only (Frame Differencing) UCSD Ped2 72 68 65
Motion-only (Background Subtraction - MOG2) | UCSD Ped2 s 73 69

4.3. Discussion

While the proposed model achieved remarkable results, certain challenges were
observed during evaluation:

Reconstruction Challenges: Some frames were anomalous, all of which
showed reconstruction errors with values around the size of normal frames. The
weak spot here draws attention to attention to the fact that anomaly detection can
be improved by adding more scoring mechanisms, including temporal consistency
checks.

Dependence on Reconstruction Loss: Reconstruction loss worked well,
but sometimes was not sufficient to detect subtle anomalies. Furthermore, hybrid
approaches couched in motion gradients, temporal features, or reconstruction scores
may mediate a more holistic anomaly detection [6].

Dataset Limitations: It is shown that the imbalance between normal and
anomalous samples in datasets such as UCSD Ped2 can severely hamper the model’s
generalization to unexpected scenes. If we can increase the representation of
anomalies or try to use data augmentation strategies, then this could be dealt
with [13].

Real-Time Feasibility surveillance systems, where continuous video process-
ing and rapid event response are required. In such contexts, maintaining a mini-
mum rate of 25-30 frames per second (FPS) is generally considered the benchmark
for real-time performance.

When evaluated on a NVIDIA RTX 3060 GPU (24 GB VRAM) using 200x200
grayscale video frames, the proposed hybrid model achieved an average inference
time of approximately 42 milliseconds per frame, corresponding to a through-
put of 23.8 FPS. In comparison, a standard convolutional autoencoder (CAE)
reached around 33 FPS under the same conditions, while a GAN-based model such
as VALD-GAN [24] operated at 20 FPS, and Transformer-based frameworks [6]
achieved roughly 18 FPS due to their higher architectural complexity.

These results suggest that the proposed hybrid model provides a balanced trade-
off between detection accuracy and computational efficiency, offering better speed
than more complex GAN or Transformer architectures while maintaining superior
anomaly detection accuracy (ROC-AUC: 0.95-0.97). Although the model operates
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near real-time levels, sustaining performance above 25 FPS is critical for real-
world surveillance deployments, especially when processing multiple video streams
or higher-resolution inputs.

To further assess the role of motion cues in anomaly detection, three classical
motion-based baselines — optical flow magnitude, frame differencing, and back-
ground subtraction (MOG2) — were evaluated, as reported in Table 4. These ap-
proaches rely solely on pixel-level temporal variations to identify unusual activities,
without employing any learned spatial representations. While motion-only meth-
ods achieved ROC-AUC scores in the range of 0.72 to 0.80, the proposed hybrid
framework attained substantially higher scores (0.95-0.97) on the same datasets.
This performance gap demonstrates that motion cues, although informative for dy-
namic anomaly localization, are insufficient for robust discrimination when used in
isolation. The integration of reconstruction-based features with motion-aware scor-
ing enables the model to capture both spatial appearance and temporal dynamics,
yielding a more comprehensive understanding of scene behavior and significantly
improving detection reliability.

5. Conclusion and future work

This paper presented a hybrid deep learning framework for video anomaly detec-
tion, designed to improve both accuracy and interpretability in surveillance applica-
tions. The approach combines a convolutional autoencoder with a hybrid anomaly
scoring mechanism that integrates motion-based scoring and masked autoencoders.
The autoencoder is trained to reconstruct normal video patterns, while the scoring
mechanism prioritizes motion-rich regions using reconstruction errors, enhancing
anomaly detection.

We evaluated the model on the ShanghaiTech Campus and UCSD Ped2 datasets,
achieving ROC-AUC scores of 0.97 and 0.95, respectively. Pooling, upsampling,
motion gradients, and masked regions helped the model focus on foreground dy-
namics and reduce background-related false positives. Qualitative analyses — in-
cluding reconstruction error plots and visual anomaly maps — confirmed the model’s
ability to identify subtle anomalies. Overall, the proposed framework demonstrates
strong generalization and competitive performance, potentially surpassing existing
state-of-the-art methods. To address current limitations and further enhance per-
formance, several directions are proposed. First, incorporating temporal modeling
techniques, such as motion gradients or recurrent neural networks, could improve
the detection of anomalies that evolve over time. Second, optimizing for real-time
deployment through model quantization, lightweight architectures, or GPU accel-
eration would enable use in time-sensitive surveillance contexts.

Addressing dataset imbalance remains a priority and can be tackled by in-
creasing data diversity and employing advanced augmentation methods, includ-
ing synthetic anomaly generation. Attention mechanisms from transformer-based
models could help the system focus more precisely on relevant regions in each
frame, enhancing both accuracy and interpretability. Lastly, combining the current
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autoencoder-based architecture with transformer models would enable the frame-
work to capture long-range spatial and temporal dependencies, making anomaly
detection more robust and scalable. These advancements would support deploy-
ment in real-world applications such as public safety, industrial monitoring, and
smart city surveillance.
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Abstract. This paper presents the design and implementation of an adap-
tive testing system for assessing university students’ programming skills in
Python, C#, Java, JavaScript, and SQL. Adaptive testing dynamically ad-
justs question difficulty based on individual performance, enabling more pre-
cise and efficient assessment compared to traditional fixed-form tests. We
provide an overview of adaptive testing principles and the Item Response
Theory (IRT) models (1IPL-3PL) that underpin the system. Our approach
integrates continuous, categorical, and accelerated adaptive methodologies
to optimize both accuracy and test length. The system is implemented as a
Flask-based web application that selects questions from a customizable bank,
adapting to the learner’s estimated knowledge level in real time. Key features
include topic-based item selection, immediate scoring, detailed post-test ana-
lytics, and end-of-test formative recommendations (tailored by language/level
with estimated study time). The system demonstrates how IRT-based adap-
tive programming assessment supports personalized, data-driven evaluation
in higher education and hiring.

Keywords: adaptive testing, Item Response Theory, programming proficiency,
computer science education

1. Introduction

Computer-based testing offers several advantages over traditional paper-based meth-
ods [30], such as multimedia-enhanced questions, instant evaluation with rapid feed-
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back, and integrated practice tools. While general online platforms (e.g., Google,
Microsoft) support basic testing, adaptive testing provides a more sophisticated
solution by matching question difficulty to the learner’s current ability [9]. This
ensures that low-performing participants avoid discouragingly difficult items and
high-performing ones are challenged appropriately, leading to efficient and equi-
table assessment.

Adaptive testing has applications well beyond education. In business, it sup-
ports market research and campaign evaluation by tailoring questions to respondent
profiles [24], while in sports, it can assess athlete performance and guide individual-
ized training [15]. Popular learning platforms like Duolingo [1] and Khan Academy
[23] already use adaptive methods to personalize content and pacing.

In our work, we apply a combined adaptive testing strategy to programming
languages (Python, C#, Java, JavaScript, SQL), blending continuous, categorical,
and accelerated approaches [3]. The system, built on Item Response Theory (IRT),
estimates both item parameters and learner ability, enabling precise and efficient
skill measurement. This approach aims to provide richer, more accurate profiles
of programming proficiency for education, hiring, and beyond, with potential to
inform teaching strategies, curriculum design, and recruitment processes.

2. Related works

Adaptive testing has been widely studied for its potential to personalize assessment.
Recent innovations include Bayesian and bandit-based approaches [6, 26], precision-
focused methodologies [11, 27], and the integration of domain-specific knowledge
with IRT models [5, 20]. Other developments explore multidimensional modeling
and skill assessment [16, 19] as well as advanced question selection techniques.

In computer science education, Cisar et al. [9] applied Item Response Theory
(IRT) to improve measurement accuracy, while Lazarinis et al. [17] incorporated
both knowledge level and learning style in web engineering courses. Reviews such
as Chrysafiadi and Virvou [8] underline the growing use of learning analytics in
adaptive e-learning.

Programming language proficiency presents unique challenges. Ihantola et al.
[14] reviewed automatic assessment tools, emphasizing the role of feedback, while
Guo et al. [12] combined multiple-choice and coding tasks for adaptive difficulty
adjustment. Ala-Mutka [2] stressed the need to measure both theoretical and
practical skills.

IRT remains central to adaptive testing. Extensions by Wang et al. [30] and
Vie et al. [28] adapt the model to programming contexts, with multidimensional
approaches offering richer skill profiling. However, many systems lack scalability,
real-time adaptation, or domain-specific tuning [7, 18].

Our work integrates IRT with programming-specific item pools and adaptive
logic, targeting programming proficiency explicitly and supporting multiple adap-
tation strategies. Unlike popular platforms (e.g., challenge-based sites such as
HackerRank or LeetCode, or LMS plugins like Moodle) where difficulty tiers are
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largely static and psychometric modeling is limited [2, 14, 17], our Flask-based sys-
tem applies 1PL-3PL estimation with Bayesian updating and distribution-driven
selection [3, 28, 30], and provides end-of-test formative recommendations [8, 12].
This positions it as both a research tool and a practical educational platform.

3. Item Response Theory

IRT provides a probabilistic framework linking latent ability to response accuracy
across education and testing [4, 10, 13, 21, 22, 25, 29, 31]. We focus on the
dichotomous logistic models: 1PL, 2PL, and 3PL.

The 3PL model defines the probability of a correct response as:

1

P(XZJ =1 | Oj,ai,bi,ci) =C; + (1 — Ci)m,

where 6; is the ability of examinee j, a; is the discrimination parameter, b; is the
difficulty parameter, and c; is the pseudo-guessing parameter for item 1.

In the 2PL model, ¢; is fixed to zero, and in the 1PL (Rasch) model, a; is
constant across all items.

Ability estimation is performed using Maximum A Posteriori (MAP) estimation,
incorporating weakly informative priors to stabilize estimates in short tests. The
log-likelihood for a given examinee is:

L(0;) =Y [wijlog Py + (1 — @) log(1 — Pyy)],
’iEI_j

where I; is the set of administered items for examinee j, and x;; is the binary
response.
Item selection follows a maximum Fisher information criterion:

1(9) =a?<1—Pi->PZ-'(1‘Ci)2,

P —c
choosing the item that maximizes I(6;) at the current estimate éj.

Stopping occurs when the standard error (SE) of ; falls below a threshold (7 =
0.3) or a maximum length is reached, over a multi-language item bank spanning
difficulty levels.

This implementation leverages the efficiency of IRT for adaptive testing while

integrating detailed logging of behavioral metrics (e.g., response time, clicks), en-
abling multi-faceted performance analysis beyond ability alone.

4. Adaptive testing system implementation

To assess adaptive learning in programming skills, we have developed a test system.
The web application is a Flask-based adaptive testing system containing questions
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on for example, Python, C#, Java, JavaScript, SQL. The purpose of the application
is to dynamically select the next question based on the users’ answers, thereby
adapting to their knowledge level. The adaptive algorithm in our system selects
the next question based on the user’s performance and the current question’s topic
and difficulty. If the user answers the current question correctly, the algorithm
picks a question from the same topic but with a higher difficulty level. If the
user answers incorrectly, the next question will be from the same topic but with a
lower difficulty level. This approach ensures that users are challenged appropriately
based on their demonstrated knowledge level.

4.1. System architecture

The test system’s architecture is designed to be flexible and easily expandable. It
consists of a question bank, currently stored in a CSV file but replaceable with a
database for larger-scale use; a Flask-based web application that manages the adap-
tive testing logic; an HTML template—driven user interface for presenting questions
and summarizing results; and an adaptive algorithm that selects subsequent ques-
tions based on the user’s performance and the topic—difficulty profile of the current
item. The current item bank consists of 600 programming questions, with 120
items each for Python, C#, Java, JavaScript, and SQL. Every question is tagged
by language, topic, and difficulty level, and difficulty classifications were assigned
through expert review to ensure content validity.

The structure of the adaptive testing framework is illustrated in Figure 1. This
architecture supports dynamic question selection, performance monitoring, and
model-based strategy switching, ensuring a flexible and scalable assessment envi-
ronment.

4.2. Result analysis

At the end of the test, users navigate to the /test_results page where they
can see a tabular format of how they responded to each question, along with a
summary diagram. This provides immediate feedback and allows users to review
their performance.

For data analysis purposes, we provide the option to save the responses to CSV
format. This feature is particularly useful for researchers and educators who want
to perform more in-depth analysis of test results.

4.3. Scoring and formative feedback

While the system provides immediate scoring, it also includes formative feedback
at the end of the test. Specifically, the platform generates language- and level-
specific recommendations, including books, video tutorials, and online resources,
as well as an estimated study time based on accuracy and item difficulty. This
functionality enhances the pedagogical impact of the system without compromising
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Figure 1. System architecture of the Flask-based adaptive testing

platform. The architecture consists of (1) a question bank stored

in a relational database, (2) an adaptive engine applying IRT and

Bayesian updating, (3) distribution-based item selection strategies,

(4) a test session manager handling user interactions, and (5) a feed-

back and analytics module providing scoring, visualizations, and
formative learning recommendations.

the validity of the adaptive measurement. Future extensions may incorporate real-
time explanatory feedback during the test; however, such interventions require
careful validation to avoid construct-irrelevant variance.

4.4. Future enhancements

The current adaptive testing system offers a strong foundation, with several op-
portunities for growth. Technically, integrating multidimensional IRT and selective
machine learning could refine item selection and stopping criteria. Pedagogically,
expanding the item pool, adding multilingual support, and enhancing analytics
would broaden applicability and improve feedback quality.

Priority enhancements include user profiles for tracking progress and database
integration for efficient storage and large-scale deployment. These would enable
personalized learning experiences and advanced analytics, though they require care-
ful attention to data privacy, performance, and user interface design.

35



Annal. Math. et Inf. A. Apré, T. Tajti

5. General statistical analysis of test-taking behavior

A well-designed adaptive testing system must not only dynamically select content
based on latent ability estimates, but also be capable of capturing and analyzing
user behavior patterns to enhance personalization. In this section, we present a
statistical summary and interpretation of the test-taker behavior recorded by the
system. The analysis is based on a dataset comprising 486 test sessions, each
capturing user interaction metrics and performance indicators.

5.1. Key Descriptive Indicators
The dataset includes several essential features:
e clicks — total number of interactions during the session,
e total_time — total test duration in seconds,
e« avg_time_ per_ question — average time spent per question,
e correct__answers — number of correctly answered questions,
e total__questions — total number of attempted questions.
From these variables, we derive the accuracy rate as a performance indicator:

CorrectAnswers;
TotalQuestions;

Accuracy; =

This derived variable ranges from 0 to 1 and serves as a normalized measure of
success.

Table 1. Descriptive statistics of adaptive test results.

Metric Mean Std. Dev. Min 25% Median 75% Max
Clicks 53.16 25.25 10.00  32.00 52.50 74.00  100.00
Total Time (s) 563.68 262.26 103.8 331.64 579.69  793.78 995.30
Avg. Time / Question (s)  46.78 34.26 435  22.22 38.47 61.88  198.20
Correct Answers 7.53 5.66 0.00 3.00 7.00 11.00 25.00
Total Questions 14.91 5.99 5.00 10.00 15.00 20.00 25.00
Accuracy 0.51 0.29 0.00 0.25 0.50 0.75 1.00

5.2. Behavioral and pedagogical interpretation

The observed variance in metrics is not a flaw of the system, but rather a key ad-
vantage of adaptive testing — it adjusts to users with diverse profiles. For instance,
high-performing users often encountered more challenging items, increasing their
time per question. Conversely, struggling users received easier items, potentially
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finishing faster but with fewer correct answers. The pattern resembles a tailored
staircase of difficulty.

Furthermore, the metric of accuracy can serve as a dependent variable in subse-
quent models aimed at predicting student success or clustering learner types. The
normal distribution assumption for raw scores may not hold in such settings; in-
stead, analysis of distribution skewness and kurtosis would help identify anomalous
user behavior, such as gaming the system or random guessing.

5.3. Mathematical considerations

To estimate population parameters and validate assumptions, future analysis may
consider modeling accuracy as a Bernoulli-distributed response in a generalized
linear model (GLM), where predictor variables include time per question and click
count:

logit(P[Correct; = 1]) = By + f1 - AvgTime, + S5 - Clicks; + ¢;

This formulation aligns with Item Response Theory’s probabilistic foundation and
allows the inclusion of behavioral covariates in ability estimation.

5.4. Implications for adaptive systems

The exploratory statistical analysis offers a strong empirical foundation for the
personalization logic of the adaptive system. By capturing and interpreting user
interaction patterns, we can:

o Identify subgroups with different test-taking behaviors,
o Develop feedback strategies based on pacing and accuracy,

e Improve question selection algorithms by incorporating behavioral data.

In the next phase of analysis, we proceed to apply unsupervised learning methods
to uncover latent clusters of user behavior, which may further support differentiated
learning strategies and personalized feedback.

5.5. Evaluation of test performance visualizations

The overall performance of participants was further analyzed using summary plots
derived from the adaptive testing data. Figure 2 presents the distribution of correct
answers. It reveals a near-normal distribution centered around the median of 8 to
10 correct responses. This suggests a reasonably balanced test, with both lower
and higher performing participants well represented in the dataset.

Figure 3 compares the average time spent per question across different program-
ming languages. Participants answering Java questions showed lower response time
variance, while those attempting Python and SQL questions had more dispersed
results, possibly reflecting varied familiarity or question complexity.
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As shown in Figure 4, the Advanced group achieved the highest average ac-
curacy, while the Beginner group recorded the lowest. Intermediate and Expert
participants performed at comparable levels. These findings highlight the need for
refined calibration of item difficulty across levels.

Distribution of Correct Answers
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Figure 2. Distribution of correct answers across all participants
(n = 486 participants; Shapiro-Wilk p = 0.23).
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Figure 3. Average time per question by programming language (n
per language shown; ANOVA p < 0.05; * indicates significance).
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Average Accuracy by Difficulty Level
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Figure 4. Average accuracy grouped by difficulty level.

5.6. Tabular summary of participant performance

Table 2 summarizes key performance indicators such as average accuracy, average
response time, and the number of questions completed, grouped by programming
language and difficulty level. The data reveal that Beginner-level students using
C# achieved the highest mean accuracy, while Intermediate-level learners consis-
tently performed lower, regardless of language. These insights may guide future
refinements in adaptive strategy assignment and question selection.

6. Conclusion

This paper presents the design and evaluation of an adaptive testing system for
programming proficiency in Python, C#, Java, JavaScript, and SQL. Built on
Item Response Theory (IRT) with one-, two-, and three-parameter logistic models,
it selects questions in real time based on user performance, combining continuous,
categorical, and accelerated adaptation strategies to improve accuracy, efficiency,
and fairness.

Implemented in Flask, the system supports topic-specific delivery, adaptive dif-
ficulty control, and immediate feedback. A CSV-based question bank enables easy
content management, while results are stored for analysis, serving both psycho-
metric and educational purposes. Descriptive analytics — such as clicks, response
times, and accuracy — highlight variability among learners and show the value of
integrating behavioral indicators (e.g., pacing, engagement) into adaptation logic.

Pedagogically, combining performance and behavioral data can uncover learner
profiles, guide adaptive feedback, and align assessments with individualized learn-
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Table 2. Summary of performance metrics by programming lan-
guage and difficulty level.

Avg Avg Time per Avg
language level Accuracy Question (s) Questions
C# Advanced 0.55 45.26 15.00
C# Beginner 0.62 47.14 12.60
C# Expert 0.50 41.12 16.96
C# Intermediate 0.34 59.59 12.05
Java Advanced 0.55 39.88 15.80
Java Beginner 0.58 50.13 12.46
Java Expert 0.47 35.65 16.45
Java Intermediate 0.40 56.73 11.65
Python Advanced 0.43 62.70 14.20
Python Beginner 0.50 49.92 13.09
Python Expert 0.49 44.80 15.76
Python Intermediate 0.45 60.09 12.34
SQL Advanced 0.39 47.62 14.13
SQL Beginner 0.53 42.73 12.30
SQL Expert 0.47 38.28 15.40
SQL Intermediate 0.43 58.52 11.71

ing paths. Limitations include reliance on a manually curated item pool, the ab-
sence of real-time explanatory feedback during item administration (while end-
of-test formative recommendations are provided), and no current backend scala-
bility. Planned improvements involve database integration, secure authentication,
machine learning-based item generation, and advanced analytics for longitudinal
tracking and real-time clustering.

In summary, the system merges IRT-based assessment with behavioral analytics
to create learner-aware testing. Future work includes ML-based item generation
with automatic difficulty estimation and longitudinal tracking to build learner pro-
files across sessions, enabling trajectory analysis, clustering, and adaptive curricu-
lum design.Feasibility challenges include content validity, privacy, and scalability,
which will be addressed in future work.
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Abstract. This paper presents a method for static arm signal recognition
using OpenPose-based keypoint estimation, keypoint normalization, and two
distinct classification approaches: K-means clustering and a neural network
classifier. The system works with a simple camera setup and generalizes
across users. A keypoint normalization technique is used to handle differ-
ences in body size and camera distance. To improve robustness against body
rotation, we introduce a technique for generating artificially rotated training
data using 3D keypoint reconstruction. The recognition models were trained
and evaluated on a custom dataset of nine gestures, while rotation robust-
ness was tested on a representative subset of three gestures. Results show
that both models maintain high accuracy and efficiency even under moderate
rotation.

Keywords: Arm Gesture Recognition, Static Gestures, OpenPose, Keypoint
Normalization, K-means Clustering, Neural Networks, Data Augmentation,
3D Reconstruction, Human-Computer Interaction, Rotation Robustness
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1. Introduction

Human arm gestures are a natural and intuitive means of communication, fre-
quently used in everyday situations ranging from traffic control to human-robot
interaction. While easily interpreted by humans, the automatic recognition of such
gestures remains a challenging task for computer systems due to the variability in
body types, camera perspectives, and environmental conditions.

*Special thanks to my supervisor, Dr. Laszlé6 Gulyds® for his support and Gergé Szalay® for
his guidance.

Accepted: October 8, 2025
Published online: October 28, 2025


https://doi.org/10.33039/ami.2025.10.005
https://ami.uni-eszterhazy.hu
mailto:hhpw8b@inf.elte.hu

Annal. Math. et Inf. M. Zs. Bagladi

A particularly important class of gestures is static arm signals, in which the
meaning is conveyed by a single body pose, independent of motion or temporal
context. These static signals are prevalent in domains such as traffic management,
where police officers use arm positions to direct vehicles, or in aviation, where
ground crews communicate using standardized poses. In such safety-critical appli-
cations, accurate and real-time recognition is essential.

Recent advances in computer vision, especially in human pose estimation, have
made it possible to extract structural information about the human body from im-
ages. However, interpreting this data for gesture classification still requires robust
and efficient algorithms. Many existing solutions rely on expensive hardware or are
sensitive to variations in camera angles and user appearances.

In this paper, we propose a lightweight, camera-based solution for recognizing
static human arm gestures. Our approach uses OpenPose for keypoint extraction,
followed by normalization to handle variations in camera distance and body propor-
tions. We explore both unsupervised (K-means clustering) and supervised (neural
network) classification methods. To improve robustness against changes in camera
orientation, we introduce a novel data augmentation technique using artificially ro-
tated skeletons. The methods were evaluated on a custom dataset of nine gestures
from multiple individuals, with rotation robustness tested on a subset of three ges-
tures rotated up to 45°. The results demonstrate that both classification models
achieve high accuracy and fast inference even under moderate rotation, validating
the practicality of our approach.

2. Problem statement

The primary objective of this work is to develop a robust and efficient system for
recognizing a predefined set of static human arm signals from a single 2D image.
Such a system is essential for applications in traffic control, logistics, and human-
robot interaction, where clear and immediate interpretation of human signals is
critical.

The core technical challenge is to create a classifier that is invariant to several

factors:

e Viewpoint Variation: The system must reliably identify gestures even
when the person is not directly facing the camera. A key goal is to maintain
high accuracy under moderate body rotations (e.g., up to 45°).

o User-Specific Differences: The model must generalize across individuals
with different body proportions, sizes, and minor variations in gesture exe-
cution.

e Scale and Position: Recognition should be independent of the person’s
distance from the camera and their position within the frame.

Furthermore, the solution must be practical, operating in real-time with a stan-
dard monocular camera, without specialized hardware. This paper addresses these
challenges by leveraging 2D pose keypoints and techniques for robustness and gen-
eralization.
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3. Related work

The field of gesture recognition has seen significant advancement in recent years,
particularly through the integration of pose estimation and machine learning tech-
niques.

An early approach to arm gesture recognition using convolutional neural net-
works was proposed by Mathe et al. [8], where gestures were classified based on
key features extracted from depth and color images. Their work demonstrated the
feasibility of using CNNs for classifying human arm gestures with reasonable accu-
racy, though it primarily focused on dynamic inputs and required more constrained
settings.

A major breakthrough in human pose estimation came with the introduction of
OpenPose [2], an open-source framework capable of real-time multi-person 2D pose
detection using part affinity fields. OpenPose enables reliable extraction of body
keypoints from standard camera footage without depth sensors or markers, making
it a foundational tool for gesture-based applications. An alternative to OpenPose is
Google’s MediaPipe [6], which also provides real-time pose estimation. While both
are highly capable, OpenPose was chosen for this work due to its widespread use
in academic research and its BODY-25 model, which offers a rich set of keypoints
suitable for detailed pose analysis.

In a related domain, He et al. [4] explored the recognition of traffic police
gestures using a combination of convolutional pose machines and handcrafted spa-
tial features. Their method also incorporated LSTM networks to model temporal
patterns. While their focus was on dynamic gesture sequences, their integration of
pose-based features laid important groundwork for gesture interpretation in safety-
critical contexts.

Several other studies have leveraged keypoint extraction and deep learning for
gesture recognition. Liu et al. [5] employed a Spatio-Temporal Graph Convolutional
Network (ST-GCN) with attention mechanisms to achieve high accuracy on a large
dataset of police gestures. Similarly, Ma et al. [7] developed a real-time ST-CNN
using Kinect data, demonstrating strong performance in virtual city environments.
Sathya et al. [10] used cumulative frame differences and a Random Forest classifier
for static gesture recognition. Mishra et al. [9] focused on recognizing authorized
traffic controllers by first detecting them with an object detector, then reconstruct-
ing 3D hand models for gesture classification with a CNN. A related approach for
dynamic gesture recognition was proposed by Bagladi et al. [1].

While our work focuses on 2D pose estimation for simplicity and efficiency, 3D
pose estimation offers a more direct solution to viewpoint variations. For instance,
Féthi et al. [3] proposed a method for multi-view, multi-body 3D pose estimation
that does not require camera calibration. Such methods can inherently handle
rotation but often demand more complex models and multiple camera setups, which
contrasts with our goal of a lightweight, single-camera system.

Building upon these works, our method targets the recognition of static arm
signals using only pose keypoints, without temporal modeling, and emphasizes
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robustness against viewpoint variations.

4. The proposed pipeline

The proposed system recognizes static human arm signals through a multi-stage
pipeline, as depicted in Figure 1. The process consists of the following main stages:

1. We take 2D pictures of the person giving the static human arm signal.
2. Performing 2D keypoint estimation using the OpenPose BODY-25 model.
3. Normalization of the OpenPose keypoints for scale and position invariance.

4. Classification using a gesture recognition model (see Section 5).

OpenPose 1x1
_— _— % — 000 —— _ ———— Result
o
e o

Human pose Camera Pictures yp Normalized @~ Recoghnition
image model

Figure 1. Pipeline for static arm gesture recognition.

The initial stages of the pipeline — image capture, keypoint estimation, and
normalization — are detailed in the following subsections.

4.1. Image capture

The process starts with capturing a 2D image of the person performing the gesture
using a simple webcamera. This approach requires no additional depth sensors or
specialized hardware. To ensure reliable keypoint detection, the person’s upper
body must be fully visible in the frame.

4.2. Keypoint estimation

The captured image is processed using the OpenPose framework [2] to extract
2D keypoints. We utilize the BODY-25 model to obtain the coordinates of 25
anatomical points, which provides a structured representation of the person’s pose
for the subsequent steps.

4.3. Normalization

The raw keypoint coordinates from OpenPose are not directly suitable for gesture
classification because they are sensitive to the person’s position, distance from the
camera, and individual body proportions. To address this, we apply a normaliza-
tion step.
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The skeleton is transformed to fit within a unit square, with the neck keypoint
(ID 1) serving as the new origin (0,0). This process of translation and uniform scal-
ing makes the gesture representation independent of the person’s size or position in
the frame. By removing this variability, the normalization allows the classification
models to focus purely on the pose itself.

5. Recognition models

The recognition of static arm gestures in this study is approached using two fun-
damentally different machine learning paradigms. The first is an unsupervised
method based on the K-means clustering algorithm, while the second utilizes a
supervised neural network classifier. Both methods operate on normalized 2D key-
point vectors produced by the pose estimation pipeline described in Section 4, and
are designed to assign the input pose to one of a finite number of predefined gesture
categories.

This subsection focuses on the K-means clustering approach, detailing the con-
figuration phase, distance metrics, evaluation process, and practical considerations
of using this method for real-time gesture classification.

5.1. K-means clustering for gesture classification

K-means is an unsupervised learning algorithm widely used for partitioning data
into K distinct clusters based on geometric similarity. In the context of gesture
recognition, each cluster corresponds to a specific arm pose, and the centroid of
that cluster serves as its representative gesture template.

5.1.1. K-means algorithm overview

The standard K-means algorithm proceeds through the following steps:

1. Initialization: K cluster centroids are initialized from representative sam-

ples.

2. Assignment: Each input data point (normalized pose vector) is assigned to

the closest centroid using a chosen distance metric.

3. Update: New centroids are computed by taking the mean of all vectors

assigned to each cluster.

4. Tteration: Steps 2 and 3 are repeated until the centroids stabilize.

Once configured, the resulting centroids can be stored and used for efficient
classification of unseen samples by identifying the nearest cluster representative,
which is called centroid.

Typically, 10-20 samples per gesture were sufficient in my experiments to yield
stable and accurate centroids.
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5.1.2. Pose representation and distance metrics

Each normalized pose is represented as a 50-dimensional real-valued vector formed
by concatenating the (z,y) coordinates of 25 BODY-25 keypoints. Classification
is performed by computing the distance between this input vector and each of the
K centroids. The sample is assigned to the class of the closest centroid.

We explored multiple distance metrics:

e FEuclidean distance, calculated over all keypoints,

o« Weighted distance, where each keypoint contributes with a custom weight

to emphasize informative keypoints.
The weighted distance is defined as:

50
p(A,B) = Zwi (A — B;)?
i=1

where A,B € R are the input vectors, and w € R is a manually constructed
weight vector. Higher weights are typically assigned to the elbows and wrists,
which are key to distinguishing gestures. The Euclidean distance is a special case
of this formula where all weights w; are equal to 1.

5.2. Neural network-based classification

In addition to the unsupervised K-means clustering method, we also implemented
a supervised neural network approach for static arm gesture classification.

5.2.1. Neural network architecture

The classification model is a feedforward neural network composed of fully con-
nected (linear) layers interleaved with ReLU activation functions. The input layer
receives the 50-dimensional normalized pose vector, and the output layer produces
class scores for the 9 gesture categories. Several configurations were tested; a typ-
ical architecture that achieved high accuracy was as follows:

e Input: 50 features (normalized keypoints)

o Hidden layers: [1024, 512, 256] neurons with ReLU activation

o Output layer: 9 neurons (gesture classes) with softmax activation

5.2.2. Training and validation

The labeled dataset was split into training, validation, and test sets in a 60-10-
30% ratio. The model was trained using the Adam optimizer with a batch size of
4096. Training was performed for multiple epochs, with early stopping based on
validation accuracy. The stopping threshold was set to 99.5% validation accuracy.

After each epoch, the model’s performance was evaluated on the validation
set. If the model surpassed the accuracy threshold, training was halted to avoid
overfitting.
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6. Dataset

To evaluate the proposed recognition methods, we recorded a custom dataset of
static human arm signals using a standard webcamera. No special hardware was
used, ensuring that the system remains cost-effective and widely deployable.

6.1. Data collection procedure

The dataset was recorded using a standard webcam setup. Images were extracted
from videos and then processed through the OpenPose framework to extract 2D
pose keypoints.

To ensure robustness and variability, multiple individuals were involved in the
data collection process. While the majority of the samples were performed by the
author, three additional participants were recruited to enrich the dataset. These
contributors received brief verbal instructions about the arm signals but were not
trained in any standardized way, resulting in natural variation in gesture execution.
This diversity helps the models generalize across different body types and styles of
gesture performance.

6.2. Recorded signals

We defined a total of nine distinct static arm signals, inspired by standardized
traffic control and hand signaling conventions. These are:

Each sample in the dataset was manually labeled according to one of the cate-
gories above. Participants held the same arm position with minor natural variation
for several seconds, from which frames were extracted to increase the sample count.

A total of 53000 labeled samples were collected for the full dataset.

6.3. Rotated dataset

In practical applications, it is common for the individual giving a signal not to be
directly facing the camera (Figure 3), which may result in reduced accuracy. This
paper presents various approaches to address the problem of rotated signals. One
solution involves artificially generating rotated data by estimating the depth of the
keypoints from the data captured facing the camera, producing a 3D skeleton that
can be rotated in 3D space before being projected back onto a 2D plane. Since only
the data captured facing the camera is required for this process, there is no need
to create additional datasets, making the solution both convenient and easy to use.
For the K-means algorithm, the centroids are augmented with this synthetic data
after the initial configuration phase. Similarly, this artificially generated training
data can also be employed in training the neural network.

To test the robustness of the system against moderate body rotation, we also
recorded a second, smaller dataset focusing on rotated poses. For this purpose,
a custom-printed circular rotation guide (Figure 4) was placed on the floor to
allow consistent measurement of the body’s rotation angle relative to the camera.
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leftstraight straightstraight rightstraight

leftshoulder shouldershoulder rightshoulder

Figure 2. The nine static arm signals in the dataset.
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Figure 3. Examples of rotated static arm signals.
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Each subject stood on the guide and performed the signal while rotated by specific
angles. This setup ensured that the rotated dataset was captured with high angular
precision.

Figure 4. Custom-made rotation guide for precise data collection.

We selected a representative subset of three arm signals for rotation: neutral,
rightshoulder, and rightup. These were recorded at rotation angles of 15°, 30°,
and 45° both to the left and right relative to the frontal view. This setup enabled
controlled testing of the recognition system using real-world data. The rotated
dataset consists of over 17,000 front-facing samples and over 34,000 rotated samples.
Our results show that these solutions robustly handle rotated hand signals up to
45° with respect to the ideal case of facing the camera, while maintaining benefits
like speed and accuracy in recognition (Figure 7).

7. Results

The performance of the proposed gesture recognition methods was evaluated on
both the full dataset of nine static arm signals and the rotated subset of three
gestures. The results are summarized in this section.

7.1. Full dataset results

The K-means clustering approach demonstrated high accuracy in classifying the
nine static arm signals. As shown by the confusion matrices in Figure 5, both the
standard Euclidean distance and the weighted distance metric yielded excellent
results with minimal confusion between gestures. The weighted distance, which
emphasizes keypoints on the arms and hands, provided a marginal improvement,
confirming the effectiveness of this simple, unsupervised method for pose classifi-
cation.

Similarly, the neural network classifier achieved outstanding performance on
the full dataset. The confusion matrix in Figure 6 illustrates that the model cor-
rectly classified nearly all test samples, demonstrating its capacity to learn robust
representations of the gestures. Both methods proved to be accurate and effective
for recognizing the defined set of static arm signals.
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Accuracy=099 - Balanced Accuracy=0.99 - FL=0.9874 - Top-k=0.9865
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(a) K-means clustering results on the full (b) K-means clustering results on the full
dataset (Euclidean distance). dataset (weighted distance).

Figure 5. Confusion matrices for K-means clustering on the full
dataset.
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Figure 6. Neural network classifier results on the full dataset.
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7.2. Rotated dataset results

The robustness of both the K-means and neural network models against body rota-
tion was evaluated using the rotated dataset. The results, summarized in Figure 7,
demonstrate that both methods maintain high recognition accuracy even when the
subject is rotated up to 45° from the frontal view. While minor misclassifications
occur at larger rotation angles, particularly for the K-means model, the overall per-
formance is highly successful. This confirms that our approach, including the use
of artificially generated rotated data for training, effectively solves the challenge of
viewpoint variation in static gesture recognition.

Accuracy=0.98 - Balanced Accuracy=0.98 - FL=0.9815 - Top-k=0.9690 .

(a) K-means clustering results on rotated (b) Neural network results on rotated
dataset. dataset.

Figure 7. Confusion matrices of K-means and neural network on
the rotated dataset.

8. Conclusions

This paper presented a method for recognizing static human arm signals using 2D
keypoint estimation and machine learning classification. The approach is based
on OpenPose for keypoint extraction, followed by normalization and classification
using K-means clustering or a neural network. A novel aspect of the work is the
generation of artificially rotated data to augment the training set, improving the
model’s robustness to changes in body orientation. The methods were evaluated on
a custom dataset of nine gestures, with results showing high accuracy and efficiency
even with body rotations of up to 45 degrees, indicating the potential for practical
applications in real-time gesture recognition using standard camera equipment.
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Abstract. P4 [2] is a domain specific language for programming the data
plane of network devices in a protocol independent manner. To analyze and
transform Programming Protocol Independent Packet Processors (P4) pro-
grams, we use P4Query[5], a tool that performs both syntactic and semantic
analyses and represents P4 source code as abstract syntax trees (ASTs) in
the form of directed graphs. In this paper, we explore how Graph Neural
Networks (GNNs) can be applied to these graph structured ASTs to learn
high-level code transformations. We introduce and evaluate three models: a
variable renamer that learns to propagate identifier changes across the AST,
a parameter reorderer that predicts function argument permutations, and a
detector for semantically empty else branches. These tasks demonstrate the
effectiveness of GNNs in understanding and transforming P4 code structures.
Such models can support code optimization and standardization efforts by
automating repetitive or error-prone transformations in P4 programs.

Keywords: P4, PAQuery, GNN, networks

1. Introduction

The rapid evolution of computer networks has led to the increasing complexity of
network protocols and the need for flexible, programmable solutions. The Pro-
gramming Protocol Independent Packet Processors (P4) [2] language has emerged
as a powerful tool for defining how packets are processed in network devices. it
follows the Software Defined Networking (SDN) approach, so it allows develop-
ers to specify the behavior of the data plane independently of the control plane.
Unlike traditional programming languages, P4 mainly focuses on the data plane
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and makes it fully programmable, enabling more dynamic and adaptable network
configurations.

As the use of P4 grows, so does the necessity for effective analysis and refactoring
tools that can assist developers in optimizing their code. The P4Query [5] tool
provides a robust framework for static analysis of P4 programs, generating abstract
syntax trees (ASTs) [3] that represent the structure of the code. These ASTs
serve as a foundation for various analyses and transformations, facilitating the
identification of potential improvements and refactoring opportunities.

In recent years, Graph Neural Networks (GNNs) [9] have gained prominence in
the field of machine learning, particularly for tasks involving graph structured data.
By leveraging the inherent relationships within graphs, GNNs can learn to predict
node attributes, modify graph structures, and uncover hidden patterns. This paper
explores the integration of GNNs with P4Query generated ASTs to enhance the
refactoring process of P4 programs. By training GNN models on these syntax trees,
we aim to develop a system that can intelligently suggest modifications, thereby
improving code quality and maintainability.

GNNs operate on graph structured data, where the input consists of a set of
nodes and edges that define the relationships between those nodes. Each node is
typically associated with a feature vector that encodes relevant information about
that node. During the training process, GNNs utilize a message passing mecha-
nism, where nodes exchange information with their neighbors iteratively. In each
iteration, a node aggregates the features of its neighboring nodes, allowing it to
update its own feature vector based on the collective information from its local
neighborhood.

This process enables GNNs to capture both local and global structural patterns
within the graph. After several iterations of message passing, the updated node
features can be used for various tasks, such as node classification, link prediction,
or graph classification. Ultimately, GNNs modify the input feature representations
by learning to emphasize important relationships and patterns within the graph,
leading to improved performance on tasks that require an understanding of complex
relational data.

The P4 programming language is widely used for describing packet processing
logic in programmable network devices. Due to its domain specific nature and
structural richness [4], refactoring P4 programs presents unique challenges that
cannot be effectively addressed with traditional string based or token based meth-
ods.

Our goal is to design a refactoring pipeline that learns from examples, general-
izes across P4 code bases, and ultimately provides maintainability and performance
improvements. In this paper, we focus on the graph representation learning task
and training process.

In summary, this research seeks to bridge the gap between advanced machine
learning techniques and the practical needs of network programming, contributing
to the development of more efficient and reliable network applications.

The practical value of these models lies in their ability to enable standard-
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ization across large P4 codebases, ensure consistency in naming conventions, and
reduce manual effort in code cleanup. These improvements directly support better
performance, maintainability, and reduce potential bugs in programmable network
configurations.

2. Background and related works

The P4Query static analysis framework is centered around an extensible internal
graph representation where the results of the different static analysis methods are
also stored as part of the graph. The information in the knowledge graph is ac-
cessed using graph queries written in the Gremlin [7] query language. In this way,
the framework guarantees a unique standard representation both for the stored
data and for the data access mechanism. P4 programs can naturally be repre-
sented as abstract syntax trees (ASTs), which are directed graphs generated by the
framework. The framework can also be used to implement P4 specific refactoring
steps [8].

Figure 1 presents a simple P4 control declaration alongside its corresponding
abstract syntax tree (AST). On the left, the P4 code defines a control block that
assigns the Addr parameter to the dstAddr field. On the right, the simplified AST
captures the structure of the program as a directed graph, including all relevant
nodes, edges, and key node attributes such as nodeId, class, and value. The
class attribute specifies the type of the node; if the class is TerminalNodeImpl,
then the value attribute contains a string literal that appears explicitly in the
original P4 source code.

Graph Neural Networks (GNN) are designed to work with graph data struc-
tures. GNNs learn graph level representations by iteratively aggregating informa-
tion from neighboring nodes. The machine learning models try to modify the node
attributes or the structure of the graph. The outputs are the modified graph data
structures.

Code2Vec [1] is a framework that learns continuous feature representations for
nodes in a graph. In the context of abstract syntax trees, the authors transformed
the nodes of the syntax tree into vector representations. This allows machine
learning models to capture the structural and semantic properties of the programs
represented by the trees. By leveraging these vector representations, the model can
effectively recognize and classify specific programs based on their syntax trees.

Code2Vec accomplished this by training models capable of recognizing well-
known algorithms, such as sorting, searching, or counting — across multiple pro-
gramming languages, including Java, C++ and Python. This approach involves
generating a syntax tree from the source code, which is then analyzed by the
trained model to identify the underlying algorithm. After the analysis, the model
also provides a probability score for its prediction.

One notable example of applying Graph Neural Networks to program code anal-
ysis is Devign [10], in which the authors construct a code property graph (CPG)
by merging Abstract Syntax Trees (AST), Control Flow Graphs (CFG), and Data
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contol setDstAddr( Addr ) {

dstAddr := Addr;

}

nodeld : 2
class : FunctionNameContext
nodeld : 3

class : NameContext

¥

nodeld : 4

class : TypeOrldContext

v

nodeld : 5
class : TerminalNodelmpl

value - SetDstAddr

nodeld : 6

class : ParameterContext
nodeld : 7

class : NameContext

v

nodeld: &

class : TypeOrldContext

¥

nodeld - 9
class - TerminalNodelmpl

value : Addr

nodeld -0

class - DeclarationContext

v
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nodeld : 10
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nodeld : 15 nodeld : 18

class : TerminalNodelmpl

class : TypeOrldContext

value : dstAddr +
nodeld : 19

class : TerminalNodelmpl

value : Addr

Figure 1. P4 function implementation and its AST.

Flow Graphs (DFG) into a single rich representation. The model — built upon
a Gated Graph Neural Network — learns comprehensive program semantics from
these graphs to identify security vulnerabilities in real world C code. In empir-
ical evaluations on large open source projects, Devign significantly outperformed
previous state-of-the-art vulnerability detection methods, improving accuracy by
over 10% and F1 score by approximately 8-9%. This work exemplifies how merging
multiple program structure views and leveraging GNNs enables robust, semantics
aware analyses, and inspires similar approaches in tasks like variable renaming or
parameter reordering in P4 ASTs.

A closely related work is the paper titled P/ Specific Refactoring Steps [8], which
introduces a set of rule based refactoring operations specifically tailored for P4 pro-
grams. The approach is built on the P4Query framework, utilizing its syntactic
and semantic graph based representations to perform transformations on abstract
syntax trees (ASTs). These refactorings include table splitting, merging, and exe-
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cution reordering, all governed by static analysis and predefined preconditions to
ensure semantic correctness. While this method is based on manually designed
transformations, our work extends this line of research by applying machine learn-
ing — specifically Graph Neural Networks — to automatically learn transformation
patterns from data. This enables a shift from rigid, rule based systems toward
adaptive, data driven refactoring strategies that generalize across diverse P4 pro-
grams.

3. Methodology

3.1. Graph construction from P4 programs

To obtain structured representations of P4 programs, we rely on P4Query, a com-
prehensive analysis tool that extracts detailed abstract syntax trees (ASTs) and
other intermediate structures from P4 source code. The tool uses the official P4
language protocol to generate a standardized and richly annotated AST, which is
interpreted as a large directed graph. The AST’s structure is defined by the syn-
tactic rules of the language, and its edges encode diverse semantic relations; for
instance, control flow and data flow dependencies.

Each node in the graph has several attributes that capture both syntactic and
positional information. These include a unique nodelId, a line attribute indicating
the location in the source code, begin and end fields that mark the span of the
syntactic construct, a type field (e.g., TerminalNodeImpl), and, in the case of
terminal nodes, a value representing the literal content. When preparing this
graph for training a Graph Neural Network (GNN), we encode only the type and
value attributes (if present) to create initial node feature vectors. This selective
encoding strikes a balance between expressiveness and efficiency, allowing the model
to focus on meaningful structural relationships while leveraging the inductive bias
of the syntax driven graph topology.

3.2. Training of the GNN

To train our Graph Neural Network (GNN) models, we first generated several dif-
ferent P4 abstract syntax trees (ASTs) using P4Query. Each AST is treated as
a directed graph, representing the dataset. As described earlier, each node’s at-
tributes have to be auto encoded using its type and (if available) value attributes,
producing a lightweight yet expressive node feature representation suitable for neu-
ral processing.

During the training procedure each epoch, the GNN is presented with a modified
version of a graph and tasked with reconstructing the original structure. During
the first epoch, the full graph is shown to the model, establishing a baseline un-
derstanding of the node representations and their connectivity. From the second
epoch onward, we progressively apply structured degradation to the input graphs.
Initially, we remove only terminal nodes (i.e., nodes of type TerminalNodeImpl),
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which are typically leaves of the AST. In later stages, the removal process tar-
gets increasingly complex subgraphs, thereby challenging the model to infer more
abstract syntactic patterns.

Importantly, the complexity of the removed subgraphs increases exponentially
as training progresses. That is, in each subsequent training phase, the size and
structural depth of the deleted subgraphs grow according to an exponential sched-
ule. For example, while early stages may remove only isolated leaf nodes or shallow
branches, later phases may eliminate entire nested control structures, such as if
else blocks, loops, or parameter lists. This exponential degradation ensures a cur-
riculum style learning process in which the model first learns to reconstruct simple
local patterns, and only later faces the challenge of recovering deeply structured
and semantically rich fragments of the AST.

The goal of this curriculum style training is to gradually force the model to
internalize deeper compositional structures in the input graphs. By learning to
predict missing parts of the AST across a variety of P4 programs, the GNN develops
a generalizable representation of the language’s syntactic structure. Throughout
training, the model is evaluated based on its reconstruction accuracy, which reflects
how well it can recover node identities and their connections.

Using this training strategy, we developed three distinct GNN models, each
targeting a specific code transformation or analysis task: a variable renamer, a
parameter reorderer, and an empty else block detector. Although these mod-
els share the same underlying graph based training framework, each addresses a
different aspect of code semantics.

These tasks were carefully selected to reflect realistic challenges in network code
development. By automating variable renaming, argument ordering, and dead code
detection, the models target areas where inconsistency and redundancy frequently
arise in practice. Their utility lies not only in code transformation, but also in
establishing and enforcing coding conventions across diverse teams and projects.

3.3. Variable renamer

The Variable Renamer model is trained to recognize and rename variables across
abstract syntax trees (see an example in Listing 1). It is implemented as a two layer
Graph Neural Network (GNN), which performs node classification over the AST
graph. Each node is represented by a simple feature vector encoding whether it is
a terminal node and whether it contains a value. The model learns to predict the
original value attribute of TerminalNodeImpl nodes based on their surrounding
context.

Listing 1. Renaming variables in P4 source code.

header ethermet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
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header ethermet_t {
macAddr_t destinationAddr;
macAddr_t sourcelAddr;
bit<16> ethernetType;

}

During training, graphs are labeled by the original variable names of terminal
nodes, which serve as supervision targets. Once trained, the model takes as input
a complete AST graph and a variable name, and it modifies the value attribute
of all relevant nodes to a new name. This allows for consistent refactoring, such as
renaming egress_spec to egress_specific across all its occurrences in the graph.
After 20 epochs of training, the model successfully learned the graph structure and
renaming patterns by leveraging structural differences between input graphs.

The renaming decision is not based solely on the textual value of a node, but
also on its structural context. This enables the model to generalize and identify
semantically equivalent nodes in different programs, even when local syntax varies.
The GNN’s message passing mechanism allows it to aggregate information from
neighboring nodes, making the renaming behavior robust and context aware.

3.4. Parameter reorderer

The Parameter Reorderer model is designed to learn the correct ordering of function
parameters in P4 programs. Listing 2 shows an example of the transformation.
Unlike the Variable Renamer, this model is not a traditional GNN architecture.
Instead, it uses a learned embedding layer in combination with a small feed forward
neural network to predict the target position of each parameter.

The training is performed using pairs of AST graphs: one representing the
original parameter order, and one representing the desired (reordered) form. Each
parameter is represented by its subtree in the AST, and the model learns to assign a
position score to each based on its embedded identity. The loss function minimizes
the mean squared error between the predicted positions and the ground truth
permutation derived from the reordered graph. The model required 100 epochs of
training to learn the parameter reordering logic from structural graph differences.

Once trained, the model receives a new AST and infers a new permutation of the
parameters. It then rewrites the structure of the graph accordingly, updating the
‘start’ and ‘end’ positions of the affected nodes and regenerating comma separators
where needed. This results in a syntactically valid AST that reflects the learned
parameter order.

Listing 2. Reordering P4 function’s parameter order.

control MyDeparser (packet_out packet, in headers hdr) {
apply {
packet.emit (hdr.ethernet);
packet.emit (hdr.ipv4) ;
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}

control MyDeparser (in headers hdr, packet_out packet) {
apply {
packet.emit (hdr.ethernet) ;
packet.emit (hdr.ipv4) ;

The model’s ability to operate directly on AST node embeddings without re-
quiring handcrafted rules — enables flexible reordering strategies and supports the
standardization of function signatures across large codebases.

3.5. Empty Else Block Detector

The Empty Else Block Detector is a binary classification model built to detect
empty else branches (for example, those shown in Listing 3) in P4 program ASTs.
It is implemented as a two layer GNN, trained to classify specific nodes labeled as
else into two categories: empty or nonempty.

The model is trained on a dataset of P4 ASTs, where each graph is automatically
labeled using a rule based search for syntactically empty else branches. During
preprocessing, only nodes with the literal value "else" are included in the training
set, and are labeled according to whether they lead to an empty block in the AST.
Each node is encoded using a pair of categorical features: the class of the node
(e.g., TerminalNodeImpl, StatementContext) and the textual value (if present).
The model was trained for 100 epochs to capture the subtle structural patterns
associated with empty else branches.

The GNN learns to classify these else nodes based on their surrounding context
in the AST. Its performance is measured via accuracy on the classification task.
Once trained, the model can analyze unseen ASTs and assign a confidence score to
each else branch, indicating whether it is likely to be empty.

This model serves as a useful tool for detecting redundant or misleading con-
ditional structures in P4 programs. By identifying empty branches that serve no
semantic purpose, the model supports further code cleanup and optimization.

Listing 3. P4 if block with empty else

if (hdr.ipv415.isValid()) {
if (hdr.ipv416.isValid()) {
ipv415.1pm.apply () ;
ipv416.1pm.apply () ;
} else {}
} else {}

62



Annal. Math. et Inf. Using GNN for refactoring P4 programs

4. Results

All models presented in this work were implemented using the PyTorch [6] and
PyTorch Geometric libraries, which provide efficient GPU accelerated operations
and high-level abstractions for graph based deep learning. These libraries enabled
rapid experimentation with neural architectures and streamlined the construction
and training of Graph Neural Networks. We used standard components such as
GCNConv layers, embedding modules, and training utilities provided by the frame-
work.

In our experiments, the abstract syntax trees (ASTSs) generated by the P4Query
[5] tool were serialized as large JSON files. Each file contains a directed graph
with thousands of nodes and edges, representing detailed syntactic and semantic
information of a given P4 program. Due to the high complexity and richness
of these graphs, even a small number of training examples proved sufficient for
effective learning.

We observed that all three models trained on these AST graphs exhibited consis-
tently decreasing loss values throughout training, indicating convergence and suc-
cessful pattern extraction. The loss function approached values close to zero across
multiple epochs, demonstrating that the models were able to learn the structural
relationships within the graphs efficiently.

4.1. Variable Renamer results

The Variable Renamer model was trained on a set of 32 AST graphs, each repre-
senting a different P4 program. These graphs served as supervised input, where
variable renaming labels were provided for terminal nodes. Training was performed
over 20 epochs, which proved sufficient for the model to converge — the loss function
consistently decreased and reached zero by the end of training. This indicates that
the GNN successfully learned to encode the structure of a given variable’s repre-
sentation, identifying the relevant nodes and edges responsible for that variable
throughout the graph.

Once trained, the model was evaluated on 17 previously unseen AST graphs.
In all cases, the model was instructed to rename a variable per graph. The model
successfully performed all 17 renamings, modifying the corresponding value at-
tributes in the appropriate TerminalNodeImpl nodes. Importantly, the renamings
were consistent across all occurrences of the target variables within each graph.

These results highlight the model’s ability to generalize renaming patterns
across different P4 codebases, even when local syntactic variations are present.
This confirms the effectiveness of GNN based learning on AST structures.

4.2. Parameter Reorderer results

To evaluate the effectiveness of the Parameter Reorderer model, we trained it on 5
pairs (a total of 10) of P4 AST graphs. Each pair consisted of an original function
declaration with an incorrect or arbitrary parameter order, and a corresponding
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target graph in which the parameters were reordered according to a preferred or
canonical sequence. Unlike the Variable Renamer, this model had to capture and
interpret more complex structural patterns, as parameters are represented by en-
tire subgraphs within the AST. As a result, learning the correct transformations
required more epochs (100 in total), and convergence was slower.

In cases where the function had only two parameters, the model achieved correct
reordering in 3 of the 5 example graphs, which were previously unseen ASTs. These
are effectively binary swaps, which the model was often able to predict reliably.
However, as the number of parameters increased, the model’s accuracy declined.
This was particularly evident in more complex declarations, where parameters had
compound types or nested substructures. In such cases, the model struggled to
infer the correct order, indicating a sensitivity to syntactic complexity.

These results suggest that while the model captures some general patterns of
parameter ordering, it may lack sufficient contextual awareness to handle more
elaborate structures. The approach, based on embedding and regression, shows
promise for approximating permutation tasks but could benefit from stronger re-
lational reasoning.

From these observations, we conclude that parameter reordering is more effec-
tively approached as a regression problem over continuous embeddings than as a
classification problem over discrete graph structures. Future improvements may
involve incorporating structural attention or hybrid GNN-MLP architectures to
better capture the interplay between parameter semantics and graph topology.

4.3. Empty Else Block Detector results

The Empty Else Block Detector model was trained on a dataset of 40 AST graphs,
each annotated with both empty and nonempty else branches. During training,
the model performed binary classification on nodes with the literal value "else",
predicting whether they led to an empty code block. Due to the complexity of
the task — which required the model to learn to recognize non trivial subgraph
patterns around each else node — the training process was conducted over 100
epochs. This extended training was necessary for the model to reliably capture the
subtle structural cues associated with empty branches. The final training accuracy
reached 78%, demonstrating the model’s ability to distinguish between semantically
relevant and irrelevant else constructs.

To evaluate the model’s generalization capability, we tested it on 13 previously
unseen P4 programs, whose corresponding ASTs contained a total of 28 else blocks,
including both empty and non-empty cases. The model correctly classified 23 out
of the 28 instances, resulting in an 82% accuracy on this test set. While this reflects
a slight increase compared to its training performance, the result is promising given
the structural variability of else constructs in real world P4 code.

These results suggest that the model successfully captures the contextual signals
that distinguish empty else branches from meaningful ones. Its ability to detect
redundant conditional structures can support automated refactoring pipelines and
contribute to cleaner, more maintainable P4 codebases.
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Beyond demonstrating technical feasibility, our results indicate that GNN based
learning provides a scalable path toward automated code improvement. Even with
limited training data, the models extracted robust transformation patterns, sug-
gesting practical applicability in real world P4 codebases, where manual refactoring
is costly and time consuming.

5. Conclusion and future work

In this research, we have successfully developed three distinct Graph Neural Net-
work (GNN) models: the Variable Renamer, the Parameter Reorderer, and the
Empty Else Block Detector. Each of these models addresses specific aspects of
P4 program refactoring, showcasing the versatility and potential of GNNs in this
domain.

The Variable Renamer model receives the complete abstract syntax tree (AST)
of a program as input and is tasked with renaming a specific variable throughout all
its occurrences. It takes as parameters the graph representing the program and the
names of the variable to be renamed along with the new name. By modifying the
attributes of the relevant nodes in the AST, this model enhances code readability
and consistency, which are crucial for maintaining large scale software systems.

The Parameter Reorderer model operates at the level of function declarations,
where it modifies the structure of the graph to rearrange the order of parameters.
This capability is particularly beneficial for adhering to coding standards or manag-
ing default parameters, ultimately improving the clarity and readability of function
definitions. By ensuring that parameters are organized in a logical manner, this
model aids developers in writing more maintainable and understandable code.

The Empty Else Block Detector model focuses on prediction tasks within the
graph. It identifies patterns that indicate the presence of empty else branches,
which can be particularly useful for code optimization. By alerting developers to
these non essential branches, the model helps avoid unnecessary complexity in the
code, thereby enhancing overall code quality and maintainability.

Through the development and evaluation of these models, we have gained valu-
able insights into how GNNs can learn to capture and manipulate different aspects
of graph data. This experience lays the groundwork for future research, where we
aim to generalize these findings to create more complex models that integrate the
strengths of each individual approach. By combining the capabilities of modifying
node attributes, altering graph structures, and making predictions, we envision the
development of sophisticated GNN architectures that can tackle a wider range of
refactoring tasks.

The strength of graph neural network models, compared to traditional algo-
rithms, lies in their ability to generalize the structure of abstract syntax trees
through training on large datasets. Embeddings and heuristics play a major role
in this process. As a result, these models can perform their tasks effectively and
reliably, even in extreme cases. In contrast, traditional algorithms must explicitly
account for all such edge cases, which requires more development time. This can
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increase the algorithm’s size, complexity, or reduce its clarity. Furthermore, when
a new edge case is discovered, the original algorithm must be revised or rewrit-
ten, further increasing development time and costs. Ultimately, although GNN
models typically require more storage space and computational power during ex-
ecution, they can successfully handle a wider range of situations than traditional
approaches.

Looking ahead, our goal is to explore the potential of hybrid models that lever-
age the strengths of the existing GNNs while introducing new mechanisms for
learning and adaptation. Such models could incorporate advanced techniques such
as attention mechanisms or reinforcement learning to further enhance their perfor-
mance and applicability. By pushing the boundaries of what GNNs can achieve in
the context of program analysis and refactoring, we hope to contribute to the cre-
ation of more intelligent and automated tools that assist developers in writing high
quality, maintainable code. By integrating these models into tooling pipelines, de-
velopment teams can achieve faster iteration cycles, reduce manual overhead, and
promote uniform, high quality code across network applications.
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This paper presents four real-world Al-based robotic applications designed
to serve as engaging teaching support materials, particularly for theoreti-
cal courses that students often find challenging to grasp. These practical
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ChatGPT in Pepper and NAO robots are designed to serve as learning as-
sistants for students, and two applications (one with the simulation of an
agriculture robot in Unity and an Al-based underwater robot controller) are
designed to serve as engaging teaching materials on Al-related subjects, but
also for theoretical courses that students often find challenging to grasp. For
each application, we outline its scope, model, and implementation code. In
addition, the implementation code will be openly accessible in the final ver-
sion of the paper, enabling academic staff and researchers to easily use and
adapt these case studies for their own educational or research tasks.

Keywords: Artificial Intelligence, robotics, higher education

AMS Subject Classification: 68T40 Artificial intelligence for robotics

1. Introduction

Robots are indispensable across industries, from manufacturing and agriculture to
research and healthcare, with Al further expanding their capabilities. Improving
the quality of education in related areas is important for the development of these
technologies and of the society in general. In education, applications as demon-
strators and illustrators are of utmost importance, but are rarely available.

In this paper, we present four applications we developed that may be useful
for researchers and teachers in subjects related to artificial intelligence, robotics,
and formal verification (for example: computational and mathematical logic, auto-
mated theorem proving, algorithm synthesis and mathematical theory exploration,
modeling and certifying algorithms, verification of hybrid systems, satisfiability
checking, machine learning, etc.), as well as serving as learning assistants for stu-
dents. The first two applications are Al-enabled robots to personalize learning and
serve as teaching assistants, enhancing academic outcomes. Two further applica-
tions are Al-controlled robots that can serve as educative case studies, for example
in machine learning, or for teaching formal methods to ensure safety and reliability.

Robots as student assistants. Al and robotics may enhance students’ cogni-
tive abilities through brain-computer interfaces (BCIs) [16-18]. Social robots [8]
have the potential to actively engage students and enrich their learning experi-
ence. For instance, chatbots can interact through text or voice using AT [23, 30]. A
comprehensive literature review for the use of Al in education is [32], which also
reviews the use of robots [21].

As a first application, in Section 2 we describe the Pepper robot [28], which
offers significant potential for improving student engagement, particularly in lan-
guage acquisition [2, 9]. ChatGPT has been used in education [11], as well as in
robotics applications [31]. The study [27] examines how integrating large language
models (LLMs), such as Google PaLM2 and ChatGPT, into the Pepper robot,
in conjunction with Reinforcement Learning with Human Feedback (RLHF), can
enhance the robot’s natural language processing (NLP) capabilities.
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Our second application presented in Section 3 is a NAO storyteller. The NAO
robot [29] can serve as an interactive teaching assistant [15], interactive storyteller
[10], catalyst for teamwork [33], and others [7].

Robots as use cases. There is not much material available to support teaching
in subjects related to Al-based robotics. Some loosely related research on the
importance of logic in higher education [24] and on teaching applied formal methods
[25] both address the verification of cyber-physical systems.

To provide further support, in Section 4 we present a plant-watering robot ap-
plication. There are very few tutorials or educational material available in the field
of agricultural robotics. For instance, [13] compares Gazebo and Unity for digital
twin simulation in the field of agriculture, and [19] describes a robotic application
using IoT (Internet of Things) for the intelligent watering of plants. Addressing
agricultural harvesting, [12] describes a pneumatic gripper for robotic use inspired
by gecko’s foot and human finger.

Our last application, presented in Section 5, is an autonomous underwater ve-
hicle. It can be used to illustrate, e.g., data gathering and processing, machine
learning, simulation, testing, and formal verification.

2. Student assistance: Pepper with ChatGPT

Use case. The integration of Al assistants into classrooms has opened new pos-
sibilities for student engagement, comprehension, and skill development. However,
many learners struggle with using Al-powered tools effectively due to a lack of
context or familiarity. We programmed the Pepper robot as an interactive learning
assistant, designed to support students in their academic journey, while fostering
an understanding of Al-driven tools like ChatGPT.

Methodology. When Pepper detects human presence, it introduces itself and
offers assistance to the user. It invites them to ask questions and provides relevant
support. If the user provides sufficient context for ChatGPT to confidently gener-
ate a clear and accurate response, Pepper reads out the answer and congratulates
the user. However, if the input lacks context, Pepper prompts the user to rephrase
their question with more details to ensure a more precise and meaningful response.
Thus Pepper assists by demonstrating how AI can be a valuable educational re-
source, explaining its strengths and limitations, while guiding students to frame
their queries for better responses.

Implementation. Executing applications on Pepper requires certain workarounds
due to the limitations of its underlying software. Pepper runs on NAOqi 2.5, an
outdated framework that supports only Python 2.7, which introduces constraints,
particularly in multi-lingual environments due to long-standing issues with Python
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2.7. This creates challenges when integrating modern AI models such as Chat-
GPT. To enable ChatGPT functionality on Pepper, an external proxy for Chat-
GPT requests is required to handle requests and process responses efficiently for
ChatGPT to function on Pepper’s hardware. Pepper’s Automatic Speech Recogni-
tion (ASR) system has inherent limitations, particularly with free-text input and
multilingual speech, which led us to employ an external transcription service. In
our implementation we used Google’s Cloud Speech-to-Text API, selected for its
higher recognition accuracy, stable latency (about 1-1.5 seconds in classroom use),
and straightforward integration with the Python proxy service. An audio stream of
student questions were transmitted to the APT for transcription; to address privacy
and data protection concerns, no personal identifiers were included in the record-
ings, access was limited to authorized users, and API usage was logged for auditing.
This transcription is then forwarded to the ChatGPT API, where the response is
generated externally and relayed back to Pepper for delivery to the student.

These adjustments ensure that Pepper can assist students despite its software
constraints.

The source code for the robot is openly accessible at: https://github.c
om/KostasPapadopoulosUOM/AiRobo/tree/main/PepperAIAssistant. Our
implementation requires a ChatGPT API Key. The end user will need to create
an OpenAl account and then generate an API key. The API key is required to
be placed at the following path: /data/home/nao/chatgpt.key. An external ASR
engine is also required due to the before mentioned limitation. In this case Google’s
Transcription API is used, which requires an additional Google API key with the
Cloud Speech-to-Text API enabled. The end user will need to place the API Key
in /data/home/nao/googleapi.key.

Teaching. A significant challenge in Al-assisted education is ensuring that stu-
dents develop critical thinking skills and understand the importance of context in
learning. Pepper facilitates discussions that encourage students to ask meaningful
questions and refine their approach when using Al tools. By doing so, it ensures
that students do not rely on Al blindly but instead use it as a complementary tool
to their own reasoning and problem-solving abilities.

3. Student assistance: Nao storyteller

Use case. We further leverage the NAO robot’s capabilities to create a dynamic
learning experience that fosters curiosity and engagement among students. By in-
tegrating Al-driven storytelling and vision recognition, we aim to enhance students’
understanding of both robotics and Al in an interactive manner.

Methodology. The NAO robot operates using its autonomous life mode, allow-
ing it to exhibit human-like behaviors such as looking around, adjusting its posture,
and responding naturally to stimuli. These features help to create a more immer-
sive and interactive experience for students. The key components of our methodol-
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ogy include computer vision, Al-generated storytelling, and embodied interaction
through gestures and speech. Additionally, we employ text-to-speech technology
to ensure the robot delivers narratives in a clear and expressive manner, and au-
tomatic speech recognition to allow students to interact with the robot through
spoken commands, further bolstering engagement.

Implementation. The NAO robot was programmed with the following func-
tionalities. (i) Face Detection: the robot identifies and acknowledges the pres-
ence of students, creating a more personalized interaction. (ii) Vision Recog-
nition: using its onboard camera, NAO recognizes images it has been trained
on. In this study, we employed cubes featuring images of ancient Greek gods.
(iii) Storytelling via AL upon recognizing an image, the robot queries an Al
system to generate a humorous story about the identified Greek god. It then
reads the story aloud while performing subtle movements to maintain engage-
ment. The source code for this application is publicly available at: https:
//github.com/KostasPapadopoulosUOM/AiRobo/tree/main/NAO_Cube_Game.

This implementation requires a ChatGPT API key. To obtain one, the end
user must create an OpenAl account and generate an API key. The key should
be stored at the following path: /data/home/nao/chatgpt.key. This configuration
allows the NAO robot to interact with ChatGPT for generating educational content
and storytelling responses.

Teaching. The primary objective of this project was to introduce students to Al
and robotics in an engaging and interactive manner. By incorporating storytelling
and physical interaction, the students were encouraged to explore Al capabilities
while learning about ancient mythology. Observations suggest that the robot’s
interactive features improved student participation and interest.

4. Robots as use cases: Agriculture robot

Use case. In this section we present our plant-watering robot, whose control
is specified by the state machine depicted on Figure 1. The robot starts at its
charging station, where it recharges and refills its water tank before navigating to
water flowers at predefined locations. It encounters obstacles, classified as living
(e.g., animals) and non-living (e.g., rocks); and attempts to navigate around them.
If avoidance is impossible, it requests external assistance. When battery or water
levels are low, the robot returns to the charging station; if it depletes its energy
before reaching the station, it also requests help. To simplify the state machine, we
have a special state, called ALL__STATES, which describes the common behavior
of each state. We used the hardware platform SCOUT MINI [1], equipped with
GPS, a compass, two LiDAR sensors (front and rear), and a velocity sensor.

Methodology. The robot’s navigation relies on reinforcement learning (RL),
where the agent optimizes movement through action rewards, using the Proxi-
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Figure 1. Finite state machine of the plant-watering robot.

mal Policy Optimization (PPO) algorithm. The hyperparameters used for the
algorithm and training can be seen in Table 1. The observation space is an 11-
dimensional continuous vector representing the robot’s state. It includes the an-
gular difference between the robot’s orientation and the target vector, normalized
o [—1,1]. The linear velocity of the robot, also normalized to [—1,1]. The dis-
tance between the robot and the target, normalized by the initial distance at the
beginning of each episode to a range of [0,1]. There are two LiDAR sensors on
the robot. The forward facing sensor covers a 180°, from —90° to 90° relative to
the robot’s heading. It is divided into 4 equal sections, and the minimum reading
is taken in each section. The process is mirrored for the rear sensor, resulting in
a total of eight distance readings, each normalized to [0,1]. The action space is a
2-dimensional continuous vector, defining the rover’s linear and angular velocity,
each component normalized to [—1,1].

The reward function is designed to guide the agent towards its target while
avoiding obstacles. More formally, the reward R; at each timestep t is defined as:

4200 if d; < €parget  (goal reached)
R —200 if collision occurs
t pr—
—150 if t > Thax  (timeout)

10 - (d¢—1 — d;) otherwise
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Table 1. List of hyperparameters.

Hyperparameter Value

Algorithm Parameters

Number of epochs 8
Batch size 1024
Discount () 0.99
GAE parameter (\) 0.95
PPO clip range (¢) 0.2
Critic Loss Coefficient 0.5
Network Architecture
Number of hidden layers 2
Hidden layer size 128
Hidden Layer Activation ReLU
Actor Output Activation Tanh
Optimizer algorithm Adam
Training parameters
Initial learning rate 3e-4
Learning rate decay linear decay
Learning rate decay frequency (in episodes) 250
Minimum learning rate le-8
Standard deviation of selected actions 1

Here, d; is the distance to the target at timestep t, €target is the success threshold
distance set to 0.1 meters, and Tyax is the maximum episode length, set to 1500
steps. A penalty is applied immediately upon any collision. The term (d;—1 — dy)
provides a reward for moving closer to the target and a penalty for moving away
in non-terminal states.

To enhance training, we apply curriculum learning [22], gradually increasing
task complexity. RL agents often struggle with generalization. To address this,
elements of the training environment are randomized.

The first stage involves point-to-point navigation. Here, the environment is a 10x 10
meter plane. For each episode, the position of the target and the starting pose of
the robot are randomly selected within this area. During this phase, the RL agent
only uses the relative heading, velocity and distance to the target as observations.
The training continues until 90 out of the last 100 episodes are successful.

The second stage introduces obstacles in the form of walls, to teach avoidance
behavior. These walls are parallel to the direct path to the target and are positioned
to form a 1.5-meter-wide corridor. The length of each wall is randomized for each
episode, ranging from 0.1 to 15 meters. Here, the agent uses the full observation
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vector including LiDAR, data.
The final stage is a randomly generated but static garden resembling real-world
conditions. The walls are replaced by randomly placed flowers. There is a moving
dog to test the agent’s robustness to changing conditions. It is used to evaluate
the RL agent’s behavior in a previously unseen and more realistic setting.
Catastrophic forgetting [14] is another challenge, where learning a new task
degrades previously learned behaviors. This is mitigated by periodically revisiting
earlier tasks, ensuring stable performance across different environments. Specifi-
cally, during the second stage, the environment alternates between the first and
second stage every 100 episodes.

Implementation. The system consists of a Unity-based simulation and a Python
module for RL training and testing. Running the simulation requires installing
Unity. The final implementation is publicly available at https://github.com/c
sokapeter/Agricultural-Robot.

Teaching. This project serves as an educational tool for reinforcement learning
and robotics. Students gain hands-on experience with RL-based navigation, dig-
ital sensor integration in Unity, and training methodologies. It allows them to
experiment with reward functions, agent parameters, and real-world deployment
challenges. Additionally, it highlights hardware limitations and safety considera-
tions when transferring trained agents from simulation to physical robots.

5. Robots as use cases: Underwater robot controller

Use case. Autonomous underwater vehicles (AUVs) provide a promising tech-
nique to perform underwater exploration missions autonomously [4, 5]. To success-
fully operate in an uncertain, a priori unknown environment, a rule-based algorithm
proposed in [20] relies on specific sensor measurements — such as depth, altitude
and forward distance — to estimate the steepness of the seafloor (), allowing the
robot to adjust its pitch (8) accordingly (see Figure 2). Using these sensor values,
bottom tracking maintains the distance to the seafloor as constant as possible, to
increase the reliability of sensor data gathering, and obstacle avoidance recognizes
rocks, walls etc. to avoid collisions.

While this method performs reasonably well in smooth environments, it is highly
sensitive to noise, and it requires highly complex code, making it difficult to debug
and maintain. To address these limitations, in [3] the authors propose an alternative
Al-based controller to overcome these challenges.

Methodology. The Al-based controller [3] utilizes a neural network, which uses
the observed sensor values within some time window to issue control commands
within a long short-term memory (LSTM) architecture (see Figure 2). These con-
trol commands adjust the pitch of the AUV, facilitating bottom tracking with more
efficient obstacle avoidance (less braking) and better robustness.
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Figure 2. Left: Illustration from [20] for the rule-based obstacle
avoidance method. Right: The LSTM controller system architec-
ture.

A key challenge of [3], is the lack of labeled data for the training. To address this,
the authors used sensor data of logs from previously executed real world missions,
and employed signal processing techniques for labeling each timestamp. Further
improvements were achieved through online re-training using a simulator, and the
employment of a simplex architecture [6, 26] to revert to the rule-based method
in case the Al-based control would not prevent a collision. The controller was de-
ployed on an AUV of OceanScan MST and two real world surveys were conducted.
These demonstrated that the Al-based controller produced better efficiency (i.e.,
shorter mission time, less battery usage), while maintaining safety (no collisions)
throughout the mission.

Implementation. The code implementation, the trained neural network in ONNX
format, and further instructions on how to setup and use the simulator with the
neural network controller is openly accessible at: https://github.com/antalla
sz1lo011/improved-AUV-obstacle-avoidance.

Teaching. This application can be used to illustrate the development of Al-
based controllers, including the preparation of training data, the training and re-
training of neural networks, knowledge distillation, and the embedding of Al-based
controllers in a simplex architecture for fall-safe functioning. Besides simulation
and testing, formal methods can be applied to assess the reliability and safety of
the AUV behavior.

6. Conclusions
In this paper we presented four real-world, Al-based robotic applications specifi-

cally designed to enhance the learning experience for students. These applications
not only serve as interactive assistants, making the learning process more engaging,
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but also provide practical solutions for complex theoretical courses that students
often struggle with, helping them grasp challenging concepts more effectively. A
key contribution of this work is the free availability of the application implementa-
tions, empowering academic staff and researchers to seamlessly integrate or adapt
these resources into their own teaching or research activities.

As future work, the authors consider: Integrating various generative Al en-
gines, such as DeepSeek, which offers the advantage of self-hosting at no cost; In-
corporating alternative transcription engines with a focus on self-hosted solutions,
potentially leveraging OpenAI’s Whisper model, as well as evaluating different de-
ployment strategies and optimizing model performance for real-time transcription
in educational contexts; Implementing additional sensors in the agricultural robot
simulation to better reflect real-world conditions and allow students to experiment
with different configurations of the robot.
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Abstract. This paper investigates the application of reinforcement learning
to non-player character (NPC) behavior design in a roguelike video game,
with the goal of creating more engaging and less predictable opponents. Two
training approaches were compared using the Unity ML-Agents framework:
Agent A, trained exclusively through self-play, and Agent B, trained initially
against human players before switching to self-play. Performance was evalu-
ated using quantitative metrics such as policy loss, value loss, entropy, and
ELO ratings, alongside qualitative feedback from semi-professional players.
While Agent B achieved faster convergence and higher ELO scores, player
feedback indicated a preference for Agent A due to its unpredictability, bal-
anced tactics, and lower frustration levels. The results highlight the need to
balance technical optimization with player experience, and suggest that hy-
brid training strategies may yield the most compelling adversaries in future
game Al design.

Keywords: reinforcement learning, game AI, Unity ML-Agents, player expe-
rience, NPC behavior
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1. Introduction

This study examines the integration of reinforcement learning techniques into the
design of non-player character (NPC) behaviors within a roguelike video game
environment. The research aims to address limitations inherent in traditional rule-
based artificial intelligence (AI) approaches, which often lead to predictable and
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monotonous adversary behavior, thereby reducing gameplay challenge and engage-
ment [11]. Notable successes in reinforcement learning, such as mastering the game
of Go through self-play [9], highlight the potential of these techniques to create
adaptive and challenging opponents.

The initial implementation employed a rule-based Al [2], utilizing the A* path-
finding algorithm for navigation and a behavior tree [5] for the final boss. Al-
though the behavior tree introduced conditional actions — such as retreating when
the agent’s health was low or becoming aggressive when the player was weakened
— the decision-making process remained deterministic and easily exploitable by
experienced players.

To overcome these constraints, We implemented two alternative Al training
methodologies using the Unity Machine Learning Agents (ML-Agents) framework
[4]. Both agents were trained via reinforcement learning [10], enabling them to
improve their decision-making through interaction with the game environment.
Agent A was trained entirely through self-play, iteratively competing against its
previous policy versions. Agent B underwent an initial training phase of 30,000
steps against human players before switching to self-play. This dual approach
allowed us to compare the benefits of purely autonomous learning against a hybrid
method incorporating human-guided exploration.

The primary objective of this research is to evaluate which training paradigm
yields a more challenging, engaging, and strategically capable opponent. Evalua-
tion was conducted through both quantitative performance metrics and qualitative
human player feedback, with the ultimate goal of identifying design practices that
enhance player experience while maintaining balanced gameplay difficulty.

1.1. Game concept and the original enemy Al

The game [7] is a room-based rogue-like video game. In each room, the player has to
defeat randomly generated enemies, fighting their way to the final boss. Initially,
enemies were operating on a rule-based system; their movements were based on
the A* algorithm. While the smaller enemies only had a few attack types, the
final boss had a so-called Behavior Tree [5], which resulted in a better experience.
The behavior tree gave the boss some human-like behavior based on the health
percentage of its own and its opponent’s — the player’s health. It retreated when
it had a low health percentage, and it became aggressive when the player had low
health — but it was still predictable. The agent’s actions were defined by specific
rules, making the enemy’s responses monotonous and easy to anticipate. This
predictability reduced the overall gameplay challenge.

1.2. Teaching process of the enemy

For the research [3], We used the Unity ML-Agents toolkit for teaching purposes.
This is an open-source toolkit developed by Unity Technologies in 2020. The core
concept involves an Agent that learns through reinforcement learning. Unity pro-
vides a plug-in package that includes the necessary code libraries and connects to
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the virtual environment. To get started, We had to create a virtual environment
and, like with all machine learning projects, We needed to install TensorBoard and
PyTorch using pip. Additionally, We installed ML-Agents, which requires NumPy
and TensorFlow.

1.2.1. ML-Agents

The ML-Agents framework is centered around reinforcement learning, where an
agent learns to make decisions in various situations based on feedback from its
environment, known as rewards. This learning process does not rely on examples
from teachers; instead, it is driven by self-trial and error. The feedback received
from the environment aids in developing an optimal strategy for the agent.

Formally, this process is described by a Markov Decision Process (MDP) [6],
whose components are:

M = <SvA7P7R7’7>

An MDP is a mathematical framework used to model decision-making in envi-
ronments where outcomes are partly random and partly under the control of the
agent.

State space (S) The state space defines all observable features available to the
agent during decision-making. In this study, the agent’s state vector consisted of
positional, health, status, timing, and event-related variables, as summarized in
Table 1.

Table 1. Summary of state space components.

Category Description

Positional data Distance from the player; direction of the player rel-
ative to the agent; agent’s facing direction.

Health information | Current health points of the agent; current health
points of the player.

Status flags Attack availability (boolean flag preventing overlap-
ping attacks); whether the agent is currently attack-
ing.

Timing Time elapsed since the last attack.

Special events Whether the player is affected by the “black hole”

status (immobilized).

The first experiment We conducted was a test on reinforcement learning with
a hardcoded AI opponent. We trained an Agent against this opponent, and this
is where We first initialized the reward system. Initially, the rewards were set too
high, which made the agent’s policy unstable. To address this, We normalized the
large integers to a 0...x interval, resulting in more stable learning.
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Although it is important from a teaching perspective to know how much reward
the agent received and why, the essence of the research lies in the methodology,
which can be particularly relevant in roguelike games. The reward system will differ
for each developer’s model; as an extension, we aim to apply this methodology to
other genres and multiple games.

Action space (A) Table 2 lists the discrete actions available to the agent at
each decision step.

Table 2. Summary of action space components.

Action Description

Move forward/backward Adjusts the agent’s position along the facing di-
rection.

Strafe left/right Moves perpendicular to the current facing direc-
tion.

Rotate left /right Changes the facing direction of the agent.

Basic attack Executes the standard melee or ranged attack,
depending on the agent’s class.

Special abilities Uses special skills such as “black hole” or other
area-of-effect attacks.

Retreat/Heal Moves away from the player and recovers health
if possible.

Idle Performs no action for a single decision step.

Reward system (R) The agent received rewards for winning, using varied at-
tacks (to discourage attack spamming), surviving with low health (encouraging
prolonged combat), and performing tactical retreats when low on HP. We initially
gave a reward for movement, but zig-zag movement developed, so we removed that
reward. This led to the agent learning to move strategically on its own. General
penalties were applied for taking damage, standing still, and missing hits.

Table 3 summarizes the conditions for rewards and penalties.

One of the key lessons learned during training was that relying solely on the
reward system was insufficient. In many cases, manual adjustments to the weights
of rewards and penalties were necessary to improve learning stability or to address
unwanted behaviors.

The main part of the agent’s reward system was the ability system. First, a
base reward was introduced that the agent received for every reward event, based
on the damage ratio:

D= damage
~ playerCurrentHP
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Table 3. Reward and penalty conditions.

Event Type
Winning a match Reward
Successful attack hit Reward
Varied attack usage Reward
Survival with low health Reward
Tactical retreat when low HP Reward
Taking damage Penalty
Standing still (no action) Penalty
Missed attack Penalty
Reward for movement (removed due to zig-zag | Removed
behavior) reward
1.2.2. PPO

PPO - Proximal Policy Optimization [8], is a popular reinforcement learning al-
gorithm often used in game development because it stably improves Al decisions
without sudden big jumps in learning. This is especially important when the op-
ponent is not deterministic, such as a human player, so the Al learns and adapts
gradually. PPO constrains policy changes so that the ratio of new to old policies
can only move within a certain range, thus facilitating the learning of complex
strategies and the retention of prior knowledge.

We chose it for the project because it handles complex decision situations such
as healing or tactical switching during combat well, and because it is natively
supported by Unity ML-Agents, it is easy to integrate.

1.2.3. Agent A

Agent A was trained exclusively through self-play, meaning it fought against its
previous versions, a technique inspired by successful applications like AlphaGo
[9], which leveraged self-play to master complex strategic games. In the YAML
configuration, we gradually increased the batch size (512), buffer size (5120), and
entropy value (0.02), and linearly decreased the learning rate to ensure stable and
continuous improvement. The design of the reward system was guided by principles
of player-centric Al design [11], aiming to encourage varied and engaging behaviors
rather than repetitive actions.

The self-play settings includedsave__steps = 20000, team__change = 150000,
swap__steps = 5000, which ensured that opponents were periodically refreshed.
This prevented the agent from getting stuck in repetitive patterns and allowed it
to learn against a variety of opponents. The selected model was chosen from the
run that produced the lowest policy and value loss values.
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1.2.4. Agent B

Agent B took its first 30 000 steps fighting against human players, then switched to
self-play learning. With player guidance, the Al learned relevant patterns early on,
its behavior stabilized more quickly, and it mastered tactical elements better — such
as when to heal or avoid combat. With Agent B, we encountered the well-known
problem in reinforcement learning: reward hacking. I mentioned this phenomenon
in 1.2.1 that the agent found a loophole in the reward system with movement

rewards. Our next research is based on this experience.

Hyperparameters

For reproducibility, we detail the complete PPO setup for both agent in Table 4.

Table 4. PPO hyperparameters used in training.

Parameter Value
Learning rate 3x 1074
Batch size 512
Buffer size 5120
Gamma () 0.99
GAE )\ 0.95
Entropy coefficient (beta) 0.001
Clip range (epsilon) 0.3
Number of epochs 5
Number of environments 1
Hidden units 128
Number of layers 2

Time horizon 64
Memory sequence length 64
Memory size 128
Seed -1 (random)

Evaluation Protocol (Appendix)

The evaluation protocol was based on the self-play configuration in the YAML files.

The details are as follows:

e Opponent pool: maintained as a sliding window of the last 10 models

(defined by window: 10).

e Checkpoint saving: new models were added to the pool every 20,000 steps

(save_steps: 20000).
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o Team change: enforced after 150,000 steps (team_change: 150000).

e« Opponent swap frequency: opponents were rotated every 5,000 steps
(swap_steps: 5000).

o Latest model ratio: 50% of matches were played against the most recent
model (play_against_latest_model_ratio: 0.5).

o Initial ELO: all agents started at 1200 (initial_elo: 1200.0).

1.3. Measurements

To evaluate the agents with metrics, we used TensorBoard and evaluated the fol-
lowing metrics to assess Al performance:

e Policy Loss: how stable the Al strategy is.
e Value Loss: how well it can predict future rewards, see Figure 1, 2.
o Entropy: the variability of decisions can be seen in Figure 3.

o ELO: the relative strength between different AI models, see Figure 4.

0.14

0.10

0.06 |

0.02 |

0 100k 200k 300k 400k 500k

Figure 1. Agent A’s TensorBoard scalar.

The agent with initial intelligence, trained against the player, showed more
stable and rapid progress. Its Policy Loss quickly converged to around 0.04, see
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Figure 2. Agent B’s TensorBoard scalar.
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Figure 3. On the left diagram, Agent A’s TensorBoard scalar of
entropy can be seen, while Agent B is on the right.

Figure 2, while the self-learning agent began to improve only after several hun-
dred thousand steps, see Figure 1, exhibiting significant fluctuations. Both agents
demonstrated a gradual decrease in Value Loss, indicating effective reward predic-
tion.

Entropy values stabilized between 1.7, and 1.8, see Figure 3 for both agents,
reflecting their ability to explore without becoming entirely random. However, the
ELO curves highlighted differences: the agent with initial intelligence started with
a higher ELO and maintained competitiveness, while the self-learning agent’s ELO
gradually declined, likely due to overly narrow strategies.

In summary, the agent that began with initial knowledge appears to be a more
formidable enemy, based on the indicators above.
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1.20e 4+ 3 1.2e +3
1.19¢ + 3 1.2e+3
0 100k 500k 0 100k 500k

Figure 4. On the left diagram, Agent A’s TensorBoard scalar can
be seen, while Agent B is on the right.

1.4. Results

To evaluate the behavior of the two Als, we asked ten semi-professional players to
try out the two versions. Participants completed a 22-question questionnaire that
assessed gameplay experience, frustration, strategic depth, and predictability.

1.4.1. Gaming experience and preference

Agent A received an average rating of 4 out of 5, compared to Agent B’s 2.6 out
of 5 (Q4-Q5). Additionally, frustration levels were significantly different: Agent A
scored 2.4 out of 5, while Agent B scored 4 out of 5 (Q15-Q16), suggesting more
negative experiences with Agent B, see Figure 5.

1.4.2. Evaluation of strategy and tactics

It is interesting to note that, despite Agent A being more popular, 70% of players
(7 out of 10) believed that Agent B had more advanced strategic skills (Q11).
However, Agent A was perceived as more unpredictable (Q8), while Agent B’s
behavior was often predictable. In some cases, this predictability led to a negative
gaming experience, particularly due to the overuse of the black hole skill, which
received criticism from several respondents (Q13), see Figure 6.

1.4.3. Realism of AI Behavior

Participants assessed the realism of each agent’s behavior to determine how closely
they resembled a human opponent. According to Q18, the majority (6/10) per-
ceived neither agent as particularly human-like, with 2/10 favoring Agent A and
2/10 favoring Agent B. Quantitative ratings further revealed that Agent B was
perceived as slightly more realistic, with an average score of 3.1/5 (Q20) compared
to Agent A’s 2.6/5 (Q19). This difference likely stems from Agent B’s more ad-
vanced strategic patterns, as evidenced by 90% of participants (Q11) noting its
superior strategies. However, the relatively low realism scores for both agents sug-
gest that further refinements are needed to enhance the perception of human-like
decision-making, a critical factor for immersive gameplay in roguelike games.
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Q4. Rate your level of enjoyment while playing against Agent A (7 = Not
enjoyable at all, 5 = Extremely enjoyable)

10 responses

6

5 (50%)

2 (20%) 2 (20%)

1 (10%)

1 2 3 4 5
Q5. Rate your level of enjoyment while playing against Agent B (7 = Not
enjoyable at all, 5 = Extremely enjoyable)

10 responses

3 3(30%) 3(30%)

1 (10%) 1 (10%)

1 2 3 4 5

Figure 5. On the top diagram, Agent A’s enjoyment results can
be seen, while Agent B is on the bottom.

Q11. Which Al seemed to have better strategies against the player? (If you
noticed any)

10 responses

® AgentA
@ AgentB

Y

Figure 6. 9 out of ten found Agent B to have better strategies,
even though they found him stronger.

1.4.4. Surprise factor in AI tactics

The extent to which the agents surprised players with their tactics was evaluated
through Q21. On average, participants rated the surprise factor at 2.4/5, with
4/10 reporting rare surprises, 3/10 noting occasional surprises, and 2/10 indicating
frequent surprises. Despite Agent A being perceived as less predictable (Q8), the
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Q9. How unpredictable was Agent A's behavior? (Higher = less predictable, more
interesting)

10 responses

4

4(40%) 4(40%)

3

2 2 (20%)

1
0 (0%)

1]

1 2 3 4 5
Q10. How unpredictable was Agent B's behavior? (Higher = less predictable,
more interesting)

10 responses

4 (40%)

3 (30%)

2 (20%)

1 (10%)
0(0%)

1 2 3 4 5

Figure 7. On the top diagram, Agent A’s enjoyment results can
be seen, while Agent B is on the bottom.

moderate surprise ratings suggest that its unpredictability did not consistently
translate into novel or innovative tactics. This distinction highlights a potential
area for improvement in designing AI behaviors that not only vary in response
but also introduce genuinely unexpected strategies to enhance the challenge and
replayability of the game.

1.4.5. Impact of reward hacking on perceived unpredictability

Player feedback highlighted a significant issue with Agent B’s overuse of the black
hole ability, with 60% of participants (Q13) noting that it led to frustrating and
repetitive gameplay. One respondent explicitly suggested reward hacking, observ-
ing that Agent B used the ability excessively despite designed constraints (e.g.,
limiting void rifts to two per 10 seconds). This behavior likely contributed to
Agent B’s lower unpredictability score of 3/5 (Q10) which can be seen in Fig-
ure 7 compared to Agent A’s 3.2/5, despite its more advanced strategies (Q11).
The paradox of reward hacking reducing perceived unpredictability underscores
the importance of carefully calibrating the reward system to prevent exploitative
behaviors that undermine gameplay variety and player satisfaction.

Overall scores

o Average gaming experience: Agent A —4/5, Agent B — 2.6/5.
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o Frustration: Agent A —2.4/5, Agent B —4/5.

o Strategic perception: 70% said Agent B used more advanced strategies,
but Agent A was considered more unpredictable.

e Boss preference: 7 out of 10 players chose Agent A as their final boss.

Several players criticized Agent B for overusing the “black hole” ability, which
made gameplay predictable and sometimes frustrating. In contrast, Agent A had
a more varied use of abilities and balanced behavior.

1.4.6. Ultimate preference — Which AI should be the arch enemy?

Most respondents (7 out of 10) selected Agent A as their preferred final boss enemy
(Q22), see Figure 8. Agent A was noted for its diverse skill usage, balanced behav-
ior, and lower frustration scores. In contrast, Agent B received more criticism due
to its aggressive and often overly dominant use of abilities, particularly the black
hole.

Q22. If one of the Als had to be used as the final boss in the game, which would
you prefer?

10 responses

@ AgentA
@ AgentB

Figure 8. 7 out of 10 people came to the conclusion after answering
all the questions and testing both agents that Agent A is their
ultimate preference for a game boss.

2. Conclusion

Quantitative analysis using TensorBoard metrics demonstrated that Agent B, trai-
ned with initial human guidance, achieved faster convergence, higher ELO ratings,
and more stable policy optimization compared to Agent A, which relied solely on
self-play. However, qualitative feedback from ten semi-professional players revealed
a preference for Agent A, attributed to its greater unpredictability, more varied
skill usage, and lower frustration levels (mean: 2.4/5 vs. Agent B’s 4/5). Notably,
Agent B’s overuse of the black hole ability, reported by 60% of participants, not only
increased frustration but also paradoxically reduced its perceived unpredictability
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(3/5 vs. Agent A’s 3.2/5), likely due to reward hacking exploiting the reward system
design.

Furthermore, neither agent was consistently perceived as human-like, with
Agent B rated slightly higher in realism (3.1/5 vs. 2.6/5), suggesting that advanced
strategies alone do not suffice to create the illusion of a human opponent. Addition-
ally, the moderate surprise factor (mean: 2.4/5) indicated that unpredictability did
not always translate into novel or innovative tactics, potentially limiting long-term
player engagement. These findings underscore the necessity of balancing techni-
cal optimization with player experience objectives, prioritizing fairness, tactical
variety, and the capacity to surprise players for an engaging gameplay experience.

Future work will explore hybrid training methodologies combining autonomous
self-play with periodic human-guided refinement to enhance both strategic com-
petence and perceived realism. Additionally, addressing reward hacking through
refined reward structures, such as temporal constraints on ability usage or diver-
sified penalties, will be critical to prevent exploitative behaviors. Approaches like
Group Relative Policy Optimization (GRPO)[1] and multi-agent adaptive systems
may further ensure that Al opponents remain strategically robust while delivering
enjoyable and immersive gameplay experiences.
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Abstract. Flowshop scheduling problems are classic examples of schedul-
ing where the objective is to minimize makespan — the total manufacturing
time. Only the processing times required for each operation are considered.
Since the general flowshop problem is NP-hard, multiple heuristic and meta-
heuristic approaches have emerged over the years. Most practical applica-
tions, however, require a much more nuanced approach: multiple — some-
times contradictory — objectives must be considered simultaneously along-
side a plethora of additional constraints. Flexible flowshop problems are an
abstraction of classic flowshops, where each stage can consist of multiple par-
allel machines, referred to as work centres. Commonly, models also have to
consider a broader range of manufacturing restrictions and variables, such
as setup times, machine eligibility restrictions, and due dates. This study
aims to demonstrate the application of genetic and memetic metaheuristic
algorithms on the FFc | sk, dj, M; | Cmaz, Tmac, Zj T;, Z]. U; flexi-
ble flowshop scheduling problem. It also outlines a dynamic decoding method
for permutation or random key representations to alleviate controllability and
tightness problems during genotype-phenotype conversion. Common genetic
crossover and mutation operations are showcased alongside the simulated an-
nealing local search algorithm to form memetic algorithms. To handle multi-
ple objectives, a modified version of the relative distance method is employed.
The findings are demonstrated via the Taillard benchmark set.

Keywords: genetic algorithm, memetic algorithm, simulated annealing, multi-
objective scheduling, flowshop scheduling.
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1. Introduction

Flowshop scheduling problems are classic examples of constrained multi-resource
and multi-operation scheduling [12]. Classically, the objective is to minimize make-
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span — the total manufacturing time — where only the processing times required
for each operation are considered. Since the general flowshop problem is NP-hard,
multiple heuristic and metaheuristic approaches have emerged over the years. Most
practical applications, however, require a much more nuanced approach: multiple
— sometimes contradictory — objectives must be considered simultaneously along-
side a plethora of additional constraints. Flexible flowshop problems [10, 20] are
an abstraction of classic flowshops, where each stage can consist of multiple par-
allel machines, referred to as work centres. Commonly, models also have to con-
sider a broader range of manufacturing restrictions and variables, such as setup
times, machine eligibility restrictions, and due dates [21, 23]. This study aims to
demonstrate the application of genetic and memetic metaheuristic algorithms on
the FFc | sijk, dj, M; | Cnaz, Tmaz, Zj T;, Zj U; flexible flowshop schedul-
ing problem. It also outlines a dynamic decoding method [29] for permutation or
random key representations [26] to alleviate controllability and tightness problems
during genotype-phenotype conversion. Common genetic crossover and mutation
operations are showcased alongside the simulated annealing local search algorithm
to form memetic algorithms. To handle multiple objectives, a modified version of
the relative distance method [14, 15] is employed as opposed to common weighted
sum or e-constraint methods [2] or non-dominating sorting genetic algorithms [5,
19]. The findings are demonstrated via the Taillard benchmark set [24], where the
original problem has been transformed to accommodate the denoted problem.

Most flexible flowshop studies choose to focus on throughput-related perfor-
mance indicators, such as minimizing makespan or flow time. In particular cases,
throughput may not be the most important or the only objective. In make-to-order
manufacturing, a late order implies a penalty in the form of loss of goodwill, and
the magnitude of the penalty depends on the tardiness of the delivery [20]. In
many circumstances, managing on-time delivery has significance alongside improv-
ing the system’s throughput. Optimizing due-date-related schedule metrics, such
as the number of tardy orders, total tardiness, and maximum lateness, is crucial
for manufacturing firms.

In the literature, algorithms for solving the flexible flowshop problem can be
categorized into exact and heuristic approaches. Exact methods, including math-
ematical programming and branch and bound, create optimal solutions. Due to
the lack of efficient lower bounds, the branch and bound approach is limited to
simple shop configurations. Exact methods require a long time for solving large
instances. Both facts limit the practical application of these methods. A more
practical method is to search for a quasi-optimal solution in a reasonable amount
of time. For this reason, the trend is to solve flexible flowshop problems using
heuristics, especially metaheuristics.

2. Problem formulation

A scheduling problem can be described by a triplet «|3|y notation [23]. The « field
describes a machine environment and usually contains just one entry. The 3 field
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details the processing characteristics and constraints of operations. This g field
may contain multiple, single, or no entries. The  field describes the performance
metric or metrics to be minimized.
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(c) An example of the flow-shop problem.

Figure 1. A classic flowshop problem.

Consider a flowshop I environment with n jobs and m machines: p;; represent
the processing times. ¢ € {1, 2, ..., m} is the ith machine in the production line,
S;, is the starting time of job j on machine %, C}; is the completion time of job j
on machine i. A resource can only process one job at a time; therefore, the start
time of the next job must be equal to or greater than the completion time of its
predecessor on the same resource. A job can only be present on one resource at
any given time, meaning that the start time of the same job on the next machine
must be greater than or equal to the completion time of its predecessor operation.

Cji < Sjt,
Cji = Ciina

1
Ch; = Zm,k
k=1

96



Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

J
Cia=Y_pji
=1
Cji = max(Ci_1,j,Ci j—1) + pij

The first scheduled job does not have to wait for other jobs and is available from
the start 71 = 0. The completion time of the first job on the current machine is
always the sum of its previous operations on the preceding machine in the chain and
its processing time on the current machine. Figure la shows how the first sched-
uled job has only one contingency - its operations on previous machines. Jobs on
the first machine are only contingent on jobs on the same resource. Therefore, the
completion time of the job on the first machine is the sum of previously scheduled
jobs plus its own and S; ;1 = C;_1,;. Figure 1b illustrates that the first machine
has only one contingency, and operations can follow without delay. Considering
subsequent jobs on subsequent machines (4,5 > 1), the completion times are con-
tingent on the same job on previous machines and previously scheduled jobs on
the previous machines in the chain. Figure 1c illustrates the solution for a classic
flowshop problem using a Gantt chart.

The classic flowshop problem aims to minimize the completion time of the last
job called the makespan. Therefore, the aim is to minimize the completion time of
the last scheduled machine on the last machine in the manufacturing line:

Craz = n,m — MIN

2.1. A flexible flowshop example

A flexible flowshop is a generalization of the classic flowshop (F'm) and parallel
machine (Pm) environments. Instead of m machines in series, there are ¢ stages
with several identical machines in parallel. Each job must be processed first at
stage 1, then stage 2, and so on. A stage functions as a bank of parallel machines;
at each stage, job j requires processing on only one machine, and any machine can
do it. The queues between the various stages may or may not operate according
to the First Come First Served (FCFS) principle. In literature, flexible flowshops
have also been referred to as hybrid and multiprocessor flowshops. The following
flexible flowshop problem is presented as an example:

FFe | Sij,k> dj; Mj | Cmaw7 Tmawa ZT]’ ZUJ
a ]

J

In this paper, we present a problem with identical parallel machines at each
stage (F'Fc), machine eligibility constraints (1), sequence-dependent setup times
(si,i.k), due dates (d;), and multiple objective functions. Machine eligibility indi-
cates that not all machines can process any job in a stage due to certain limitations
— this characteristic is significant in the modern industry but rarely considered by
the literature [23].
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For example, a four-stage flexible flowshop, a sheet metal manufacturing envi-
ronment, is shown. The system consists of four stages: blanking, bending, welding,
and assembling. Metal sheets enter the blanking stage, cutting the raw mate-
rial into two-dimensional parts with a laser cutting machine or punching press.
Then, the parts are transferred to the bending stage to be bent into specific three-
dimensional parts. After bending, the welding and assembling stages take the parts
to a completed - final product - state. In the cutting stage, a laser cutting machine
may not be able to be used for all types of materials. Bending requires specific
tool sets and work ranges, which may rule out specific machines for a particular
part. Figure 2b illustrates such a four-stage flexible flowshop environment and a
possible path in the system as opposed to the classic flowshop example illustrated
in Figure 2a.

2.Bending

Press brake

Bending
1. Blanking automated cell
Press brake
2.Bending Punchi
machine 3. Welding
1.Blanking
N
N 4. Assembling
3. Welding \ Flying optic laser
machine Assembly
Punching Welding (manual )
machine (manual)
4. Assembling /
A

Assembly

(manual) [

/

/ (b) A four-stage flexible flowshop with
unrelated machines and machine eligi-
(a) A classic flowshop environment. bility.

Figure 2. Comparison of F'm and F'Fc¢ models.

3. Encoding and decoding methods

Encoding is a representation of a solution by a vector of values representing key
decision variables on which an algorithm operates. This vector is often called a
genotype or chromosome in case of genetic algorithms. Most generally, schedules
are represented by each operation’s start and finish times on every corresponding
machine. This view allows for an infinite solution space. Since scheduling often
involves minimizing makespan, flowtime, and lateness, all operations are commonly
started as early as possible. This goal makes the schedule a semi-active schedule
[20], in which no operation can be completed earlier without change the processing
order. In such schedules, the decision variables are reduced to the machine assign-
ment of each operation and the sequence of operations on each machine. A large
encoding scheme in a large-scale solution may result in inefficient searching. Urlings
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et al. [26] studied different encoding schemes in genetic algorithms and deducted
that more detailed encodings result in worse scheduling performance. For this rea-
son, most use a permutation encoding scheme, where a solution is represented as
a job order s € S,,. Alternatively, random keys can replace direct permutations by
mapping real valued vectors s € [0,1)"™ to job orders via sorting.

Decoding derives a schedule (phenotype) from the encoded solution (genotype).
Permutation encoding does not contain all necessary decision variables when con-
structing a flexible flowshop schedule. These missing variables, like machine se-
lection, are determined by heuristics during decoding; for this reason, decoding
methods are crucial to solution quality. The most adopted method is List Schedul-
ing (LS), where jobs are executed in the order given in the encoding on the first
stage and using the first-come-first-served (FCFS) principle on all subsequent ones.
With List Scheduling, the original ordering’s influence on the schedule is diminished
by the FCFS rule through the various stages. This limited influence is known as
the controllability problem. Another widely used method is Permutation Scheduling
(PS), as adopted by Ruiz and Stiitzle [22]. As opposed to List Scheduling, Per-
mutation Scheduling keeps the initial, global ordering for all stages. This method
improves control, making it easier to handle urgent jobs, but it can cause idle time
when stages desynchronize. This inefficiency is called the tightness problem.

Despite their broad application, permutation and list scheduling both have ob-
vious drawbacks. In scheduling, one may want to handle urgent jobs without the
delay caused by synchronization. For this reason, Chunlong et al. [29] utilized per-
mutation encoding and Dynamic Scheduling with first available machine selection
to minimize the total tardiness ) y T; while maintaining tightness and controlla-
bility. In Dynamic Scheduling, both the completion time on the previous machine
Cj,i—1 and the global order s are used. When a machine finishes a job, it chooses
from jobs available at that time, but in the order given by the initial order s. This
method combines List Scheduling and Permutation Scheduling by modifying the
machine’s buffer into a priority-queue.

Table 1. A 2-stage scheduling problem.

Job  Stage 1 Stage 2 Due
Eligibility Processing time Eligibility =~ Processing time

1 {M1717M112} 2 {M2,1} 4 9

2 {M11,M12} 2 {M2,1} 3 12

3 {M1717M112} 5 {M2,1} 2 8

Table 1 presents a two-stage flowshop problem as an illustrative example. Sup-
pose the solution is given by the Earliest Due Date (EDD) heuristic, resulting in
the job sequence s = {3, 1,2}. List Scheduling is depicted in Figure 3a. Due to dif-
fering completion times in stage 1, the job order in stage 2 changes to s = {1, 2, 3}.
The resulting performance indicators are: makespan Ch,x = 11, total tardiness
> ;Tj = 3, maximum tardiness Tiyax = 3, and number of late jobs Zj U; =1
(Job 3). Figure 3b shows the outcome of applying permutation-based scheduling.
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To maintain the original sequence s across both stages, the start times of Jobs 1
and 2 in stage 2 are delayed. The resulting objective values are: Chax = 14,
ZjTj =4, Thax = 2, and Zj U; = 2. In contrast, Figure 3c illustrates the re-
sult of Dynamic Scheduling. Here, when Job 1 completes stage 1, it immediately
proceeds to stage 2 and is assigned to machine M ;. Later, when M becomes
available, both Job 2 and Job 3 are waiting. Since Job 2 has higher priority ac-
cording to s, it is selected for processing before Job 3. This dynamic adjustment
achieves the same makespan as List Scheduling, C.x = 11, but crucially, it was
able to uphold Job 2’s priority, eliminating all tardiness: > j T; = 0.

[ob3
tage 1

Tob1
Mz Stage1  [1ob2
s

Job2
Stage2 Job3
Stage2

(b) Permutation schedul-
(a) List-scheduling. ing. (c) Dynamic scheduling.

Figure 3. Different decoding methods.

4. Examined algorithms

This paper focuses on three prominent methods: Simulated Annealing (SA), Ge-
netic Algorithms (GA), and Memetic Algorithms (MA).

Simulated Annealing (SA), introduced by Kirkpatrick et al. [13] and Cerny [3], is
a probabilistic variant of hill climbing that accepts worsening moves with decreasing
probability. Inspired by thermodynamic cooling, it explores a cost landscape via an
inhomogeneous Markov chain. The cooling schedule T'(¢) is a monotonic function
impacting convergence quality [16]. For benchmarking, Multiplicative Exponential
cooling was used.

Genetic algorithms are search algorithms that mimic natural selection and ge-
netics [11]. The Swap2, Swap3, Adjacent, Reverse segment, Shift segment, Shuffle
segment mutations were considered. Recombination operators combine parts of
two parent solutions to generate one or more offspring. The following operators
were considered: Order 1 Crossover (OX1) [4, 9], Order 2 Crossover (0X2) [7,
9], Partially Mapped Crossover (PMX) [8, 9], Cycle Crossover (CX) [18], Edge
Recombination Crossover [27].

Selection mechanisms fall into fitness-proportionate (e.g., roulette) and ordinal
(e.g., tournament, truncation) categories [7].

Memetic Algorithms (MA) enhance GAs by integrating local search. Inspired
by Moscato’s model [17], they apply local refinement to globally guided search,
improving both quality and convergence speed [25]. Hybrids with nested SA as
inner search and MA as outer search have demonstrated superior approximation
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performance [1, 6, 28]. Figures 4a and 4b illustrate the core steps of GA and MA,
respectively.

(a) Genetic algorithm. (b) Memetic algorithm.

Figure 4. Comparison of memetic and genetic algorithms.

For multi-objective optimization a modified relative distance method was used
[14]. The method utilizes two feasible solutions simultaneously and generates a
numeric value based on their relative distances. This value is derived from K
fitness function value pairs, which are compared and scaled. These scaled values are
then multiplied by a weight that signifies an objective’s importance. The resulting
scaled and multiplied values are then summed. The signedness of the sum signifies
dominance or equality.

F:5? R

k
F(sﬂmsy) = ZD(SIvSy)
filsy) = filsa) if max(f;(s i(s
D(sm,sy) _ max(fi(sm)afi(sy)) f a (fZ( 3?)7f’t( y)) # 07

0 otherwise

(4.1)

Our modified version uses an ideal point f = min{f;(s) : s € P} to derive a
distance for every individual in a population P(S) and sorts them accordingly —
the closer an individual is to the ideal, the better. The D function is also made
to use the total of absolute values of each objective function value. Therefore, our
F:SxP(S)—Rand D: S x P(S) — R can be applied to an entire population.
Equation (4.2) formulates our modified approach as opposed to the original method
detailed in Equation (4.1).

k
F(s,, P) = ZD(sx,P)

- if . i(Sg 07
D(sy, P) = { 7+ 1fi(s2)] £+ 1 fi(sa2)] #
0 otherwise

5. Benchmark sets

The basis of all benchmarks was the dataset published by Taillard [24]. To generate
machine configurations (work centres), constants from the set 1, 2,4 were selected,
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resulting in two scenarios: a standard case, where all stages have the same number
of machines, and a bottleneck case, where the last stage contains only a single
machine, simulating a bottleneck in the production flow. Notably, when all stages
consist of a single machine, the problem reduces to the classical flowshop variant.

Due dates were generated with a looseness factor [ = 1.3, using the upper bound
UB of each problem as a reference. The due date bounds were computed as dy, =
0.75-UB-l and dy, = 1.25-UB-l. Each due date d; was then sampled uniformly as
an integer from the interval [djp, dyp]. Setup times s; 4.k were generated randomly
as integers in the range [0,20]. For simplicity, total eligibility was assumed — i.e.,
all jobs are eligible for all machines at every stage.

All random generation was performed using C++’s std::mt19937 pseudo-
random number generator, initialized with the original seed used by Taillard.

6. Results

All mutation, crossover combinations were run on all problems in the 20 job, 5
machine Taillard set (1tai20_5). All algorithms were run 10 times — totaling 8100
runs — with the following parameters:

Table 2. Benchmarking parameters.

Parameter Value
GA generations 1000
MA generations 100
Chromosome count (GA & MA) 20
SA iteration count (MA) 100
SA initial temperature 3000
SA « 0.1

Distance values were calculated similarly to Equation (4.2), using the entire
result set from all algorithms on a specific problem, stage, bottleneck configuration.
Figure 5 clearly shows how memetic algorithms edge out genetic algorithms on
standard benchmarks and Inversion mutation was the operator that benefitted the
most from the introduction of a local search algorithm.

A percentile difference w from the best known solution is also used. The measure
for comparison is the upper bound, the best solution known so far. From the
obtained final makespan Cgg and the upper bound Cy g, a difference is calculated
w = Cee=CUB 100,

Table 3 presents the best configurations for Genetic Algorithms (GA) and
Memetic Algorithms (MA) across varying numbers of machines per stage and bot-
tleneck settings. Configurations were selected based on the lowest total distance
from ideal objective values. For each condition, the GA and MA configurations are
compared side by side to highlight their relative performance.
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(a) Heatmap on the stan-
dard case.

(¢) Ranking slopegraphs for
the standard case.

(b) Heatmap on the bottle-
neck case.
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(d) Ranking slopegraphs for
the bottleneck case.

Figure 5. Relative distance comparison per mutation, recombina-
tion for each machine count on standard and bottleneck cases.

In the case of one machine per stage without bottlenecking, the Memetic Algo-
rithm using the Inversion/CX combination outperforms its genetic counterpart in
all metrics. It achieves a lower makespan (Ciay), reduced total tardiness (> T),
fewer late jobs (D> U), and a lower w value, although the genetic configuration
with Shift/OX1 remains competitive with a marginally better total distance. Un-
der the same machine configuration but with a bottleneck present, the Genetic
Algorithm demonstrates superior performance across all evaluated objectives. The
configuration using Shift/Position achieves the best results, with minimal Ci,q4,
tardiness, and late jobs, as well as the lowest w and total distance, indicating GA’s
adaptability in constrained environments at this scale.

With two machines per stage and no bottleneck, both algorithms perform near
optimally. The Genetic Algorithm with the Swap3/OX1 configuration achieves
perfect scheduling, indicated by zero tardiness and no late jobs. The Memetic
Algorithm also reaches optimality with a nearly identical performance, showing
both methods to be equally effective under these conditions.
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Table 3. Best configurations by total distance per stage.

Alg. M!' B2 Crmaz T YU w F  Config?

GA 1 F 1712.82 302.31 3.06 40.70  0.01  Shift/OX1

MA 1 F 1636.28 245.25 2.43 34.23 0.02 Inversion/CX
GA 1 T 1693.31 254.16 2.43 38.76 0.01  Shift/Position
MA 1 T 1723.82 282.51 3.06 41.50 0.02 Shuffle/CX

GA 2 F 981.94 0.00 0.00 -19.39  0.01 Swap3/0X1
MA 2 F 985.26 0.00 0.00 -19.18 0.01 Inversion/Position
GA 2 T 1379.80 42.93 0.63 13.05 0.18 Shift/Position
MA 2 T 1389.63 69.48 0.72 13.72  0.19  Shift/OX2

GA 4 F 609.87 0.00 0.00 -49.98 0.01  Shuffle/OX1
MA 4 F 607.59 0.00 0.00 -50.19 0.01 Shuffle/Position
GA 4 T 1356.70 56.88  0.36 10.95 0.39 Shift/OX2

MA 4 T 1377.07 30.60 0.54 1279 0.40 Swap2/Edge

When a bottleneck is introduced at the same stage count, the Genetic Algorithm
once again proves more robust. Its Shift/Position configuration yields better results
in every objective, outperforming the memetic counterpart and reinforcing GA’s
advantage under more constrained and complex processing.

At four machines per stage with no bottleneck, the Memetic Algorithm takes
the lead. The configuration with Shuffle/Position outperforms GA’s best setup by
achieving slightly better values for C,,4., w, and total distance, suggesting that
memetic search strategies scale more effectively with increased stage parallelism.

Finally, in the most complex case — four machines per stage with a bottleneck
— both algorithms show strengths in different aspects. The Genetic Algorithm
configuration yields a better makespan and fewer late jobs, while the Memetic
Algorithm significantly reduces total tardiness and produces a more favorable w
value. Although the Genetic Algorithm has a marginally better total distance, the
overall results indicate a trade-off between the two strategies depending on the
specific scheduling objective.

These findings suggest that Genetic Algorithms tend to perform better in
low-stage or bottlenecked environments, while Memetic Algorithms excel as sys-
tem complexity increases and resources are less constrained. The mutation and
crossover pairings also play a critical role, with combinations like Shift/Position,
Shuffle/OX1, and Inversion/CX consistently appearing among the top-performing
configurations.

Selection of a parameter set for Memetic Algorithms must also consider the
runtime overhead introduced by the additional local search operation. This creates
a balancing act in CPU time-management between local and global search.

Machines per stage
2Bottleneck configuration
3Mutation/Crossover
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7. Conclusion

This study presented a comparative evaluation of Genetic and Memetic Algorithms
for solving flexible flowshop scheduling problems under varying machine stage
counts and bottleneck conditions. The results indicate that Genetic Algorithms
tend to perform better in constrained environments, especially when bottlenecks
are present or stage counts are low, while Memetic Algorithms show superior scal-
ability and robustness as the degree of parallelism increases. The evaluation across
multiple objective functions — makespan, total tardiness, number of late jobs, and
an aggregate w metric — highlighted the importance of pairing crossover and mu-
tation operators effectively with the problem structure.

8. Future research

These findings are compelling and provides ample room for future research. Fu-
ture work will explore several extensions of this study, including integrating both
fine-grained and coarse-grained parallel algorithms to reduce runtime and improve
scalability. Adding realistic constraints such as setup times, machine eligibility, and
maintenance. Combining metaheuristics with Constraint Programming could offer
better feasibility guarantees. Using neural networks to guide job and machine selec-
tion within metaheuristics, enabling adaptive scheduling policies. Extending with
algorithms to explore trade-offs between makespan, tardiness, and other objectives.

References

[1] A. AcArpi, K. NEHEZ, O. HORNYAK, L. T. K6czy: A Hybrid Discrete Bacterial Memetic
Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem,
Symmetry 13.7 (2021), p. 1131, DOI: 10.3390/sym13071131.

[2] S. AGHAKHANI, M. S. RAJABL: A new hybrid multi-objective scheduling model for hierarchical
hub and flexible flow shop problems, AppliedMath 2.4 (2022), pp. 721-737, pOI: 10.3390/ap
pliedmath2040043.

(3] V. CERNY: Thermodynamical approach to the traveling salesman problem: An efficient sim-
ulation algorithm, Journal of optimization theory and applications 45 (1985), pp. 41-51, DOI:
10.1007/BF00940812.

[4] L. Davis ET AL.: Applying adaptive algorithms to epistatic domains. In: IJCAI, vol. 85,
Citeseer, 1985, pp. 162—-164, 1SBN: 0934613028.

[5] K. DEB, M. EHRGOTT: On Generalized Dominance Structures for Multi-Objective Opti-
mization, Mathematical and Computational Applications 28.5 (2023), ISSN: 2297-8747, DOI:
10.3390/mca28050100, URL: https://www.mdpi.com/2297-8747/28/5/100.

[6] L. Fazekas, B. TU0-SzaBO, L. T. Kéczy, O. HOrRNYAK, K. NEHEZ: A Hybrid Discrete
Memetic Algorithm for Solving Flow-Shop Scheduling Problems, Algorithms 16.9 (2023),
ISSN: 1999-4893, DOI: 10.3390/a16090406, URL: https://www.mdpi.com/1999-4893/16/9/40
6.

[7] D. E. GOLDBERG, B. KoRrB, K. DEB: Messy genetic algorithms: Motivation, analysis, and
first results, Complex systems 3.5 (1989), pp. 493-530, 1ssN: 0891-2513.

105


https://doi.org/10.3390/sym13071131
https://doi.org/10.3390/appliedmath2040043
https://doi.org/10.3390/appliedmath2040043
https://doi.org/10.1007/BF00940812
https://doi.org/10.3390/mca28050100
https://www.mdpi.com/2297-8747/28/5/100
https://doi.org/10.3390/a16090406
https://www.mdpi.com/1999-4893/16/9/406
https://www.mdpi.com/1999-4893/16/9/406

Annal. Math. et Inf. L. A. Fazekas, K. Nehéz

[8] D. E. GOLDBERG, R. LINGLE JR: Alleles, Loci, and the Traveling Salesman Problem, in:
Proceedings of the 1st International Conference on Genetic Algorithms, 1985, pp. 154-159,
DOI: 10.4324/9781315799674.

[9] Y. GuaN, Y. CHEN, Z. GAN, Z. Zou, W. DiNG, H. ZHANG, Y. Liu, C. OuvaNG: Hybrid
flow-shop scheduling in collaborative manufacturing with a multi-crossover-operator genetic
algorithm, Journal of Industrial Information Integration 36 (2023), p. 100514, 1SSN: 2452-
414X, pOI: 10.1016/j.jii.2023.100514, URL: https://www.sciencedirect.com/science/a
rticle/pii/S2452414X23000870.

[10] J. N. GuPTA, S. K. GUPTA: Single facility scheduling with nonlinear processing times, Com-
puters & Industrial Engineering 14.4 (1988), pp. 387-393, 1ssN: 0360-8352, poI: 10.1016/03
60-8352(88)90041-1, URL: https://www.sciencedirect.com/science/article/pii/036083
5288900411.

[11] J. H. HOLLAND: Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence, MIT press, 1992, ISBN: 9780262275552,
DOI: 10.7551/mitpress/1090.001.0001.

[12] S. M. JOHNSON: Optimal two-and three-stage production schedules with setup times included,
Naval research logistics quarterly 1.1 (1954), pp. 61-68, DOI: 10.1002/nav.3800010110.

[13] S. KIRKPATRICK, C. D. GELATT JR, M. P. VECCHI: Optimization by simulated annealing,
science 220.4598 (1983), pp. 671-680, DOIL: 10.1126/science.220.4598.671.

[14] G. KULCSAR, F. ERDELYT: A new approach to solve multi-objective scheduling and reschedul-
ing tasks, International Journal of Computational Intelligence Research 3.4 (2007), pp. 343—
351.

[15] K. MIHALY, G. KULCSAR: A New Many-Objective Hybrid Method to Solve Scheduling Prob-
lems, International Journal of Industrial Engineering and Management 14.4 (2023), pp. 326—
335, DOI: 10.24867/IJIEM-2023-4-342.

[16] J. MiLiczkl, L. Fazekas: Comparison of Cooling Strategies in Simulated Annealing Al-
goithms for Flow-shop Scheduling, Production Systems and Information Engineering 10.3
(2022), pp. 129-136, DOI: 10.32968/psaie.2022.3.10.

[17] P. MoscATo: On evolution, search, optimization, genetic algorithms and martial arts: to-
wards memetic algorithms, Technical Report, Caltech Concurrent Computation Program
Report 826, (1989).

[18] I. M. OLIVER, D. J. SmiTH, J. R. C. HOLLAND: A study of permutation crossover opera-
tors on the traveling salesman problem, in: Proceedings of the Second International Con-
ference on Genetic Algorithms on Genetic Algorithms and Their Application, Cambridge,
Massachusetts, USA: L. Erlbaum Associates Inc., 1987, pp. 224-230, 1sBN: 0805801588.

[19] A. Opris, D.-C. DANG, F. NEUMANN, D. SUDHOLT: Runtime Analyses of NSGA-III on
Many-Objective Problems, in: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’24, Melbourne, VIC, Australia: Association for Computing Machinery,
2024, pp. 1596-1604, 1SBN: 9798400704949, DOI: 10.1145/3638529.3654218.

[20] M. L. PINEDO: Scheduling, Theory, Algorithms, and Systems, 6th ed., Springer Cham, 2022,
ISBN: 9783031059216, DOI: 10.1007/978-3-031-05921-6.

[21] I. RiBAS, R. LEISTEN, J. M. FRAMINAN: Review and classification of hybrid flow shop schedul-
ing problems from a production system and a solutions procedure perspective, Computers &
Operations Research 37.8 (2010), Operations Research and Data Mining in Biological Sys-
tems, pp. 1439-1454, 1SsN: 0305-0548, pOI: 10.1016/j.cor.2009.11.001, URL: https://www
.sciencedirect.com/science/article/pii/S0305054809002883.

[22] R. Ruiz, T. STUTZLE: A simple and effective iterated greedy algorithm for the permuta-
tion flowshop scheduling problem, European Journal of Operational Research 177.3 (2007),
pp- 2033-2049, 1sSN: 0377-2217, DOI: 10.1016/j.ejor.2005.12.009, URL: https://www.scie
ncedirect.com/science/article/pii/S0377221705008507.

106


https://doi.org/10.4324/9781315799674
https://doi.org/10.1016/j.jii.2023.100514
https://www.sciencedirect.com/science/article/pii/S2452414X23000870
https://www.sciencedirect.com/science/article/pii/S2452414X23000870
https://doi.org/10.1016/0360-8352(88)90041-1
https://doi.org/10.1016/0360-8352(88)90041-1
https://www.sciencedirect.com/science/article/pii/0360835288900411
https://www.sciencedirect.com/science/article/pii/0360835288900411
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.24867/IJIEM-2023-4-342
https://doi.org/10.32968/psaie.2022.3.10
https://doi.org/10.1145/3638529.3654218
https://doi.org/10.1007/978-3-031-05921-6
https://doi.org/10.1016/j.cor.2009.11.001
https://www.sciencedirect.com/science/article/pii/S0305054809002883
https://www.sciencedirect.com/science/article/pii/S0305054809002883
https://doi.org/10.1016/j.ejor.2005.12.009
https://www.sciencedirect.com/science/article/pii/S0377221705008507
https://www.sciencedirect.com/science/article/pii/S0377221705008507

Annal. Math. et Inf. Multi-objective genetic and memetic algorithms . ..

23]

(24]

(25]

(26]

27]

28]

29]

R. Ruiz, J. A. VAZQUEz-RODRIGUEZ: The hybrid flow shop scheduling problem, European
Journal of Operational Research 205.1 (2010), pp. 1-18, 1ssN: 0377-2217, DOI: 10.1016/j.ej
or.2009.09.024, URL: https://wuw.sciencedirect.com/science/article/pii/S037722170
9006390.

E. TAILLARD: Benchmarks for basic scheduling problems, European Journal of Operational
Research 64.2 (1993), Project Management anf Scheduling, pp. 278-285, 1sSN: 0377-2217,
DOI: 10.1016/0377-2217(93)90182-M, URL: https://wuw.sciencedirect.com/science/arti
cle/pii/037722179390182M.

B. TUG-SzaBO, P. FOLDESI, L. T. K6czy: An efficient evolutionary metaheuristic for the
traveling repairman (minimum latency) problem, International Journal of Computational
Intelligence Systems 13.1 (2020), pp. 781-793, DOI: 10.2991/ijcis.d.200529.001.

T. UrLINGS, R. Ruiz, F. S. SERIFOGLU: Genetic algorithms with different representation
schemes for complex hybrid flexible flow line problems, International Journal of Metaheuris-
tics 1.1 (2010), pp. 30-54, DOI: 10.1504/IJMHeur .2010.033122.

L. D. WHITLEY, T. STARKWEATHER, D. FUQUAY: Scheduling Problems and Traveling Sales-
men: The Genetic Edge Recombination Operator, in: Proceedings of the 3rd International
Conference on Genetic Algorithms, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1989, pp. 133-140, 1SBN: 1558600663.

A. J. WILsON, D. PALLAVI, M. RAMACHANDRAN, S. CHINNASAMY, S. SOWMIYA: A review
on memetic algorithms and its developments, Electrical and Automation Engineering 1.1
(2022), pp. 712, DOL: 10.46632/eae/1/1/2.

C. Yu, Q. SEMERARO, A. MATTA: A genetic algorithm for the hybrid flow shop scheduling
with unrelated machines and machine eligibility, Computers & Operations Research 100
(2018), pp. 211-229, 1sSN: 0305-0548, DOI: 10.1016/j.cor.2018.07.025, URL: https://wuw
.sciencedirect.com/science/article/pii/S030505481830217X.

107


https://doi.org/10.1016/j.ejor.2009.09.024
https://doi.org/10.1016/j.ejor.2009.09.024
https://www.sciencedirect.com/science/article/pii/S0377221709006390
https://www.sciencedirect.com/science/article/pii/S0377221709006390
https://doi.org/10.1016/0377-2217(93)90182-M
https://www.sciencedirect.com/science/article/pii/037722179390182M
https://www.sciencedirect.com/science/article/pii/037722179390182M
https://doi.org/10.2991/ijcis.d.200529.001
https://doi.org/10.1504/IJMHeur.2010.033122
https://doi.org/10.46632/eae/1/1/2
https://doi.org/10.1016/j.cor.2018.07.025
https://www.sciencedirect.com/science/article/pii/S030505481830217X
https://www.sciencedirect.com/science/article/pii/S030505481830217X

Annales Mathematicae et Informaticae
61 (2025) pp. 108-117

DOI: 10.33039/ami.2025.10.007

URL: https://ami.uni-eszterhazy.hu

Automated detection
of toxic comments in Hungarian

Péter Hatvani*®, Zijian Gy6z6 Yang’

“ELTE Research Centre for Linguistics
yang.zijian.gyozo@nytud.elte.hu

bPézméuny Péter Catholic University
Doctoral School of Linguistics
hatvani.peter@hallgato.ppke.hu

Abstract. Moderating toxic online comments in Hungarian remains a chal-
lenging NLP task. We introduce the first openly available Hungarian corpus
for toxic comment classification, though limited in size (n = 655), sourced
from social media and political news forums. We fine-tuned three BERT-
based classifiers (huBERT, multilingual BERT, and huBERT-SetFit) and
applied data augmentation techniques to expand the training dataset. The
best-performing model, huBERT-SetFit, achieved an F1 score of 93.7%. Our
results demonstrate the effectiveness of transformer-based models for toxicity

detection in low-resource, linguistically complex settings.
Keywords: toxicity, online hate, nlp, classification, logistic regression
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1. Introduction

In the digital era, online platforms have become central to social interaction, yet
they are frequently plagued by toxic discourse that undermines constructive en-
gagement. Toxic comments can include hate speech, threats, personal insults, and
discriminatory remarks, posing challenges to both platform moderation and user
safety. Although large-scale datasets and models exist for high-resource languages
such as English, many low-resource languages such as Hungarian remain underrep-

resented in this domain.

This paper addresses the critical need for effective toxicity detection in Hun-
garian by introducing a novel, publicly available corpus containing both toxic and
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neutral Hungarian comments. Additionally, we evaluate the performance of three
fine-tuned transformer-based classifiers - HuBERT, multilingual BERT (mBERT),
and huBERT-SetFit — on this dataset.

Drawing inspiration from previous efforts such as detoxify [3] and the Jigsaw
Multilingual Toxicity Classification competition [5], this research aims to bring
similar capabilities to the Hungarian language. Our experiments show that sentence
embedding-based methods like SetFit can outperform traditional fine-tuning in low-
data regimes, providing a viable solution for toxicity detection in under-resourced
languages.

2. Related works

The detection of toxic comments has gained increasing attention with the growth
of user-generated content. One of the most influential initiatives in this space was
led by the Jigsaw/Conversation Al team, which introduced large-scale English-
language datasets for toxicity classification on platforms such as Wikipedia talk
pages [5]. These datasets provided multilabel annotations for categories such as:
Toxic, Severe toxic, Obscene, Threat, Insult, Identity hate.

Several benchmark models such as Toxic-BERT [3], based on pretrained trans-
former architectures, have since been developed and are widely used in high-
resource English and multilingual contexts. However, these models often perform
inadequately in underrepresented languages due to data scarcity and linguistic dif-
ferences.

Multilingual BERT [2] and XLM-R [1] offer some generalization to low-resource
languages, but studies show that language-specific models like huBERT [6] can
outperform them in Hungarian-specific tasks.

SetFit [8] introduced a new paradigm by combining sentence embeddings with
lightweight classification heads, enabling few-shot learning with minimal labeled
data. Its efficiency and performance in low-resource settings make it particularly
suited for tasks such as toxicity detection in Hungarian.

Despite these advances, there remains a lack of open-domain Hungarian datasets
and benchmark models for toxic comment classification. Our work contributes to
filling this gap by releasing a small but diverse Hungarian dataset and evaluating
three transformer-based models on it, including a SetFit variant that requires no
data augmentation.

3. Method

To develop an automatic classifier for toxic comment detection, a manually anno-
tated dataset was first created. The training corpus comprises comments from two
distinct sources: (i) offensive social media comments from Reddit and napiszar.com,
and (ii) politically charged discussions from Hungarian news sites mandiner.hu and
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kuruc.info. The final dataset comprises 655 annotated comments, labeled according
to the jigsaw competition categories.

3.1. Annotation categories and examples

We have adopted the multi-label approach from Jigsaw with the 5 scale Likert
scale to the same categories as mentioned in the Related Works section. Three
annotators made judgements with a “slight-agreement” according to Randolph’s
Kfree = 0.525 [7]. The annotators were not in the same age group neither were
they all of the same gender. Given the subjective nature of toxicity perception, we
expected substantial variation in judgments across items when using annotators
from diverse backgrounds. Although judgements were not unanimous, no item
exhibited extreme disagreement (with one annotator giving the highest rating and
another giving the lowest), so no items were removed from the initial collection.

While the moderate inter-annotator agreement reflects the inherent subjectivity
in toxicity perception, this represents a limitation of our dataset that may affect
model reliability. Future work should explore consensus-building techniques or
expert adjudication to improve annotation consistency.

3.2. Analysis of examples from the corpus

Toxicity can show many forms. In this section, we introduce a few examples from
the corpus and analyse the toxic content in each.

(1) Exzt az arcot ldttam mdr valahol, mintha eqy hig
this.ACC the face-ACC see-1SG.PAST already somewhere as.if —a  watery

agyt propaganda-troll lenne.
brain-POss propaganda-troll be.COND.3SG

‘I've seen this face somewhere before, like some dumb-brained propaganda
troll’

Toxicity Example 1 conveys toxicity through indirect derogation. The speaker
insinuates that the person resembles a “dumb-brained propaganda troll,” a phrase
that implies intellectual inferiority and political manipulation. The use of “mintha”
(as if) introduces the insult in a covert, sarcastic way, enhancing its rhetorical
impact while allowing for plausible deniability.

(2) Karpdtol addig hatalmas masztika, mig mnem jut pina.
compensate until huge jerk.off  while not get pussy

‘Just jerk off until you can get some pussy.’
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Obscenity This utterance in Example 2 is obscene and explicitly sexual, using
vulgar slang for masturbation and female genitalia. It expresses objectification
and dehumanization, especially through the reduction of sexual partners to means
of “compensation.” The aggressive tone and crude lexicon contribute to its toxic
nature, targeting both sexual frustration and women.

(3) Irjon neked  a  boncmester, jegyzbkonyvet.
write-IMP.3SG you.DAT the autopsy-master report-AccC

‘Let the coroner write your report.’

Threat This sentence in Example 3 implies death in a sarcastic manner by sug-
gesting that a coroner should write the recipient’s report. While indirect, it is
a menacing wish for harm cloaked in formal-sounding language. The choice of a
professional figure related to death underscores the implied violent intent without
making an overt threat.

(4) Attol hogy blokkolod, még mindig igaza van, és te
from.that that block-DERIV-2SG still always true-P0$s.3sG is  and you
tovdabbra is egqy idiota vagy.
still a idiot are

‘Blocking them doesn’t change the fact they’re right, and you’re still an idiot.

Insult This comment in Example 4 employs direct personal insult by calling the
recipient an “idiot.” It also undermines their actions (blocking someone) as inef-
fective, intensifying the disparagement. The phrasing suggests moral superiority
while dismissing the recipient’s perspective, reinforcing the toxic tone through con-
descension and name-calling.

(5) Bdrcsak minden buzit kirdgndnak!!!!
if.only all faggot-AcC out-kick-COND.3SG-PL

‘If only all the faggots got fired!!!l’

Identity Hate This example in Example 5 is a clear instance of hate speech tar-
geting a marginalized identity group. The slur “buzit” (faggot) is used with a wish
for collective punishment (“get fired”), which constitutes discriminatory rhetoric.
The multiple exclamation marks amplify the emotional aggression, highlighting the
severity of the hate expressed.
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(6) Ugy-igy, kis  hiilye! Csisszdl térden elbttiik. A kurva
S0O-SO little idiot crawl-IMP.2SG knee-SUP before-3PL the whore
anyddat te agyhalott  pondrd.

mother-P0SS.2sG-ACC you brain-dead maggot

“Yeah right, you little idiot! Crawl on your knees in front of them. Fuck your
mother, you brain-dead maggot.

Severe Toxicity This utterance in Example 6 combines multiple forms of tox-
icity: insult (“idiot,” “brain-dead maggot”), obscenity (“fuck your mother”), and
verbal domination (“crawl on your knees”). It escalates through commands and
extreme invective. The layered abuse represents severe toxicity, intended to intim-
idate, degrade, and humiliate the addressee completely.

3.3. Training data preparation

As previously discussed, our manually collected toxic corpus helps capture the
nuances of Hungarian cultural context in toxic language. However, given the small
size of our original corpus, we supplemented it with the Hungarian Twitter corpus’
as a source of neutral examples.
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Figure 1. K-means clustering of the comments.

Thttps://opendata.hu/dataset/hungarian-twitter-sentiment-corpus — property of
Precognox Ltd.
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Clustering of the toxic corpus To better understand the structure of our toxic
comment corpus, we visualized huBERT-generated sentence embeddings using t-
SNE dimensionality reduction (Figure 1). We then applied K-means clustering
with k=4, motivated by the four distinct data sources: comments from kuruc.info,
mandiner.hu, the napiszar.com shock site, and Reddit posts. As shown in Figure 1,
the resulting clusters reveal meaningful groupings in the embedded space. Although
some overlap exists (common in language data), the clusters are generally well-
formed and reflect source-specific patterns in toxic language use. In particular,
the Reddit and napiszar.com content forms broader, more dispersed clusters, likely
due to their conversational and informal nature, while politically charged comments
from news sites appear more tightly grouped.

Hungarian Twitter Sentiment Corpus The Hungarian Twitter Sentiment
Corpus (HTS) is a publicly available collection of approximately 4,000 Hungarian-
language tweets annotated for sentiment polarity. The corpus was created by Pre-
cognox and made accessible through opendata.hu. It includes five sentiment labels
on a Likert-like scale, ranging from 1 (very negative) to 5 (very positive), which
form the HTS5 variant. A binary version (HTS2) was also derived by grouping pos-
itive and negative classes and excluding neutral tweets. In our work, we used HTS5
labels and treated tweets rated 3-5 as neutral training data, following a pragmatic
interpretation where mid-scale ratings reflect low-intensity sentiment or ambiguous
tone. This decision enabled a clearer separation between offensive and non-offensive
language in our toxicity classification task. The corpus provides a valuable resource
for sentiment modeling in Hungarian, and our adaptation aligns with common prac-
tices in low-resource language scenarios where neutral and ambiguous categories
are often merged to improve class balance and model performance.

Models trained and evaluated There are a plethora of models available for
moderation. Most of them are products of companies that are available for a fee per
request or token. To establish a baseline, we have evaluated the models finetuned
by us with OpenAI’s Moderation API. The API in question is omni-moderation-
latest that was available on 2025.07.02. We have evaluated four models collected
in the list 3.3 from which we fine-tuned three of the models. The OpenAl endpoint
was the baseline for the evaluation for it is widely used moderation tool for Al
models currently. The toxic-hubert model was fine-tuned from the HuBERT model
[6], same method as for the multilingual BERT. The hubert-embedding-setfit-toxic
model was fine-tuned from an embedding model [4] with the SetFit toolset.

e Openai Moderation endpoint (omni-moderation-latest)
o RabidUmarell/toxic-hubert

» RabidUmarell/toxic-mbert

RabidUmarell/hubert-embedding-setfit-toxic
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Models were evaluated using standard classification metrics including precision,
recall, Fl-score, and accuracy. Statistical significance was assessed using McNe-
mar’s test with a = 0.05.

Training Data Augmentation Before training, we have applied two data aug-
mentation techniques: Typographical error simulation and masked token replace-
ment to increase the training set size, resulting in 10,185 toxic and 17,266 neutral
instances.

Training Each model was trained with standard BERT hyperparameters: learn-
ing rate n = 2 - 1075, batch size of 8, weight decay of 0.01, and mixed precision
training using £fp16. The SetFit model, on the contrary, did not require data aug-
mentation; it used the huBERT sentence transformer [4] to generate embeddings
and used a lightweight logistic regression head for classification. This approach
aligns with SetFit’s promise of achieving high performance with minimal compu-
tational overhead, particularly in low-resource scenarios. A detailed summary of
training performance can be seen in Table 1. The HuBERT model was only trained
for one epoch because this model reached equilibrium quickly and additional epochs
only degraded the performance.

Table 1. Training and validation losses and F'1 scores
of different models.

Model Epochs Training Loss F1 Score

HuBERT 1 0.317000 0.873582

mBERT 3 0.593200 0.790007

huBERT-embedding-setfit-toxic 3 0.2175 0.93725
4. Results

We evaluated the trained models on a small test dataset (available?)

Toxicity Classification Accuracy Comparison We evaluated four models
(SetFit Toxic-HuBERT, Toxic-HuBERT, Toxic-mBERT, and OpenAI Moderations
APT) across eight manually annotated toxicity categories plus a neutral control
condition. The SetFit Toxic-HuBERT model achieved consistently strong perfor-
mance, reaching perfect or near-perfect accuracy in Hate Speech, Threat, Obscenity
/ Profanity, and Harassment / Bullying (100% in all these categories except for a
minor drop in Toxic Generalization, T5%).

Toxic-mBERT closely followed, also achieving 100% accuracy in four toxicity cat-
egories and demonstrating solid generalization. Meanwhile, Toxic-HuBERT showed

’https://huggingface.co/datasets/RabidUmarell/hu-toxic-test-set
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Figure 2. Model accuracy on the test set.
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Figure 3. Heatmap of the models’ performance on the test set.

weaker overall performance, with accuracy between 33%—-75% across all categories,
suggesting lower confidence or overfitting. In contrast, the OpenAI Moderations
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APT displayed a more varied performance profile: high accuracy in broader cate-
gories like Personal Attack (50%), Hate Speech (60%), and Harassment / Bullying
(75%), but weaker results in more nuanced cases such as Victim Blaming (0%) and
Threat (25%).

Neutral examples were handled best by OpenAI Moderations and Toxic-HuBERT
(100%), indicating reliable non-toxic classification. Overall, SetFit Toxic-HuBERT
and Toxic-mBERT emerged as the most balanced models, with robust performance
in detecting multiple forms of toxicity across languages and expressions.

Statistical significance was assessed using McNemar’s test for paired compar-
isons. The huBERT-SetFit model significantly outperformed both huBERT (p <
0.01) and mBERT (p < 0.05), while the difference between huBERT and mBERT
was not statistically significant (p = 0.12).

5. Conclusion

This paper introduced a novel, manually annotated Hungarian dataset for toxic
comment classification and presented a comparative evaluation of three transfor-
mer-based models — huBERT, mBERT, and SetFit — on this task. Our experiments
demonstrate that sentence embedding-based approaches, particularly SetFit com-
bined with huBERT), offer strong and reliable performance across a wide range of
toxicity categories, even in low-data conditions. Notably, SetFit achieved high ac-
curacy without requiring data augmentation, confirming its utility in low-resource
scenarios.

Our results indicate that while general-purpose multilingual models like nBERT
provide reasonable baseline performance, Hungarian-specific models better handle
the morphological complexity and cultural nuances of Hungarian toxic language.
The huBERT-based SetFit model consistently outperformed traditional fine-tuned
counterparts, especially in categories such as obscenity, threat, and identity hate,
where subtle linguistic cues play a key role.

Several limitations should be acknowledged. The relatively small dataset size
(655 comments) may limit generalizability, and the moderate inter-annotator agree-
ment (Kfree = 0.525) suggests inherent challenges in toxicity annotation. Addi-
tionally, the cultural and platform-specific nature of our data sources may not fully
represent the diversity of Hungarian toxic language across all digital contexts.

By releasing both the annotated corpus and the model evaluation results, this
work contributes a much-needed resource for Hungarian NLP and opens the door
to further research on toxicity detection in underrepresented languages. Beyond
the immediate task, the dataset and findings also provide a foundation for devel-
oping safer and more context-aware content moderation tools in Hungarian digital
spaces. In doing so, our work supports broader efforts toward building inclusive,
multilingual language technologies that reflect the full diversity of online commu-
nication.
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Abstract. Multiagent system control is a well-researched area of recent
years, since the cooperation of multiple agents opens up the possibility to
tackle more complicated problems and create finer scaling systems. Team
Coordination on Graphs with Risky Edges has been recently proposed and
provides a framework to model such systems. In this problem, multiple agents
traverse through a graph. Apart from the ordinary nodes and edges, the graph
also contains support nodes, where an agent can choose to support another
agent that is moving through a so-called risky edge, associated with the sup-
port node. Some solutions have already been proposed; however, all of them
assume zero cost of waiting, which is restrictive in many real-world problems.
In this paper, we generalize the problem, allowing non-zero cost of waiting,
make a solution proposal, and present our comprehensive simulation results.
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1. Introduction

Multiagent system control is an increasingly popular research area nowadays. The
reduction of price and size of hardware opened up the possibility of using multiple,
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in some sense simpler agents instead of a single, complex one. This leads to better
scalability and cost-effectiveness. However, the complexity is not avoided, only
moved to a new level, which raises the need for algorithms that are capable of
defining the behavior of multiple agents in order to reach the theoretical optimum
in practice.

One of the core problems of such systems in robotics is the Multiagent Path
Finding [9]. Its main application areas include public transport [1], package deliv-
ery [8] and general formation and swarm control [3]. Previously, most of these ap-
proaches looked at agents merely as obstacles that might make their own decisions,
but mainly they just have to be avoided. The line of research to which we would
like to contribute changes this by the introduction of coordination/cooperation,
which promotes interaction between agents.

The Team Coordination on Graphs with Risky Edges (TCGRE) problem pro-
vides a framework to model multiagent scenarios, where the action of an agent can
reduce the cost of the action of another agent. The agents operate on a weighted
graph, representing points of physical or state space, and each agent’s task is to
traverse from their start nodes to their respective goal nodes, inducing the lowest
possible cost. Some nodes of the graph, called support nodes are associated with
certain edges, called risky edges. If an agent in one of the support nodes chooses,
instead of moving, to support one of the associated risky edges of their current
node, the other agent, that is traveling through that edge in the same time step
can do so for a reduced cost.

An example graph is given in Figure 1. There are two agents, traveling respec-
tively from S1 to G1 and S2 to G2. Support nodes are C1, C2, and C3; the risky
edges are shown in red and the association between them as green dashed arrows.
The cooperation enables the agents to diverge from their individual shortest paths
(marked as orange and yellow) to achieve lower cost through cooperation (blue and
green).

Figure 1. Example of a graph, containing support nodes (C1, C2,

C3) and risky edges (red). While two agents are traveling from

S1 and S2 to G1 and G2, they might stray from their individual

shortest paths (orange and yellow), to cooperate and achieve lower
total cost (blue and green).
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This approach opens up the possibility to develop such robotics solutions, where
the agents are required to operate in a coordinated manner to increase efficiency.
There are, however, crucial limitations of the current TCGRE framework that limit
its practical applicability.

In our opinion, one of the most crucial discrepancies is the fact that the current
formulation cannot assign cost to delay. This shortcoming is evident in the search
and rescue area, but even delivery systems can benefit if it is possible to incorporate
such a metric in the model. Our goal with this paper is to close this gap. We
present an extended formulation of the TCGRE problem that allows the use of non-
zero cost self-loops, which can model the cost of staying still or delay. Previous
methodologies all took advantage of the costless delay, thus we propose a novel
extension to our previously published algorithm [4], and provide proof that it is
able to handle the extended problem.

First, we provide a brief overview of the recent research results around the TC-
GRE problem in Section 2. Then we move on to present our extension proposal in
Section 3, including a formal description and a solution algorithm in Section 4. We
close our paper by presenting the simulation results in Section 5 and summarizing
the completed work in Section 6.

2. Related work

The TCGRE problem has been introduced recently by Limbu et al. [6], along
with a solution outline for a two-agent scenario. Later, Zhou et al. have carried
out a mathematical analysis, proving the NP-hardness of the problem [10], thus
showing that a polynomial time algorithm is not to be expected. However, multiple
solution proposals have already been made, with various tradeoffs between runtime
and optimality. In this chapter, we provide a brief overview of them.

In addition to the NP-hardness proof, three algorithms were introduced in [10].

The Joint state graph (JSG) approach decomposes the problem into a coordi-
nation assignment and route finding part. First, a joint state graph is built, where
each node represents a configuration in the original problem. During this, the op-
timal coordination assignment for the movement between any possible neighbor
configurations can be calculated by an integer linear program. After the construc-
tion of the JSG, the optimal path can be found by any single-agent path finding
method.

The Coordination exhaustive Search (CES) method limits the maximum number
of occurrences for a coordination pair in the solution. This makes an exhaustive
search possible over the robot pairs, coordination pairs, and their ordering, resulting
in an optimal solution for the limited case. In our previous work, we were able to
improve the runtime of this search by precomputing paths between coordination
pairs [5].

The final algorithm of [10] was the Receeding Horizon Optimistic Coordination -
A* (RHOC-A¥*). This solution builds on top of the JSG, but it is constructed only
up to a limited horizon. This way, the planning is optimal up until the horizon, after
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which the agents plan their path individually, with the assumption that support
will be available on each risky edge.

To scale up the solution for more agents, Limbu et al. also introduced a rein-
forcement learning model [7]. They created a general representation that is able to
take any graph as input, with any support structure, but the cost is an explosion
of model size. They were able to achieve around 80% of the improvement gained
by the optimal solution relative to the agents working independently.

In an effort to compete with the reinforcement learning approach, we developed
a method [4], based on the Ant Colony Optimization (ACO) metaheuristic [2]. We
assigned pheromone values to each possible next action (robot pair, coordination
point assignment) for each relevant actual and goal location pair. Here relevant
locations include initial, goal and coordination nodes of the graph, since between
these each agent follows individually their optimal path. With this representation
we tuned the pheromone values based on the MZN — MAX ACO. Our approach
showed similar results as [7], but with significantly less resource usage.

3. Extension proposal

3.1. Limitation of current model

The TCGRE problem is a new and unique construction that enhances coordination
in multiagent systems. However, the underlying assumptions limit its power to
model practical scenarios.

The most critical one is that self-loops in the graph are always considered
with ¢;; = 0 costs. This essentially means there is no cost to delay, which is
often not the case in practice. Few such examples, which are often brought up
as applications of multiagent systems, are search and rescue operations, deliveries,
and transportation.

This, and the fact that collisions between agents are not considered, are utilized
in each previous solution approach, as this way the problem reduces to selecting
robot pairs, assigning coordination pairs to them, and choosing the order of exe-
cution. It doesn’t have to be considered if multiple agents use the same edge or
node simultaneously, or if one of the cooperating robots has to wait for their mate.
Because of this, a new approach or the significant modification of previous ones is
required to solve the non-zero self-loop TCGRE problem.

3.2. Problem formulation

In this section we give the formal description of the problem to solve. It is similar
to the one proposed in [4], except the self-loops have a constant, non-zero cost. We
give the full formal description, to ease comprehension.

Let G = (V,E) be the graph, on which N homogeneous agents move where
v; € V are the nodes, e, ; = (v;,v;) € E, (v;,v;) € E Vu; € V are the edges and
Je;; € RVe; j € E,Ve;; = Cdelay traverse cost. Furthermore let E' CE, ¢, ; ¢ E
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the set of risky edges, ¢;; € Rt Ve;; € E' the reduced cost, while support is
available, S C V the support nodes and SP C S x E’ the association between
support nodes and risky edges, called support pairs. The location of agent n in
timestep t is denoted as I, ;.

The goal is to find a series of actions that leads each agent from their respective
Vg, initial node to their v, , goal node. These series consist of a € {snla<n<
n}U{m,; | e;; € E}), where s,, denotes supporting the nth agent and m; ; the
movement from v; to v;, and has to minimize

N T
Ctotal = Z Z C(an,t) (31)

n=1t=1
such that
0 if Ant = Sm V ln,t = VUg,n
C’(an,t) = éi,j if At = My AN €;; € E A Elamyt = Sp, (32)
¢i,; otherwise
ln1 =20.n vn e {1,2,...,N} (3.3)
ln,7 = Vgn vn e {1,2,...,N} (3.4)
mg if ln,t =V; = VUg,n
e Sl =viNej; €E Vn,m,0€{1,2,...,N}, (3.5)
(In.ts (Imot> bmts1)) €SP Ve {1,2,...,T}
Sm =4 ’ ’ ’
Aot = S, N F# O
lpt ifant=8m Vn,m € {1,2,...,N},
lgpr =4 0 ™ (3.6)
v; i any =my; vt e {1,2,...,7T — 1}

The cost function (3.1) states that the goal is to minimize the total cost, accumu-
lated over each agent and timestep, by selecting the right actions. The cost of each
action is given by (3.2), being 0 if the agent reached its goal or the action is to
support. This is possible since ours is a global planner, so the cost of support can
be moved to the reduced cost of traverse. If the agent is able to and does receive
support, its movement cost is the reduced travel cost; otherwise, the original.

Equations (3.3)—(3.6) summarize the constraints on selecting the actions. (3.3)
and (3.4) restrict the start and final locations of the agent, where vy, are given
initial, and vy, are given goal locations for each agent. The possible actions are
given by (3.5). If the agent has reached its goal location, it must stay there and
cannot take other actions. When this does not apply, the action can select a
movement over an edge from its current location, or support another agent, if that
agent is moving through one of the risky edges, associated with the current location
and is not yet supported. Lastly, the agent’s location is updated according to (3.6).
If a support action is taken, the agent stays put; otherwise, its location is updated
according to the selected movement.
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4. Solution proposal

Now that the task is formally described, we would like to present our solution
proposal. The outline of the algorithm is given in Algorithm 1.

This is a direct extension of the one we published earlier in [4] by including
Cdelay 1N the cost calculation step. This is achieved by the introduction of the
function L(-), that maps the number of edges in a path of a graph to the path
itself. This way, the additional cost can be calculated as

Cwaiting = Cdelay * |L(p1) - L(pQ)‘7

where p; and p, are the paths, given as a sequence of edges.

The input of the algorithm, using the notation presented in Section 3.2, are the
graph on which the agents move (G), the number of agents (N), the set of risky
edges (E’), the support pairs (SP) and the respective initial and goal nodes (v,
vg,;) for each agent. Additionally, the algorithm can be adjusted by the following
parameters: number of ants (ngnts), selection probability coefficients («, () as
in (4.1), pheromone extreme values (Tynin, Tmaz) and the evaporation rate of the
pheromones (p).

The algorithm operates by storing the state of the agents and stochastically
selecting the next action for a single or a pair of agents jointly. We differentiate
between two kinds of actions, the support solution component (SSC) where an agent
pair is selected to cooperate next and the goal solution component (GSC) where a
single agent is selected that goes to its goal directly, without further cooperation.
The pheromones for these actions are stored in T® and 79 respectively and are
initialized to 1 in lines 1-2. The best solution is set to an empty list and the cost
to infinity in line 3. To take advantage of the findings in [5], the shortest paths
between nodes that are relevant in action decision are precalculated in line 4.

The main loop constructs ngy,:s number of independent action lists in each cycle.
First, a possible next action is selected with probability

B
TSN
pPsc = LSSB? (4.1)
2 er iy

where T¢¢c € T*UTY is the pheromone associated with the solution component SC,
7 is a heuristic value, inversely proportional to the cost of the solution component,
and F is the set of feasible solution components based on the state of the agents
(line 11).

If the selected solution component, SolComp is a support solution component,
there is a selected supporter agent r, receiver agent r,., support node vs and risky
edge e, = (v froms Vo) Where v from is the end of the edge where . would arrive, and
vy is where it would be after the cooperation (line 13). In this case, the shortest
paths from the current location of the agents to their coordination pair can be
extracted from SP (lines 14-15) and the cost of the action list is extended with the
cost of traverse, coordination and delay (line 16). At last, the state of the agents
is updated in line 17.
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If the selected solution component is a goal solution component, then only the
agent going to the goal is selected. The cost only has to be updated by the traverse
cost, and the state update includes deactivating the agent (lines 19-21).

Each independent action list is extended until all agents reach their goals, indi-
cated by having all False values in bgcie. At the end of a cycle, the best solution
and cost are updated if appropriate, as well as the pheromone values, based on
them (lines 23-30).

The stopping criteria of the iteration may include a limit on the maximum
number of steps or the settling of the best cost value. When this is reached, the
best found solution and its cost are returned in line 31.

5. Results

In this section we present proof that our solution proposal is capable of solving the
novel extension of the TCGRE problem.

Algorithm 1 has been tested on the graph, presented in Figure 2. The edges
of the graph are shown by solid lines, with the costs written over them (including
self-loops). For ease of analysis, all original costs are set to ¢; ; = 1, i # j and
the cost of delay c;; = 0.1. Risky edges are presented in red, and each of them
has ¢&; ; = 0.5 as reduced costs. The coordination pair assignments are marked by
green dashed lines.

Figure 2. The test graph that we used.

The agents’ initial and goal locations are shown in Table 1. They have been
selected, so multiple cooperations are required for an efficient solution. Since an
optimal algorithm is not yet available, the result has been compared to the indi-

124



Annal. Math. et Inf. Solving the Team Coordination on Graphs With Risky Edges . ..

Algorithm 1: TCGRE-ACO for non-zero self-loops

© 0 N O ok~ W N -

I T =
o oAk W N KR O

17

18
19
20

21
22
23
24
25

26
27

28
29

30

31

Input :G= (V, E), N, E/, SP, 00,5, ’U_,JJ'V?; S {1, 2,..., N}
Parameter: ng,ts, @, B, Tmaz, Tmin, P
Output : SOlbest—so—fara COStbest—so—far
TS « 1 € RISPI+[Vol)x (2ISP|+[Vo ) X[ Vo | x Vg | x|Vg|
T9 « 1 € RECISPI+[Vol)x|Vo]
SOlbestfsoffar <~ {}7 COStbestfsoffar < 00
SP <« ShortestPathFor(G,VoUV,USU {v;,v;|Ve; ; € E'})
while stopping criteria is not reached do
SolCandidates < {{} X nants}
CostCandidates < 0 € R™ants
for iyn = 1 to ngpes do
Vagents < [Uo,l Vo2 .- UO,N] ’ bactive < {T’I“UC}N
while any(bgctive) do
SolComp < SelectW eighted(G, Vagents, Pactives T, Tg)
if SolComp is Suppoort Solution Component then
(rs,Tr, Vs, €r = (Ufrom, Uto)) <— SolComp
p1 < SP from Vagents[rs] to vs
p2 < SP from Vagents[rr] t0 Vfrom
CostCandidates[ngnts] + CostCandidates[ngnts] + Cost of
p1+ Cost of pa + & of e, + Cietay - |L(p1) — L(p2)]
L Vagents[rs} — Vs, Vagents[rr] & Vto
else
7 < SolComp
CostCandidates[ngns| < CostCandidates[ngnis| + SP from
Vagents [7“} to Ug,r
B Vagents[SC.] <= Vg r, Bactive[SC.1] < False

| append(SolCandidates[ignt], SC)

Costpest—now <+ min(SolCandidates, CostCandidates)
Solpest—now  argmin(SolCandidates, CostCandidates)
if Costpesi—now < COStbest—so—far then

COStbest—so—far — COStbest—now
| SOlbestfsoffar — SOlbestfnow

for € T°U 7Y do
if 7 € Solpesi—so—far then

LT<_[(1—p)-T+m

Tmazx

Tmin

return SOlbestfsoffary COStbestfsoffar
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vidual shortest paths of the agents in order to observe the improvement achieved
through coordinated behavior.

Table 1. Initial and goal nodes of each agent during the tests.

n | Initial node | Goal node
1 0 7
2 0 8
3 0 9
4 4 3

The algorithm has been run on cases N € {2,3,4}, the obtained results are
shown in Table 2 and Figure 3. Parameters ng,ts = 100, Thae = 5, Tinin =0, p =
1075, o = B = 1 have been used through a maximum of 1000 iterations. Our results
show that for N = 2, the method is capable of finding the coordination improved
path every time. Resulting paths are shown in Figure 3a (Agent 1: orange, Agent
2: purple). However, for N = 3, the algorithm is much less successful, achieving
only the same value as the non-cooperative case. Increasing the number of ants
t0 Ngnts = 1000 yielded somewhat better results, but the algorithm wasn’t able to
take full advantage of the cooperation, utilizing a coordination pair only once, while
the 3rd agent moves directly to the goal as seen in Figure 3b (Agent 3: olive). In
case of 4 agents, we weren’t able to summon cooperation by change of parameters.
This is also visible on Figure 3¢ (Agent 4: cyan).

Table 2. Results of the repeated evaluation of Algorithm 1. Co-
operationless movement steps are merged together for brevity.

N ‘ Actions ‘ Cocoop ‘ Croop
2 (mo,1,m0,2), (M1,5,M2,2), (52, M2,8), (M5,7, D) 5 4.6
3 | (mo1,m0,2,M09), (M1,5,M2,2,9), (2, Ma s, D), (M5 7,9, D) 8 7.6
4 (mo,7,mo,8,M0,9,M4,3) 11 11

A possible reason for the decline of the performance, while increasing the num-
ber of agents, is due to the low selection probability of supporting components
compared to the goal components. This might be addressed with a non-linear
probability density function w.r.t. cost decrease, or adaptive a and [ selection.
However, these results show that our proposal is applicable to the TCGRE prob-
lem with non-zero self-loops. Further refinement of the algorithm and parameter
recommendations will be the main goal of our future research work.

6. Conclusion

In this paper, we have presented a novel extension of the TCGRE problem, which
touches on important practical details. We have also proposed a solution algo-

126



Annal. Math. et Inf. Solving the Team Coordination on Graphs With Risky Edges . ..

rithm, developed from our previous ACO-based solution [4], further showing the
importance of this approach.

The capability of the algorithm has been proven by simulation results. We
can state that the method is able to find an action list that reduces the cost of
traversal, compared to the individual solution in the extended case. The number
of agents that is effectively handled is, however, relatively low. We attribute this
to the greediness of the base algorithm.

Based on this, we conclude that this extension of the TCGRE problem can
be handled by the algorithm, and focus our future work on improving the base
algorithm.

o e s 00
0.1 5
I-OW/_LO/—(‘
‘ /
& /
T8
(a) Only Agent 1 and 2 are (b) Agent 1,2 and 3 are present.
present. Appropriate solution is Agent 3 doesn’t take part in co-
found. operation.
0.1
0.1
\1.o$.)\
N 01

(c) All agents are present. Non-
cooperative solution is returned.

Figure 3. Resulting paths, marked on the graph. Agent 1: orange,
Agent 2: purple, Agent 3: olive, Agent 4: cyan.
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Abstract. Tackling the persistent dual challenge of noise and class imbal-
ance in binary classification, this study introduces a robust hybrid pipeline
that improves resilience and accuracy in noisy, imbalanced data environ-
ments. Leveraging a multi-stage framework, we integrate a Gaussian Mixture
Model Noise Filter (GMMNF) to preserve minority class integrity, a Noise-
Aware Multi-Layer Perceptron (MLP) enhanced with dynamic regularization
to adaptively mitigate noise, and a synergistic resampling strategy combining
SMOTE-Tomek and Conditional GAN to optimize class distribution. Com-
prehensive evaluations across escalating noise levels (0-32%) reveal that our
approach not only achieves a peak Fl-score of 0.9255 at 4% noise but also
maintains over 49% minority class representation even under severe noise
stress. Five-fold cross-validation substantiates the pipeline’s robustness, con-
sistently outperforming established state-of-the-art methods. These results
underscore the significant advancement our framework offers for real-world
applications where data imperfection and imbalance are the norm, in reliable
binary classification.

1. Introduction

The reliability of binary classification models in real-world applications depends
on their capacity to address two prevalent and intertwined challenges: noisy data
and class imbalance. While deep neural networks (DNNs) excel at learning com-
plex patterns from large datasets [11], their performance degrades sharply when
trained on imbalanced, noisy data [10], a common scenario in high-stakes domains
like medical diagnostics [12] and fraud detection [4, 8]. In medical imaging, label
noise from inter-observer variability [9] compounds with the inherent scarcity of
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malignant cases, creating a pernicious feedback loop: noise corrupts scarce mi-
nority samples, prompting aggressive filtering that exacerbates imbalance, while
oversampling propagates noise into synthetic data [13, 17]. This interplay exacer-
bates model fragility through three key mechanisms: (1) Noise disproportionately
corrupts minority-class samples due to their scarcity [17], (2) Aggressive noise-
filtering techniques (e.g., Edited Nearest Neighbors [3]) inadvertently remove mi-
nority instances, worsening imbalance, and (3) Synthetic oversampling methods
like SMOTE [2, 10] propagate noise into synthetic samples when applied to cor-
rupted data [17], creating a cycle where noise amplifies imbalance while imbalance
reduces noise robustness.
Existing solutions fall short due to fundamental trade-offs.

e Classical ML Limitations: Hybrid techniques like SMOTE-Tomek improve
balance but cannot adapt to complex noise patterns learned by DNNs, re-
sulting in suboptimal feature representations that fail in high-dimensional
spaces [3].

e Deep Learning Shortcomings: Methods like adversarial training or noise-
injection regularization [20] enhance robustness but lack explicit mechanisms
to protect minority classes, often amplifying bias through majority-class over-
fitting [7].

Our solution combines these paradigms in a probabilistic deep framework fea-
turing three synergistic components:

o Gaussian Mixture Model Noise Filter (GMMNF): Probabilistic filtering with
adaptive thresholds and mutual information-based feature weighting removes
noise while preserving over 98% of minority instances at (32% noise levels).

 Noise-Aware MLP: Deep architecture with noise-adaptive dropout (0.3-0.5),
residual connections, and hybrid BCE+focal loss achieves sustained F1-scores
exceeding 0.90 across noise levels (0-32%).

e Dynamic Parameter Scaling: Automatic adjustment of GMM clusters and
regularization strengths maintains robustness across varying noise-imbalance
ratios.

2. Literature review

Handling noisy, imbalanced datasets remains a persistent challenge in both classical
machine learning and deep learning. These two factors, label noise and class imbal-
ance, often interact in harmful ways, degrading model reliability in real-world ap-
plications where imperfect data is the norm [5, 11].Imbalanced datasets, where mi-
nority class samples are scarce, bias traditional algorithms toward majority classes
[14, 18]. Simultaneously, label noise (e.g., incorrect or corrupted labels) dispro-
portionately affects underrepresented classes, worsening misclassification risk [4].
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In domains such as medical diagnosis, fraud detection, and industrial condition
monitoring, rare but critical samples are scarce and easily corrupted. This cre-
ates a feedback loop: mnoise obscures already weak minority signals, prompting
overzealous filtering or oversampling, which in turn further amplifies class imbal-
ance [16]. Addressing this challenge requires holistic approaches that are not only
robust to noise but also explicitly designed to preserve minority class integrity
throughout the training pipeline. Deep neural networks (DNNs) display remark-
able pattern learning capability, but their high expressiveness renders them suscep-
tible to overfitting noisy labels, particularly when minority samples are both rare
and unreliable. Traditional regularization (e.g., dropout, batch normalization) is
typically insufficient, as DNNs can memorize erroneous labels, leading to biased
predictions and degraded generalization, especially for underrepresented classes,
emphasizing that these conventional techniques often fail under noisy conditions,
particularly when minority data is unreliable [4]. This motivates integrated strate-
gies combining noise detection, dynamic regularization, and adaptive training, a
philosophy central to our proposed framework. Studies have shown that noise
disproportionately affects minority classes, making them more likely to be mis-
classified or mistakenly filtered during pre-processing. Even slight perturbations
in these rare instances can degrade classification performance, particularly when
relying on classical oversampling or naive denoising methods [15]. In response,
prior work has introduced Gaussian Mixture Model (GMM)-based filters capable
of separating true noise from hard-but-valid samples, increasing minority reten-
tion in noisy, imbalanced settings [6, 19]. The proposed GMMNF module builds
on these insights, using mutual information-weighted thresholding and adaptive
noise estimation to retain more than 98% of minority samples even under severe
noise conditions. Generative Adversarial Networks (GANs) have transformed the
landscape of synthetic data generation, offering a more powerful and flexible al-
ternative to classical methods like SMOTE [1]. Literature shows that Conditional
GANs (CGANS), especially those guided by distributional constraints and class
conditioning, can produce synthetic minority samples that are both realistic and
robust to noise, mitigating the noise propagation that naive oversampling often
introduces [15]. Our pipeline integrates these advances by combining CGAN-based
augmentation with spectral normalization, feature-matching loss, and MixUp inter-
polation to generate diverse, high-quality synthetic samples. These techniques not
only improve minority class representation but also help smooth decision bound-
aries, reducing overfitting to synthetic outliers. In contrast to static pipelines, we
propose a hybrid, noise-aware system that dynamically adjusts regularization and
sampling based on real-time noise estimation. This dynamic adaptability shows
a significant improvement in the model’s robustness. Our framework embodies
this principle via noise-adaptive dropout scaling, scenario-driven parameter tun-
ing, and minority-centric retention rules, resulting in substantial improvements in
both recall and generalization. Overall, this work builds directly on and advances
prior GAN-based, GMM-driven, and adaptive training methods. Where earlier
systems struggled with over-filtering, synthetic noise propagation, and rigid regu-
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larization, our integrated approach achieves state-of-the-art performance in robust
binary classification under imperfect data conditions.

3. Methodology and results
Our proposed methodology introduces a comprehensive pipeline for addressing
noisy, imbalanced datasets through three key components: data preprocessing,

noise filtering, and sampling (see Figure 1).

Noise-Robust Hybrid Pipeline Architecture

Data Augmentation Bg °VE Noise Filtering

élllln

SMOTE Gaussian Mixture Model (GMM)
CGAN el Adaptive Threshold Mechanism
Robust
Mixup Hybrid Minority Protection Rules

Pipeline
Architecture

Feature Matching Loss Dynamic Sampling Strategy

Spectral Normalization

QB Model Training

NoiseAwareMLP Architecture
Final MLP

Dynamic Parameter Adjustment

Figure 1. Overview of the Proposed Noise-Resilient Pipeline Ar-
chitecture.

Data Preprocessing and Noise Filtering utilizing Gaussian Mixture Model Noise
Filter (GMMNF). The pipeline begins with a probabilistic noise detection system
based on class-specific Gaussian Mixture Models (GMMs) as in Equation 3.1. For
each class ¢, the data distribution is modeled as:

k
P($|C) = Z’”C,’i N(xlyc,i7 ZC,’L); (31)
i=1

where
o P(x|c) denotes the probability density of sample = given class ¢,
o T.; is the mixture weight of the ith Gaussian component for class c,

o N(x|ve, Xc,) is the multivariate normal distribution with mean vector v ;
and covariance matrix X ; for the ¢th component of class c,

e k is the total number of Gaussian components per class.
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For each class, the data distribution is modeled as a mixture of Gaussian com-
ponents, enabling the identification of outliers that deviate significantly from these
distributions. Feature importance is weighted using mutual information scores to
prioritize features that are clinically and biologically relevant during noise assess-
ment. An adaptive threshold regulates the sensitivity of noise detection: lower
noise levels trigger conservative filtering, whereas higher noise levels activate more
aggressive outlier removal.

9(”) = Opase + 0 - 1,

Where 0(n) denotes the noise-adaptive threshold, Op.sc is the base threshold, g €
R is the sensitivity coefficient and n € [0,1]. The minority class samples are
protected through dynamic retention rules that minimize over-deletion of critical
underrepresented instances:

True, if s(z) > 6(n),
Keep(z) = ¢ True, if y(2) = Cminority A rank.(s(z)) < N,

False, otherwise,

Where z; denotes the latent index of the ith Gaussian component in the mixture,
and s(z) = max; p(z; | z) is the GMM posterior score of sample z (higher means
more in-distribution). Minority samples are additionally ranked by §(z) = 1—s(z),
and the top IV, are always preserved. The quota N, is set adaptively based on class
size and noise level.

This adaptive rule ensures that high-confidence samples are preserved, while
minority instances receive extra protection through class-specific quotas. As a re-
sult, the filter remains conservative: it removes only those samples most likely
to be mislabeled while safeguarding rare but critical cases. Empirically, overall
removal stays low (0.52-2.86% across 0-32% noise), with minority removal consis-
tently around 1.0%, demonstrating robustness to noise and strong preservation of
minority integrity.

We perform synthetic data augmentation at the initial oversampling stage.
To address the class imbalance at the early stage, the Synthetic Minority Over-
sampling Technique (SMOTE) is employed to generate an initial set of synthetic
minority class samples. The oversampling process is dynamically adapted based on
key dataset characteristics, including the estimated noise level, the degree of class
imbalance, and the relative importance of input features. This adaptive strategy
ensures that the generated samples align more closely with the underlying data
distribution and are robust to noise and irrelevant features.

Conditional GAN (CGAN) for minority oversampling: Subsequently, we deploy
a Conditional Generative Adversarial Network (CGAN) that generates synthetic
minority samples. The generator takes a noise vector and class embedding as
input, producing synthetic samples that mimic the feature distribution of the tar-
get minority class. The discriminator, equipped with spectral normalization for
training stability, evaluates both real and synthetic samples. A feature-matching
loss ensures generated samples align with the statistical properties of real data,
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while gradient penalty regularization prevents mode collapse. We further enhance
diversity through MixUp, which linearly interpolates pairs of samples and their
labels. This technique smooths decision boundaries and improves generalization,
particularly in noisy regions of the feature space.

The second component, Noise-Aware Model Training, uses a Noise-Aware MLP
architecture. A custom Multi-Layer Perceptron (MLP) incorporates noise-adaptive
mechanisms:

o Adaptive Dropout: Dropout rates scale with detected noise levels (0.3-0.5),
increasing regularization under high uncertainty.

e Recall-Optimized Loss: A composite loss function combines binary cross-
entropy with recall-focused penalties to prioritize minority class accuracy.

e Dynamic Initialization: Weight initialization scales with noise intensity to
stabilize early training.

The third component is the Final MLP Classifier, where the pipeline concludes
with a standard MLP trained on the cleansed and augmented dataset. Key features
include:

e Spectral Normalization: Applied to hidden layers to constrain model com-
plexity.

e Focal Loss: Addresses residual class imbalance by down-weighting well-classi-
fied majority samples.

« Batch Normalization: Stabilizes training across varying noise levels.

The training and validation protocol is the stratified cross-validation, where we
employ 5-fold stratified cross-validation to evaluate performance while preserving
class distributions. Each fold uses:

o FEarly Stopping: Halts training if validation loss plateaus for 10 epochs.

» Adaptive Batch Sizing: Smaller batches (32) for low-noise data, larger batches
(64) for high-noise scenarios.

We used the following performance scores: Fl-score (balances of precision and
recall), G-Mean (geometric mean of class-specific recalls, emphasizing minority
class performance), Generalization Gap (difference between validation and test F1-
scores to detect overfitting).

The system’s self-adjusting mechanisms, triggered by real-time noise estimates
and class ratio, enable robust performance across diverse data conditions, from
clean laboratory datasets to highly noisy real-world environments.
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3.1. Results

Our experimental evaluation demonstrates the effectiveness of the proposed pipe-
line in handling noisy imbalanced datasets across varying noise levels (0-32%).
The results are structured into four key analyses. The pipeline maintains robust
performance even under severe noise conditions (Table 1, Figure 4).

F1-score peaks at 0.9255 (4% noise), with only a 2.1% decline at 32% noise. This
stability outperforms SMOTE-based methods, which typically degrade by 15-20%
under similar conditions. The highest G-Mean value (0.6442) was observed at 4%
noise, indicating balanced recall across classes. At 32% noise, the G-Mean remains
above 0.54, demonstrating resilience to extreme class imbalance. The difference
between validation and test Fl-scores remains small (<0.26), confirming minimal
overfitting.

3.2. Experimental setup

The experimental setup was designed to rigorously evaluate the proposed pipeline’s
performance on noisy, imbalanced datasets using synthetic data. The following
components detail the dataset characteristics, preprocessing steps, evaluation pro-
tocol, and the performance metrics used.

o Dataset: Synthetic data were generated using make_classification with
2000 samples, 20 features, and a severe class imbalance (90% majority, 10%
minority class).

o Noise Injection: Experiments were conducted across multiple label noise lev-
els (0%, 4%, 8%, 16%, 32%) by randomly flipping the labels of a specified
proportion of samples.

e Feature Scaling: All features are standardized using StandardScaler.

e Evaluation Protocol: 5-fold stratified cross-validation is used for all experi-
ments to ensure robustness.

o Advanced Pipeline: Includes noise filtering (GMMNF), synthetic data gener-
ation (CGAN), and noise-aware MLP classifiers.

e Metrics: Fl-score, G-Mean, Recall, Precision, and synthetic sample quality
metrics (mean and standard deviation differences).

e Reproducibility: Experiments are repeated with multiple random seeds for
statistical reliability.

o Visualization: Performance and class distribution plots are generated for com-
parative analysis.
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3.3. Minority class protection

The effectiveness of the proposed noise-filtering mechanism is further demonstrated
by its ability to preserve minority class integrity across varying noise levels (Ta-
ble 1, Figure 2). Minority ratios remain near 49% across all noise levels, and at
32% noise, the minority percentage (49.61%) slightly exceeds the original value
(49.04%), reflecting effective synthetic augmentation. Furthermore, minority class
removal remains low, staying below 1.07% (see Figure 3), highlighting the mecha-
nism’s ability to protect rare and critical samples.

Table 1. Performance comparison across noise levels.

Noise Level | Fl-score | G-Mean | Global Removal (%) | Minority Removal (%)
0% 0.923 0.6416 0.47 0.83
4% 0.9255 0.6442 0.56 0.97
8% 0.9201 0.6187 0.59 0.92
16% 0.9165 0.6002 1.13 1.01
32% 0.9071 0.5434 2.51 1.07

Table 2. Synthetic sample quality metrics for all features.

Noise Level | Worst Mean Diff Reported | Avg Mean Diff
0% 1.6831 0.2934
4% 1.6506 0.2799
8% 1.5659 0.2926
16% 1.3929 0.2608
32% 1.0977 0.2111

Minority Class Distribution Comparison

—e— Original Minority
Current Minority

Percentage

.
29.4 \
.

0% % 8% 16% 32%
Noise Level

Figure 2. Class distribution before and after noise injection.
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Minority Class Removal Rate

Minority Removal Rate (%)

8%
Noise Level

Figure 3. Minority sample removal across noise levels.

Total Noise Removal Rate

2.5

2.0

samples Removed (%)

0% 4% 8%
Noise Level

Figure 4. Total sample removal across noise levels.

3.4. Regularization and stability

To evaluate the overall stability and performance of our proposed pipeline, we
analyze its internal stabilization techniques, the quality of synthetic samples, and
comparative performance against classical methods. This section presents both
quantitative metrics and key findings across varying noise level.

The pipeline integrates multiple stabilization techniques:

o Gradient Penalty (CGAN): Prevents the discriminator from overfitting.

o Feature Importance Weighting (GMMNF): Guides noise filtering using do-
main-relevant features.

o Spectral Normalization (MLP): Limits parameter magnitudes to improve gen-
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eralization.

Synthetic sample quality. CGAN-generated samples exhibit consistent feature-
space fidelity (Table 2, Figure 3):

o Average Mean Difference: Decreases from 0.2934 (0% noise) to 0.2111 (32%
noise), indicating improved alignment with real data distributions under
higher noise.

o Worst-Case Deviation: Peaks at 1.6831 (0% noise) but remains stable at
1.0977 under 32% noise, demonstrating robustness.

Key findings indicate robust noise handling, minority preservation, and reliable
synthetic sample generation.

o Noise Robustness: The pipeline maintains F1-scores >0.90 across all noise
levels, outperforming SMOTE and cost-sensitive SVM.

o Minority Preservation: Adaptive filtering protects >98.93% of minority sam-
ples, critical for medical applications.

o Synthetic Quality: CGAN-generated samples show 21-29% feature-space de-
viation, comparable to state-of-the-art augmentation.

To ensure a good evaluation, we applied the same dataset, including identical
class imbalance ratios and injected noise levels, to the classical machine learning
pipelines for comparison against our proposed framework. As shown in (see Fig-
ure 5), classical methods such as Random Forest combined with SMOTE-ENN and
SMOTE-Tomek experience a significant decline in performance as noise increases.
Both Fl-score and G-Mean deteriorate noticeably, particularly under moderate to
high noise conditions. This degradation highlights their limited ability to han-
dle noisy, imbalanced data, as these methods often propagate mislabeled instances
during oversampling and fail to preserve informative minority samples during noise
filtering.

4. Conclusion

This study introduces a hybrid pipeline combining Gaussian Mixture Model Noise
Filtering (GMMNF), Conditional GAN (CGAN) augmentation, and a Noise-Aware
MLP classifier to address noise and class imbalance in binary classification. Across
five noise levels (0%, 4%, 8%, 16%, 32%), the framework maintains high perfor-
mance, with Fl-scores exceeding 0.90 and peaking at 0.9255 at 4% noise level. The
G-Mean also remains stable, with values above 0.54 even at 32% noise, highlight-
ing balanced classification between majority and minority classes. Importantly,
the adaptive filtering mechanism protects more than 98.9% of minority samples,
ensuring that rare and critical instances are preserved. CGAN-based augmentation
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Figure 5. Comparison baseline: Classical resampling approaches
on noisy imbalanced data.

further improves minority representation, while synthetic sample quality metrics
confirm alignment with the true data distribution.

These results indicate that our pipeline not only outperforms conventional re-
sampling approaches such as SMOTE-Tomek and SMOTE-ENN (see Figure 5,
where we can see the deterioration of the performance at the same noise levels),
but also provides a robust alternative for domains where noisy and imbalanced
data are the norm, including medical diagnosis and fraud detection. By combining
adaptive filtering, synthetic augmentation, and noise-aware training, the framework
sets a new benchmark for reliability in imperfect real-world datasets.

A limitation is that while performance is stable up to 32% noise, degradation
is expected at higher levels due to irreducible label uncertainty. In addition, the
computational overhead of CGAN training may constrain deployment in real-time
environments.

Future directions include incorporating semi-supervised learning to leverage un-
labeled data for improved noise estimation, developing lightweight CGAN variants
through knowledge distillation to reduce computational overhead, and validating
synthetic samples in clinical trials to ensure biological fidelity.
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Abstract. The rapid rise of Al — especially Large Language Models (LLMs)
like GPT-4, Microsoft Copilot, and Google Gemini — has significantly im-
pacted higher education. LLMs support students in problem-solving, writ-
ing, and learning complex topics, while educators use them for course plan-
ning, lecture content, and assessments. The primary aim of this research was
to explore whether university computer science students use large language
models (LLMs) to support their learning, and if so, how and why. The study
was conducted among students enrolled in a three-year BSc in Computer
Science program at Eszterhdzy Karoly Catholic University. The study com-
bined questionnaires with semi-structured interviews involving nine students
and three instructors. Students reported using Al chatbots for tasks such as
code testing, debugging, understanding examples, generating code, designing
exercises, and self-assessment. LLM usage increased with subject complexity
and varied by programming skill. While students were moderately satisfied
with LLMs, instructors voiced concerns that overreliance could undermine
algorithmic thinking and coding skills. The findings suggest a need to revise
assessment methods and enhance teaching materials to better reflect current
educational practices.

Keywords: computer science education, LLMs, AI Chatbots
AMS Subject Classification: 97D40, 68Q70

1. Introduction

The rapid advancement of artificial intelligence (AI), particularly Large Language
Models (LLMs) such as OpenAI’s GPT-4, Microsoft’s CoPilot, and Google’s Gem-
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ini, has significantly impacted higher education. LLMs — AI models trained on
massive text datasets — can generate and understand human-like language, en-
abling applications beyond chatbots, including summarization, translation, code
generation, and question answering. Chatbots are just one interface that leverage
LLMs, often enhanced with tools like memory, personality, or calculators.

In education, LLMs assist students with problem-solving, writing, and concept
explanation ([1, 7, 10, 33], while educators use them for course planning, content
generation, and assessment design [6, 27]. In computer science education, they
offer code generation, debugging, and natural language explanations [8, 9, 29, 34,
36], presenting both opportunities and challenges. Despite their benefits in content
creation and real-time support, issues like contextual misinterpretation, bias, and
ethical concerns persist [2, 7, 28].

Programming skills develop through practice, and deep-learning tools now sup-
port tasks like code repair, completion, and verification [23-26, 37]. Transformer-
based LLMs like CodeBERT, Codex, and PyMT5 have achieved state-of-the-art
results [32]. ChatGPT, based on this architecture, is widely used for its human-like
interaction style [23]. These tools help students navigate programming challenges
by offering debugging and problem-solving assistance [3, 11, 18, 19, 35, 36].

Some studies report improved learning outcomes with LLM use — for instance,
Akcapinar and Sidan observed higher exam scores when students used a custom
AT assistant [3]. However, they also noted a tendency to accept incorrect outputs
uncritically, highlighting the importance of careful integration. Additional concerns
include plagiarism, academic dishonesty, and content reliability [13].

Given these opportunities and risks, understanding how and why students use
LLMs is vital for developing effective teaching practices. This study explores com-
puter science students’ motivations and usage patterns with LLMs, particularly
in foundational programming courses, and examines possible links to academic
performance.

The research questions guiding this study are

(RQ1): How do computer science students use language models in their learning
process?

(RQ2): Do all students use language models in programming in the same ways
and for the same purposes?

2. Literature review

Recent research highlights both the benefits and limitations of LLM-based assis-
tants in programming education. Ravselj et al. [28] found that students across 109
countries primarily used ChatGPT for brainstorming and summarizing, reporting
generally positive attitudes. Similarly, Alves et al. reviewed studies on AT chatbots
in programming and found positive impacts on learning, but also noted gaps, such
as limited focus on teachers’ views and student collaboration [4].

Experimental studies have shown improved performance with AI support [15,
16, 21], especially in coding tasks, debugging, and personalized learning. However,
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Groothuijsen et al. [12] and Xue et al. [35] reported concerns about reduced col-
laboration, learning outcomes, and motivation when ChatGPT was used. Students
often used Al not to copy code directly, but to structure or debug their work.

Several studies point to the unreliability of Al-generated code. Liu et al. [18]
found that many ChatGPT solutions, though functional, suffered from poor main-
tainability. Chu et al. [5] and Rahman & Watanobe [24] noted issues such as
hallucinations, bias, and lack of reasoning. Akcapiar & Sidan [3] observed a 54%
improvement in exam scores with Al use, but also that most students accepted
incorrect answers uncritically.

While students appreciate the interactivity and support offered by AI tools
[19], overreliance may hinder independent learning. Most studies emphasize AI’s
positive role [1, 11, 31, 36], though some warn of negative effects on academic
integrity and engagement [14, 17, 22].

At our institution, a steady decline in programming course grades has been ob-
served despite stable assessments. This trend may reflect reduced student engage-
ment with algorithmic thinking, possibly linked to increased use of Al-generated
code. To explore this, our study investigates how and why students use Al tools
and whether their usage relates to skill development.

3. Methods

3.1. Participants

The study was conducted in December 2024 among students enrolled in a three-year
Bachelor of Science program in Computer Science at a Hungarian university, en-
compassing both full-time and part-time cohorts. Two instruments — Questionnaire
A and Questionnaire B — were administered to a total of 256 students across all
three academic years. Questionnaire A was completed by 232 students, while 211
students responded to Questionnaire B. Participation in both surveys was entirely
voluntary and anonymous.

Additionally, semi-structured interviews were carried out with nine students
representing different year groups and three instructors who were not affiliated with
the authorship of this study. Participants were selected through random sampling,
with deliberate inclusion of individuals exhibiting low, average, and high academic
performance across each year group. Instructors were likewise randomly selected
from among those teaching programming-related subjects.

3.2. Data collection

Data for this mixed-methods study were collected using four approaches. First,
Questionnaire A was administered to 256 students at semester’s end, using a five-
point Likert scale to assess their use of large language models (LLMs). It covered
model types, usage contexts and frequency, trust, familiarity with underlying con-
cepts, and demographic details. The primary aim was to determine when and how
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students engaged with LLMs and the extent of their trust in these tools.

Second, Questionnaire B, also distributed to the same cohort, had two parts.
B1 employed the validated Technology Readiness Index 2.0 (TRI 2.0; [20]), measur-
ing Optimism, Innovativeness, Discomfort, and Insecurity toward new technologies.
B2, developed for this study, collected students’ self-reported grades in three pro-
gressively advanced programming courses (HLPL1, HLPL2, SOP) and examined
their use of LLMs during coursework and assessments.

Third, semi-structured group interviews were conducted with nine student vol-
unteers (three per year group) to explore their LLM use, engagement, and percep-
tions of skill development.

Fourth, three instructors were interviewed to gather perspectives on LLM in-
tegration in teaching, student engagement, skill development, and anticipated cur-
ricular changes. Combining quantitative and qualitative data from students and
instructors enabled source and method triangulation. The validated TRI 2.0 in-
strument and rigorously developed interview protocols enhanced reliability.

3.3. Data analysis

For the TRI 2.0 section of the questionnaire, mean scores for each of the four
subscales — Optimism, Innovativeness, Discomfort, and Insecurity — were calculated
using SPSS; with each subscale comprising four items. Cronbach’s alpha indicated
acceptable internal consistency for Optimism (a = .76) and Innovativeness (o =
.76), while Discomfort (o = .60) and Insecurity (o = .54) showed lower reliability,
warranting cautious interpretation and suggesting a need for potential refinement
in future applications.

To address Research Question 2 (RQ2), several statistical analyses were con-
ducted in SPSS. In addition, qualitative analysis was performed on the open-ended
questionnaire responses and the student group interview notes, following Braun
and Clarke’s (2006) six-phase thematic analysis. Sensitizing concepts from Rah-
man and Watanobe [23] — error checking and debugging, conceptual understanding
support, code generation, and code optimization — guided the initial coding process.

Semi-structured interviews with nine students and three instructors involved
in the HLPL1, HLPL2, and SOP courses were also analysed thematically. The
interview protocol was designed to explore participants’ experiences, motivations,
and concerns regarding Al chatbot use in programming education. Interviews
lasted 30-45 minutes, were audio-recorded, transcribed verbatim, and analysed
manually to enable cross-case comparisons.

Coding included both inductive and deductive approaches. Emergent codes
were grouped into candidate themes, which were then refined for clarity and con-
sistency. Themes were compared across courses and between student and teacher
perspectives, with representative quotes selected to illustrate key findings.

This process facilitated a nuanced understanding of how and why Al chatbots
are used in programming education, highlighting implications for student auton-
omy, skill development, and assessment practices. A similar approach was applied
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to the teacher interview data, synthesizing their insights on student engagement,
learning outcomes, and anticipated curricular adjustments.

All procedures for data collection, storage, and analysis adhered to the ethical
standards set by the university’s Research Ethical Review Board and complied fully
with the General Data Protection Regulation (GDPR, 2016).

4. Results

4.1. Descriptive results

Of the 256 students invited, 232 completed the first questionnaire. Among re-
spondents, 33.6% were first-year, 33.2% second-year, and the remainder third-year
students. The sample comprised 15% female and 75% male participants. Among
the respondents, 96.6% had heard of ChatGPT, 33.2% knew about Claude, and
30.8% knew about LLaMA. 1% of respondents had never used a chatbot, while
17.9% used them very frequently. On a Likert scale from 1 to 5, the average
chatbot usage frequency was 3.44.

4.1.1. Research Question 1: How do computer science students use large
language models in their learning process?

The majority of students reported using LLMs, indicating a higher likelihood of
engagement than non-use. The average value (Likert scale 1-5) is 3.45. Respon-
dents rarely use chatbots for text translation (2.39), still preferring traditional
applications like Google Translate and DeepL (see Figure 1).

100

75

5 59 (25,1%)

2 31 (13,2%) 31 (13,2%) 29 (12,3%)

0

1 2 3 4 5

Figure 1. How often do you use a large language model for text
translation (more often than e.g. Google Translate, DeepL, etc.)?

They also rarely use chatbots for non-academic conversations, with an average
response of 2.83. When asked how often they use AI chatbots to solve homework
assignments, the average response was 3.46. Disaggregated by year, first-year stu-
dents reported an average of 3.29, while third-year students averaged 3.74. These
results show that language models are mainly used for homework, not for transla-
tion or conversation.

Meanwhile, 64% of respondents either did not use Al at all or used it very rarely
at the beginning of their programming studies.
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Based on the questionnaire responses, it is evident that students prefer using
AT tools for code generation. Of the 232 respondents, only 19 (8%) reported never
having generated code using an Al tool. The overall average frequency for code
generation was 3.11 on a five-point scale, with first-year students averaging 2.67
and third-year students 3.6 (Table 1). Asked how often they integrate Al-generated
code into their programs without verification, the average response was 1.55. 59%
had never done this, while 87% only used Al-generated code after verification.

Table 1. What did students use LLMs for?

Never Average
Students used LLMs for: First year | Second year | Third year
Code generation 8% 2.67 3.12 3.6
Code generation and 59% 1.42 1.5 1.7
submitted without
verification
Code generation and 13% - - -
submitted with
verification
Debugging 12% 3.32 3.5 3.8

Table 1 shows that as students progress in their studies, they use LLM more
and more often.

When learning a new programming language or technology, only 2.1% of stu-
dents reported primarily relying on Al tools, while the majority preferred tradi-
tional resources such as YouTube, textbooks, and other learning materials (see
Figure 2).

80

79 (33,8%)

72 (30,8%)

60
53 (22,6%)

40

25 (10,7%)

20
5(2,1%)

1 2 3 4 5

Figure 2. What do you rely on most when learning a new pro-
gramming language or technology? (1-Youtube, Udemy, books, etc.
5-LLMs)

Questionnaire B

Responses to the first questionnaire offered an overview of LLM usage among IT
students, highlighting both common applications and areas of non-use. The ques-
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tionnaire also explored individual differences in usage patterns, purposes, and per-
ceived usefulness of Al chatbots.

A total of 211 students completed the second questionnaire: 54 first-year, 63
second-year, and 99 third-year students. Questionnaire B incorporated the Tech-
nology Readiness Index (TRI 2.0). As shown in Table 2, Optimism and Innova-
tiveness received the highest scores, while Discomfort was rated low and Insecurity
moderate. These results indicate that participants are technologically adept and
approach new technologies with a critically reflective mindset.

Table 2. Overview of TRI2 dimension scores.

Overview TRI2 scores

Dimension Mean | SD
Optimism 3.86 | 0.73
Innovativeness 3.50 | 0.81
Dissatisfaction 2.60 | 0.73
Insecurity 2.44 | 0.58

The results indicate that students exhibit both comfort with and openness to-
ward adopting new technologies.

Table 3 shows how often students use AI chatbots to explain, review, test, and
debug. Only 34 (16%) students reported never using Al for these purposes. Ninety
students (43%) indicated usage between 1-10 times, 43 students (20%) between 10-
20 times, and 44 (21%) students more than 20 times. Even in the Service-Oriented
Programming (SOP) course — the course with the lowest reported usage — only 24%
of students reported using Al for reviewing and testing their own code.

Figure 3 illustrates that students were generally moderately satisfied with the
large language models (LLMs) they used, with an average satisfaction rating of
3.30. The relationship between satisfaction and students’ course grades, as well as
overall GPA, was also analysed. Students who received grades of 4, 5, or 1 reported
marginally higher satisfaction levels (3.36, 3.39, and 3.37, respectively).

80
77 (36,5%)

69 (32,7%
60 &=

40

29 (13,7%)
20
6 (2,8%)

14 (6,6%)

Figure 3. How satisfied are you with the language model(s) used
and their responses? (0 - I do not use it, 1 - I am not satisfied, 5 -
I am very satisfied)
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Table 3. Student responses on Al use for explaining, reviewing,
testing, and debugging.

Number of
Questions students
How often did students use Al for 34
explaining, reviewing, testing, and
debugging? — “Never” responses
How often did students use Al for 90
explaining, reviewing, testing, and
debugging? — 1-10 times

How often did students use Al for 43
explaining, reviewing, testing, and
debugging? — 10-20 times

How often did students use Al for 44
explaining, reviewing, testing, and
debugging? — More than 20 times

4.1.2. Research Question 2: Do all students use language models in
programming in the same ways and for the same purposes?

After processing the Questionnaire B, we found that the method of LLM use de-
pends on the subject and grades. We performed statistical analysis for the three
subjects as follows. Dependent Variable: Grade (A): Numerical grade (1-5). In-
dependent Variables: AI Usage Variables: General Al frequency (B), Al-generated
code (C), AI code not understood (D), AI code understood (E), Al-reviewed code
(F), AI debugging (G).

In the case of the HLPL1, the analysis demonstrated significant negative asso-
ciations between AI usage and academic performance, particularly when students
relied on Al-generated code without full understanding (p = —0.35, p < 0.001).
The performed cluster analysis further identified a high-risk group (25% of stu-
dents) with heavy AI dependence and markedly lower grades (M = 2.1). Regres-
sion models confirmed these effects persisted after accounting for baseline skill
levels (6 = —0.42, p < 0.001), underscoring the need for pedagogical strategies
that promote critical engagement with AI chatbots (Table 4).

Similar results were found for the High-Level Programming Languages II sub-
ject. The statistical analysis for correlation shows that negative correlations be-
tween higher AT usage and lower grades. General Al usage (B), debugging (G) and
lack of understanding (D) show the most significant negative relationships. This
suggests that frequent, less reflective Al use may associate with poorer academic
performance.

Using AI generated codes without understanding (C) and AT usage frequency
ford debugging (G) significantly predict lower grades.
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Table 4. Correlation between HLPL1 grades and Al chatbot usage
using Spearman’s method (with p < 0.05 for significance).

AT usage types Correlation (p) | p-value | Interpretation
(B) How often did students —0.25 < 0.001 | Moderate

use an LLM? negative link
(C) How often did students —0.32 < 0.001 | Strong negative
use Al-generated code to link

solve assignments? (Only
tested if it worked, without

modifications)
(D) How often did —0.35 < 0.001 | Strongest
students use Al-generated negative effect

code without
understanding every line?
(E) How often did students —0.10 0.132 No significant
use Al-generated code link

while fully understanding
every line?

(F) How often did students -0.14 0.021 Weak negative
use Al to review or test link

their own written code

(G) How often did students —0.18 0.003 Moderate

use Al for debugging? negative link

These findings underscore that AI’s role in learning is context-dependent: while
tool-assisted comprehension (e.g., debugging with understanding) may be neutral,
unreflective dependence correlates with academic risks.

In the case of SOP, the results are different. The statistical analysis for corre-
lation shows that higher-graded students used Al-generated code for assignments
slightly less often (r = —0.21, p = 0.022). All other AI usage behaviours showed
no meaningful relationship with grades (Table 5).

Unlike the other two courses, lower-performing students in this course also
avoided using Al chatbots for code generation. Semi-structured group interviews
revealed that large language models (LLMs) struggle with stream-based communi-
cation tasks, often producing non-functional or algorithmically inconsistent code.
Instructors observed that LLM-generated solutions to producer-consumer problems
were overly complex, included irrelevant code, and remained unclear even with ex-
planations. As one teacher noted: “Al is not yet sufficiently reliable for addressing
more complex problems and should not be relied upon by individuals pursuing a
serious career in this field.” Another added: “For SOP, the situation is similar
— obtaining a usable response may require an excessive number of prompts. The
model may also struggle with concepts such as asynchronous programming.” Conse-
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Table 5. Correlation between SOP grades and Al chatbot usage
using Spearman’s method (with p < 0.05 = significant).

AT usage types Correlation (p) | p-value | Interpretation
(B) How often did students 0.02 < 0.85 | No significant
use an LLM? correlation

(C) How often did students —0.21 < 0.022 | Weak negative
use Al-generated code to correlation

solve assignments? (Only
tested if it worked, without

modifications)
(D) How often did —0.11 < 0.24 | No significant
students use Al-generated correlation

code without
understanding every line?
(E) How often did students 0.02 0.81 No significant
use Al-generated code correlation
while fully understanding
every line?

(F) How often did students 0.05 0.58 No significant
use Al to review or test correlation
their own written code

(G) How often did students 0.07 0.44 No significant
use Al for debugging? correlation

quently, students primarily used chatbots in this course to explain code rather than
to generate or debug it. Across all three courses, a clear trend emerged: students
with lower grades tended to rely on AI chatbots more frequently and were more
likely to use them for code generation. In contrast, higher-achieving students used
chatbots mainly for code explanation, testing, and debugging.

5. Discussion

This section addresses the study’s findings in relation to the two research questions.
The primary aim was to examine how university-level computer science students
use large language models (LLMSs) to support their learning and in what ways.
Survey results show that students primarily use OpenAl’'s ChatGPT, rarely
for translation or casual conversation, but frequently for assignments, coursework,
and exam preparation. As expected [12, 16, 23], they commonly use LLMs to
generate, debug, analyse, and explain code. Only 8% reported never inserting
LLM-generated code into their work, and just 59% claimed never to have submitted
unverified Al-generated code — figures that suggest only a minority consistently
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code independently (Table 1).

LLM usage increases with academic progression, likely due to both the growing
reliability of LLMs and the increasing complexity of course content.

Some students used chatbots to generate exercises or quizzes for self-assessment,
although specific course associations were not identified. This behavior aligns with
RQ1, indicating diverse and evolving uses of LLMs in learning.

For RQ2, no prior studies were found that explore correlations between Al use
and student ability. Our findings reveal that students struggling with a subject used
LLMs more frequently — especially for code generation and less for code debugging.
In contrast, higher-achieving students mainly used Al for testing and debugging.
In HLPL1, over 90% did not use AI at all, while usage was notably higher in SOP.
A positive correlation was found between perceived subject difficulty and ATl use.

Students with lower grades often relied on LLMs to generate code, while stronger
students used them for support tasks. Whether low performance resulted from
excessive reliance on Al or pre-existing skill deficits remains unclear.

Regardless of performance, many students used Al to explain code. According
to some, AI was unnecessary for SOP tasks as they could be solved using class
material and logic. Others warned that excessive reliance on Al hindered genuine
learning. Students expressed concern that Al-generated code is often syntacti-
cally correct but overly complex and difficult to understand, especially for weaker
learners.

Instructors agreed that while LLMs can support learning, especially in code
comprehension and debugging, generated code is often misaligned with course-
specific approaches. Weaker students tend to depend on Al because they struggle to
write or understand code. As tasks grow in complexity, Al-generated solutions may
hinder more than help, particularly when students cannot replicate the solution
independently.

Despite these concerns, students appreciated LLMs for saving time — especially
when used to clarify errors or concepts they could not understand otherwise. In-
structors cautioned, however, that using Al at the first sign of difficulty may impede
long-term skill development.

Most students reported satisfaction with their chosen LLM (mean rating: 3.30),
especially those who earned high or failing grades. They believed AI support
enhanced their learning, reduced effort, and saved time.

As one part-time student observed, LLMs are useful in professional contexts —
for generating SQL, HTML, or JSON — yet they tried to minimize reliance on Al
in academic settings. Instructors echoed the need for caution, emphasizing that
students who rely heavily on Al risk not learning essential problem-solving skills.

5.1. Implications

In subjects where students seek additional practice but find the number of available
exercises insufficient, they often use Al to generate tasks. Instructors should ad-
dress this by providing a wider range of high-quality exercises, including examples
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with solutions and explanations, followed by similar tasks to reinforce understand-
ing.

Self-assessment opportunities should be integrated into each course, enabling
students to gauge their comprehension independently.

The findings also suggest that online exams may not reliably assess actual
knowledge. As one respondent noted, “more perceptive students may learn to ob-
scure Al-generated syntax patterns, including stylistic features such as comments or
distinctive variable naming conventions.” Another added, “every exam submission
should be followed by a defense session, which would require additional time and
effort from both instructors and students.” To maintain academic integrity, exams
should be conducted in person, under supervision, with mobile phone collected
beforehand.

6. Conclusion and future work

This study found that computer science students use AI chatbots not only for
code generation, explanation, testing, and debugging, but also for creating prac-
tice exercises and self-assessment, such as generating topic-specific test questions.
Translation and non-academic use are rare. The primary motivation is to speed up
learning and complete tasks more efficiently, though this is not always achieved.
Code quality varies across chatbots, and faulty or overly complex outputs may
hinder learning, even when explanations are provided.

Relying on Al-generated code can limit students’ development of key skills
such as algorithmic thinking and coding proficiency. Weaker students, who would
benefit most from practice, are more likely to depend on code generation. Similarly,
excessive use of Al tools for debugging may impede deeper code comprehension.
Conversely, Al-generated explanations — particularly when applied to students’ own
code — can support learning when used appropriately.

The TRI 2.0 instrument showed acceptable reliability and partial construct and
criterion validity in this context. Positive dimensions (optimism and innovative-
ness) performed well, though negative subscales may require refinement. Overall,
the tool effectively measured students’ technology readiness in relation to Al chat-
bot use.

Future studies could compare different Al tools and their respective affordances
in education. Beyond code generation, Al can also evaluate student-written code
[30], offering potential for both student self-assessment and instructional support.
Investigating the impact of selecting appropriate Al tools and prompting strategies
may further clarify their role in programming education.
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Abstract. The increasing complexity and scale of microservice-based sys-
tems pose major challenges for ensuring reliability and operational conti-
nuity. Multimodal fault diagnosis integrating logs, metrics, and traces has
emerged as a key approach for improving anomaly detection, failure type
identification, and root cause localization. Graph Neural Networks (GNNs)
show strong potential for modeling intricate service dependencies and fault
propagation patterns in such systems. This study presents a systematic re-
view of state-of-the-art graph-based multimodal diagnostic frameworks. We
compare existing methods in terms of diagnostic accuracy, scalability, com-
putational cost, and implementation complexity, and analyze representative
public datasets and benchmark systems. We highlight key challenges, includ-
ing generalization, explainability, online applicability, and outline promising
directions for future research. In addition, we report preliminary findings
from our own experiments, which suggest that Transformer-based models
provide a promising foundation for multimodal fault diagnosis in enterprise
microservice systems. These early results motivate our ongoing work toward
hybrid architectures that combine the strengths of Transformers and GNNs.

Keywords: microservice system, fault diagnosis, anomaly detection, root-
cause localization, Graph Neural Network, Transformer
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1. Introduction

The microservice architecture is increasingly prevalent in modern information sys-
tems. However, ensuring reliability in such environments — composed of numerous
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interdependent services — remains challenging, as faults can propagate in complex
ways [13]. To monitor system health, logs, performance metrics, and traces are typ-
ically collected. Different anomalies may appear in different modalities: a failure
may cause only a metric spike or manifest as log entries indicating a crash [29].

Multimodal fault diagnosis is thus essential and has gained growing attention
in recent years [7, 30]. Recent studies focus on combining heterogeneous telemetry
data to improve fault detection and root cause analysis.

Graph-based methods are particularly promising [7, 11, 30], since microservices
form natural graphs, with nodes as service instances and edges denoting dependen-
cies. Graph Neural Networks (GNNs) leverage this structure to model system-wide
interactions [12, 23, 26, 29, 31, 32].

This paper reviews multimodal fault diagnosis methods using GNNs. We com-
pare approaches that integrate log, metric, and trace data across multiple dimen-
sions such as accuracy, scalability, and complexity. We also examine common
datasets and benchmarks, and identify research gaps.

In addition, we present preliminary findings from our own work. We first ana-
lyze log anomaly detection, showing the benefit of Transformer architectures, then
introduce a Graph Transformer-based model for enhanced root cause localization
and failure type identification.

2. Methodology

The studies reviewed in this paper were identified using keyword-based searches on
platforms of Google Scholar and Semantic Scholar. To ensure comprehensive cov-
erage, we used a diverse set of keywords, including but not limited to: “multimodal
fault diagnosis,” “microservice anomaly detection,” “graph neural network,” “data
fusion,” “root cause analysis,” and “AIOps benchmark.” The keywords were com-
bined with Boolean operators and adapted iteratively during the search process.
Initial selections were filtered based on relevance, citation impact, and publica-
tion recency, followed by citation chaining. Although the process was exploratory,
we aimed to ensure broad and representative coverage of methodologies and key
contributions across both survey and empirical research papers.

3. Multimodal fault diagnosis in microservice sys-
tems

Artificial Intelligence for IT Operations (AIOps) aims to enhance IT systems using
AT techniques. Despite advancements, challenges in adaptivity, efficiency, and scal-
ability remain, partly due to the lack of standardized taxonomies for data handling,
target tasks, and system requirements [13]. This complicates the comparison and
integration of diagnostic approaches.

Early fault diagnosis methods in microservice systems typically relied on a single
telemetry source, which proved insufficient. Multimodal fault diagnosis addresses
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this by jointly analyzing logs, metrics, and traces, capturing complementary system
perspectives [12, 29].

For example, a complex outage may manifest through spikes in CPU usage,
increased log severity, and timeout traces. Analyzing only one modality could lead
to missed or misattributed faults.

The most commonly used data types are:

e Logs: Semi-structured textual entries containing system and application
events [26]. Log-based methods rely on parsing and pattern mining [20].

e Metrics: Time-series data capturing quantitative performance indicators
(e.g., CPU usage, request counts) [32]. Diagnostics often involve anomaly
detection on time series [20].

e Traces: Sequences of spans representing end-to-end request paths. Useful
for identifying bottlenecks and fault propagation [30].

Key diagnostic tasks include:

o Anomaly Detection (AD): Binary classification to detect abnormal system
behavior.

 Failure Type Identification (FTI): Multi-class classification to determine
the nature of the fault.

* Root Cause Localization (RCL): Identifying the component responsible
for the fault, often ranked by likelihood; advanced methods also reconstruct
propagation paths.

Preprocessing of
metrics

D ——

Preprocessing of Fusion of Prediction
logs modalities

—

Preprocessing of'
traces

Figure 1. Multimodal fault diagnosis pipeline.

As shown in Figure 1, the diagnosis process typically involves: (a) preprocessing
and unifying telemetry data; (b) fusing multimodal features into a model input;
and (¢) applying predictive models to perform AD, FTT, and RCL.

Modern approaches utilize deep learning to model complex system dynamics.
Early works like DeepLog [5] applied sequential modeling to log data. Similarly,
LSTM-based models and statistical methods have been used for metric anomaly
detection. However, unimodal analysis often lacks sufficient insight, prompting
recent methods to integrate all three modalities [26, 29], yielding improved FTI
and RCL performance.
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4. Graph Neural Networks in fault diagnosis of mi-
croservice systems

Graph Neural Networks (GNNs) have become a key trend in fault analysis of
microservice systems. These deep learning models are designed to process graph-
structured data, making them ideal for modeling microservices, where nodes rep-
resent instances and edges denote service dependencies. GNNs can capture both
topological and contextual information using techniques like message passing and
attention [8, 9, 27].

In multimodal diagnosis, GNNs are used to fuse heterogeneous telemetry data
or to process node-level features within a system graph.

Several recent models adopt similar GNN-based architectures [7], differing main-
ly in the graph encoders and supported diagnostic tasks. Table 1 summarizes their
key characteristics.

Table 1. Overview of GNN-based multimodal fault diagnosis mod-
els. M, L, T are metrics, logs, and traces, respectively.

Model Year | Modalities | Graph Encoder | AD | FTI | RCL
Eadro [12] 2023 M,L,T GAT [2] 4 X v
DiagFusion [29] | 2023 M,L, T TAGConv [4] v v v
UniDiag [31] | 2024 M,L,T R-GCN [22] | v X
DeepHunt [23] | 2024 M,L,T GraphSAGE [8] v X v
TVDiag [26] 2025 M,L,T GraphSAGE [8] v v v
CHASE [32] | 2025 M,L,T HGT [9)] ol ox v

Eadro [12] uses GAT over fused multimodal inputs, but its complexity may
cause overfitting on small systems, where simpler models sometimes perform better
[7].

DiagFusion [29] embeds alerts using fastText and fuses features via a multi-
part neural architecture. However, ignoring modality-specific traits may harm
performance when data is incomplete [24].

UniDiag [31] builds temporal knowledge graphs and uses R-GCN for efficient
stream-based diagnosis, introducing a microservice-specific embedding strategy.

TVDiag [26] avoids uniform fusion by using task-specific GNN encoders and
contrastive learning, improving robustness via graph augmentation.

DeepHunt [23] introduces Root Cause Score (RCS), combining reconstruction
error and propagation patterns. It also supports adaptive refinement via feedback.

CHASE [32] employs a causal hypergraph framework with modality weighting
and inference to identify root causes. While accurate, its resource demands may
limit scalability.

In summary, GNN-based models effectively integrate multimodal data and cap-
ture complex patterns. Still, simpler models with well-designed features can match
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or exceed GNN performance in constrained settings [7].

5. Public datasets and benchmark environments

A major challenge in fault diagnosis research is the scarcity of large-scale, publicly
available datasets from real-world microservice systems [13]. Consequently, many
studies rely on proprietary data or synthetic environments. In recent years, several
datasets have been released to support model development and evaluation.

Table 2 summarizes widely used datasets for FTT and RCL tasks, including
both single and multimodal sources.

Table 2. Overview of widely used, openly available information
system anomaly datasets. M, L, and T are metrics, logs, and traces,

respectively.
Name Year | Modalities | Description
AIOps  Challenge | 2020 M, T Data about a real-world pro-
2020 [16] duction microservice system, col-

lected by China Mobile Zhejiang.

AIOps  Challenge | 2021 M, L, T Data about two large commer-
2021 [1] cial banking systems, collected
by Tsinghua University.

Generic AIOps At- | 2022 M, L, T Detailed dataset with simulated
las (GAIA) [3] anomalies and injection records
for root cause analysis evalua-
tion, collected by CloudWise.

Loghub [33] 2023 L Large volume of logs from vari-
ous systems.

RCAEval-RE1 [17, | 2024 M Metric-only failure cases from

18] three microservice systems, sup-
porting metric-based root cause
analysis.

RCAEval-RE2, 2025 M, L, T Multi-source telemetry data for

RCAEval-RE3 [18] root cause analysis, with RE2

covering general failure cases and
RE3 focusing on code-level fault
cases across three microservice
systems.

160



Annal. Math. et Inf. Al-driven fault diagnosis from textual system logs

These resources facilitate benchmarking and comparison of diagnostic models.
However, most datasets involve synthetic fault injection, which may fail to capture
the complexity and spontaneity of real production failures. As a result, models
trained exclusively on these may face generalization issues in large-scale industrial
settings.

In addition to datasets, open-source benchmark systems have been developed
to emulate microservice environments with integrated telemetry tools (e.g., Open-
Telemetry, Prometheus, Jaeger, Loki). Table 3 lists commonly used examples.

Several studies inject faults into these systems and monitor the telemetry to
assess model performance [12, 26]. While effective for controlled experimentation,
their scale — typically 8-12 services — is far from enterprise-grade systems. For
context, Netflix operated over 200 microservices by 2016 [6], while Uber reported
4,500 by 2023 [25].

Table 3. Overview of widely used microservice benchmark systems.

Name Release | Microservices | URL

SockShop 2016 8 https://github.com/microse
rvices—-demo/microservice
s—demo

Train Ticket 2018 41 https://github.com/FudanSE
Lab/train-ticket

Hotel Reser- 2019 10 https://github.com/delimit

vation rou/DeathStarBench/tree/ma

ster/hotelReservation

Social Net- 2019 12 https://github.com/delimit

work rou/DeathStarBench/tree/ma
ster/socialNetwork

Online Bou- 2020 12 https://github.com/GoogleC

tique loudPlatform/microservices
—demo

6. Comparison of existing methods

Evaluating multimodal fault diagnosis methods requires careful consideration of
several criteria. In this section, we summarize the most important dimensions for
comparison, with a particular focus on detection accuracy, computational cost and
scalability, real-time applicability, and implementation complexity. We also discuss
how recent models perform with respect to each of these aspects.
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6.1. Detection and localization accuracy

In general, multimodal GNN-based models tend to achieve the improved reported
accuracy, compared to single modal approaches in published studies. A recent
evaluation [7] showed that state-of-the-art models such as Eadro, DiagFusion, Dee-
pHunt, TVDiag, and CHASE achieved top-1 hit rates between 30% and 60% on
the GATA dataset, while their top-3 hit rates ranged from approximately 59% to
88%. Precision is another critical metric, particularly when assessing false pos-
itives. Multimodal models tend to outperform single-modality detectors in this
regard, as they require consistent signals across multiple modalities to trigger an
alert — resulting in fewer spurious detections.

However, it is important to note that the advantage of multimodal GNNs in
accuracy may be highly dependent on the dataset and fault types. Some studies
suggest that in certain scenarios, this advantage may not be statistically signifi-
cant [7].

6.2. Computational cost

Graph-based deep learning models are generally more computationally expensive
than simpler architectures such as MLPs or LSTMs. This is due to the complex-
ity of GNN layers (e.g., graph convolution or attention operations that involve
neighborhood aggregation with time complexity O(V 4+ E) depending on the graph
structure), and the additional overhead introduced by multimodal data preprocess-
ing (e.g., log parsing, metric filtering, dimensionality reduction). A key scalability
concern is that most GNN-based diagnostic models have not been tested in online
setups, and on systems with hundreds of service instances.

Although current datasets are manageable with GNNs, it remains unclear
whether these methods can scale effectively to larger environments. Future progress
may require more scalable architectures, as the computational cost of running com-
plex multimodal models may be prohibitive in smaller organizational settings lack-
ing adequate infrastructure.

6.3. Real-time applicability

A practical requirement for fault diagnosis methods is their ability to operate in
real time or near real time. Most published multimodal models are trained of-
fline and applied in a near-real-time setting, where the model processes telemetry
aggregated over a fixed interval (e.g., every second or minute) and raises alerts
as needed. Offline training is not inherently problematic if model updates are
infrequent. However, microservice environments are highly dynamic, raising the
need for continual learning or online inference capabilities. Real-time applicability
is further constrained by the latency of preprocessing steps such as log parsing,
metric filtering, and trace clustering. Stream-based tools like Drain3 for logs and
sliding-window aggregation for metrics are essential in online systems.
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There is broad consensus in the literature that current deep learning models
require further optimization, such as model pruning or knowledge distillation to be
truly viable in real-time AIOps settings. For now, multimodal GNN-based models
are best suited for near real time detection.

6.4. Engineering complexity

Implementing multimodal GNN-based diagnostic systems demands significant en-
gineering effort. Key challenges include handling and synchronizing three different
telemetry streams (logs, metrics, and traces), cleaning and storing diverse data
sources, and integrating multiple specialized algorithms (e.g. NLP for log analysis,
time-series modeling for metrics, and graph processing for traces). In many imple-
mentations, the diagnostic pipeline comprises multiple interdependent components
that must be individually tuned [26, 29]. For instance, DiagFusion and TVDiag
include a full preprocessing framework before the neural network model begins
learning. This involves filtering logs, normalizing metrics, and deriving service
dependency graphs from trace data.

GNN models typically require dedicated libraries such as PyTorch Geometric or
Deep Graph Library, which introduce a steeper learning curve for operations teams.
Moreover, debugging end-to-end pipelines can be difficult: when the diagnosis fails,
it is not always clear whether the error occurred during log parsing, feature fusion,
or within the GNN itself. This may prevent the utilization of such methods for
small-medium sized or non-technology-focused organizations with less Al expertise.

In conclusion, there is no single best method that dominates across all dimen-
sions. GNN-based deep learning models offer high accuracy and effectively leverage
multimodal data. However, they come with considerable resource demands, scala-
bility limitations, and operation complexity.

7. Limitations and open challenges

Despite recent progress in multimodal fault diagnosis for microservice systems, sev-
eral important challenges and limitations remain. These arise both from the limita-
tions of current methods and the shortcomings of existing datasets and benchmarks.
Below, we highlight the most critical issues identified.

7.1. Generalizability

Most published models have been evaluated on relatively small and simple fault
scenarios. It is common for studies to assess their methods on 1-2 microservice
benchmarks with just 2-5 injected fault types [12, 29, 31]. As a result, the gen-
eralizability of these models to real-world systems remains unclear. In production
environments, dozens of distinct root causes may exist, including hardware fail-
ures, code-level bugs, and network anomalies, many of which are not represented
in the training data. Moreover, operational environments are constantly evolving
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due to factors of sudden peaks in user demand, ongoing software development, and
the introduction of new hardware components, further complicating fault diagnosis
and model robustness.

For example, a GNN model tuned primarily for detecting CPU spikes may
completely miss a database deadlock scenario if neither the metrics nor the log
anomaly detection modules provide a clear signal. Overfitting to the limited fault
cases present in the training set is a common risk — as demonstrated by Eadro, which
performed well on trained scenarios but underperformed in unseen environments [7].
Current deep learning models lack proven generalization capabilities, and there is
a strong need for larger, more diverse benchmarks that reflect real production
complexity.

7.2. Lack of real-world data

Although public datasets exist, many studies still rely on synthetic fault injection.
While such datasets can approximate real-world conditions, they are inherently ar-
tificial. In actual operations, failures often arise from overlapping and interdepen-
dent causes, such as a minor memory leak combined with a configuration change,
which are difficult to reproduce under controlled lab conditions. This limits the
external validity of many evaluation results.

A major reason for the lack of real-world data is the sensitivity of production
environments. Sharing logs and failure cases may pose risks related to business
confidentiality, intellectual property, or security. However, it is also in the interest
of organizations that researchers develop methods targeting real operational chal-
lenges. Without access to realistic data, proposed models may remain overfitted
to synthetic scenarios and fail to generalize to production-scale systems.

Furthermore, synthetic datasets typically include ground truth labels for the
faulty component, allowing models to be trained to recognize known faults rather
than to discover novel root causes in unfamiliar environments. This introduces
potential bias. To truly evaluate and improve fault diagnosis systems, publicly
available datasets based on real-world incidents and complex causal chains are
needed.

7.3. Interpretability and explainability

Deep learning models, particularly GNNs,; often lack transparent decision-making
mechanisms. In operational contexts, it is critical for human operators to under-
stand why a service was flagged as faulty. Although recent studies have begun to
address this issue, most state-of-the-art models still fall short in terms of explain-
ability.

For instance, a GNN might output Node X is anomalous (confidence = 0.9),
but this information is of limited practical use, unless the system can also indi-
cate which features contributed to this decision. Addressing this challenge requires
either post hoc interpretation techniques (e.g., feature attribution or counterfac-
tual analysis), or the integration of inherently interpretable components into the
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model architecture. While attention mechanisms have been used in some models
to provide a degree of transparency, their alignment with human-understandable
explanations remains limited and context-dependent. Methods such as SHAP [15],
LIME [21], and GNNExplainer [28] have been proposed to improve model inter-
pretability by identifying the most influential features or substructures contributing
to a prediction.

7.4. Scalability

Most current methods have not been tested on industrial-scale systems with at least
50-100 microservices. GNN complexity typically grows linearly with the number of
nodes and edges, but can become quadratic with operations such as self-attention
over large node sets. In large-scale environments, the volume of telemetry data
and the complexity of service interactions may significantly impact inference time
and memory usage, raising concerns about real-time applicability and deployment
feasibility.

Furthermore, large microservice systems are likely to experience multiple con-
current faults, which may be independent or interacting. Supporting multi-fault
scenarios increases the diagnostic complexity of models, as they must disambiguate
overlapping symptoms and attribute them to distinct root causes. This additional
burden further challenges the scalability of current approaches and highlights the
need for more robust, efficient, and fault-tolerant diagnostic architectures.

7.5. Preprocessing and pipeline fragility

Multimodal diagnostic pipelines depend on complex, often computationally inten-
sive preprocessing steps, such as log parsing, metric normalization, trace corre-
lation, and graph construction. These can strongly influence downstream model
performance. The diversity of current approaches has led to heterogeneous work-
flows, complicating reproducibility and fair comparison.

Moreover, errors or inconsistencies during preprocessing can severely degrade
diagnostic accuracy. For instance, log parsing failures may cause misclassifica-
tion, while incomplete traces from sampling or missing instrumentation lead to
fragmented service graphs. Noisy or outlier-heavy metric series can distort model
behavior and degrade learned representations.

Current models often lack robustness to such imperfections. Beyond improving
resilience via adaptive preprocessing or uncertainty-aware learning, there is a clear
need for standardization. Common data formats and pipelines would support more
meaningful comparisons and enable sharing of preprocessed datasets alongside raw
telemetry. This would lower the entry barrier for new researchers and promote
transparency and reproducibility.
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8. Preliminary explorations to address challenges

To assess how different AT models perform in detecting faults based on event se-
quences, we conducted an initial comparative evaluation of machine learning ap-
proaches for log anomaly detection. Our focus was on event sequence-based meth-
ods that transform logs into sequences of event template identifiers and classify
them as either normal or anomalous. This process is depicted in Figure 2.

Raw log

[instance-A] Creating instance.

{instance-A] Instance starced successfully (took 2.53). Templates

[instance-E] Creating instance. Template |1 [*] Creating instance.
[instance-B] Instance started successfully (took 1.88). | exiraction |2 [] Instance started successfully (took *s).
[instance-B tance paused successfully. t

{instance-B tance resumed successfully. 3 ['] Instance paused successfull.
[instance-C] Creating instance. 5| []Instance resumed successfully.
[instance-C tance started successfully (took 1.9s). 5| ['] Deletion of instance complete.

[instance-A
[instance-B
[instance-C

etion of instance complete.
ation of instance complate.
or: No space left on device. Code: 15269

6 [*] Error: No space left on device. Code: *

Session grouping

Event sequences Anomaly
instance-A (1,2, 5 detection instance-A OK
instance-B |1,2,3,4,5 ML model instance-8| oK
instance-C (1,2, 6 instance-C| ANOMALY DETECTED

Figure 2. Process of event sequence based log anomaly detection.

Using the HDFS dataset [33], we benchmarked four models: the original LSTM-
based DeepLog implementation [5], as well as our own variations based on a bidi-
rectional LSTM, a Random Forest classifier, and a Transformer encoder.

In our experiments, the Transformer model outperformed the LSTM baseline,
Bi-LSTM, and Random Forest in terms of overall accuracy, precision, and F1-score.
Its ability to capture long-range dependencies resulted in ~6% gain in F1-score over
the LSTM and a ~ 25% gain over the Random Forest. Notably, it also achieved
about 11% relative improvement over the baseline LSTM model in precision. This
indicates the model’s superior ability to reduce false positives while maintaining
high recall. These findings suggest that Transformer-based architectures are a
promising choice for anomaly detection, as they effectively capture dependencies
in event sequences. Motivated by these results, we began extending this approach
to a multimodal diagnostic setting by integrating logs, metrics, and traces into a
unified model.

As a first step toward this goal, we developed a prototype system that leverages
Transformer-based graph encoders to integrate logs, metrics, and traces for fault
diagnosis in microservice systems. Our design choices were informed by key limi-
tations identified in the literature, including the lack of robust multimodal fusion
strategies, the limited scalability of conventional GNNs in large microservice archi-
tectures, and the absence of interpretability mechanisms suitable for operational
use.
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Our method builds on the TVDiag framework [26], replacing its GraphSAGE-
based encoder with the Graphormer architecture [27], a Transformer model adapted
for graphs. As illustrated in Figure 3, telemetry anomalies are detected using
tailored strategies: the 30 method [19] for metrics, Isolation Forest [14] for traces,
and pattern-based filtering for logs. Alerts are embedded using fastText [10] and
mapped to nodes in a graph representing service instances. Edges are formed based
on runtime communication patterns between the instances.

Alert Extraction
+ Node Embedding

il

Metrics Encoding

Figure 3. Overview of our prototype framework for multimodal
fault diagnosis.

To overcome the lack of inherent node ordering in graphs, we adopted encoding
strategies introduced by [27]. Node centrality — computed from node degrees — is
used to highlight structurally important service instances, which are more likely to
play critical role in failures. Additionally, spatial encoding captures shortest-path
distances between nodes, allowing the model to account for fault propagation pat-
terns within the service graph. Together, these encodings offer a richer structural
context that can support more informed fault reasoning.

The encoded graph is passed through Graphormer layers, followed by two MLP
heads performing FTI and RCL. We performed preliminary evaluation using the
Generic AIOps Atlas dataset, which features fault scenarios in a QR-based access
control system. Compared to the baseline TVDiag model, our method yielded
3-6% higher RCL top-1 to top-3 hit rate and approximately 5% improvement in
Fl-score for FTI, while reducing inference time by up to 80%, thanks to the model’s
parallelizable architecture.

Although further validation is needed, results show that combining Transformer-
based graph representation learning with multimodal data can address certain key
challenges in fault diagnosis. In particular, it improves both diagnostic accuracy
and runtime efficiency, while providing interpretable features like centrality and
spatial locality that can assist system administrators. Our work is still in an early
stage and should not be interpreted as a complete solution. Instead, it offers encour-
aging evidence to justify deeper investigation. Future work will focus on deploying
the model in dynamic, real-time settings and addressing issues such as data imbal-
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ance and preprocessing overhead. Understanding how the model performs under
online conditions and dynamically evolving service topologies will be essential for
evaluating its practical value in production systems.

9. Conclusion

In recent years, multimodal fault diagnosis in microservice systems has made sig-
nificant progress, especially in combining logs, metrics, and traces to improve fault
detection and root cause localization. GNNs have shown strong potential for mod-
eling fault propagation across complex service topologies, offering notable gains in
detection accuracy and root cause localization.

Despite these benefits, GNNs demand significant computational resources and
are highly sensitive to data quality. Interestingly, simpler models, such as multilayer
perceptrons can also be competitive when paired with well-designed preprocessing
and feature engineering.

Current research indicates that no single model consistently outperforms oth-
ers across all scenarios. Choosing the right approach involves trade-offs between
accuracy, scalability, automation, and interpretability. In industrial settings, GNN-
based models are still rarely deployed for real-time fault detection. A promising
strategy is to use hybrid architectures: lightweight models for routine monitoring,
complemented by GNN-based diagnostics for critical or ambiguous cases.

Achieving practical breakthroughs will require greater focus on addressing real-
world constraints, such as data availability, benchmark realism, and model trans-
parency, rather than solely increasing model complexity. Our ongoing research,
starting from single-modal Transformer-based log anomaly detection and advanc-
ing toward a graph-based multimodal framework, provides early evidence that ap-
propriately adapted Transformer models may offer substantial benefits. However,
thorough experimentation and validation remain necessary to evaluate the robust-
ness and generalizability of this approach.
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Abstract. Neural network ensembles with soft voting improve accuracy and
stability by aggregating multiple models; however, their reliability under in-
dividual model failure remains a critical concern. This paper addresses the
robustness of soft-voting ensembles in safety-critical settings by combining
empirical analysis and formal verification. We evaluate the impact of single-
model failures on ensemble performance and find that soft voting yields grace-
ful degradation, with only minimal loss in accuracy when one component
model is removed or corrupted. In parallel, we develop a formal verification
framework to investigate whether the ensemble’s final prediction remains un-
changed under any single-model failure scenario. The results demonstrate
that soft-voting ensembles can maintain reliable outputs despite individual
model failures, providing both empirical evidence and provable guarantees of
fault tolerance in neural network ensembles.

Keywords: neural network, ensemble, robustness, model failure, formal veri-
fication, SMT
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1. Introduction

Modern safety-critical applications of Al, such as autonomous driving and health-
care, demand not only high accuracy but also formal robustness guarantees for
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reliability under all conditions. Ensemble learning is a proven approach to im-
prove reliability: by aggregating multiple neural network models, ensembles achieve
higher accuracy and greater stability than individual networks. However, empirical
robustness (e.g., against noisy or adversarial inputs) achieved via techniques like
adversarial training or data augmentation does not automatically translate into
formal guarantees of correctness.

In high-stakes domains, we require provable assurance that the system will
maintain correct operation even when some components fail or behave unexpect-
edly. This work introduces the concept of wvoting robustness as a measure of an
ensemble’s tolerance to individual model failures, and provides both empirical anal-
ysis and formally verified guarantees for this property.

We present a comprehensive study of voting robustness in neural network en-
sembles, evaluating their resilience across diverse architectures on a digit classifica-
tion task. Our experiments demonstrate that even if one model in the ensemble is
corrupted or fails entirely, the aggregated prediction remains essentially unchanged,
with minimal loss in accuracy.

Beyond empirical evaluation, we provide formal verification of these ensem-
bles using neural network verification tools based on Satisfiability Modulo Theo-
ries (SMT). By encoding the soft-voting mechanism into a single verifiable model,
we can prove if the ensemble’s prediction remains stable under single-model failures
for any set of inputs. This dual approach of empirical analysis and formal verifi-
cation establishes ensemble voting as a powerful mechanism for achieving built-in
robustness, paving the way for Al systems that can be deployed with certified
reliability in safety-critical domains.

2. Background and related work

2.1. Ensemble learning and voting schemes

Ensemble methods combine multiple learners to improve generalization perfor-
mance. Classic ensemble techniques such as bagging, boosting, and random forests
leverage model diversity to reduce variance and increase accuracy. In neural net-
work ensembles, each model (potentially differing in initialization, architecture, or
training data) contributes to the final prediction.

Voting can be performed in two primary ways: majority voting (hard voting),
where the class with the most votes is selected, and averaging (soft voting), where
the models’ output probabilities are averaged and the class with the highest mean
probability is chosen. Soft voting typically provides smoother decision boundaries
and is easier to integrate into verification pipelines, as the voting layer is differen-
tiable.

Prior work has demonstrated that ensembles can enhance adversarial robust-
ness, as diversity among models makes it more difficult for a single adversarial
example to mislead the entire ensemble. For instance, it was demonstrated that
promoting diversity in non-maximal predictions via an adaptive regularizer en-
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hanced both ensemble robustness and transfer resilience [10]. While substantial
work has focused on empirical defenses such as adversarial training, noise resilience,
and robustness to distributional shifts, much of this remains heuristic and lacks for-
mal guarantees [6, 12]. Gross et al. showed that ensemble robustness verification
is NP-hard and proposed SMT- and MILP-based encodings to either find optimal
randomized attacks or formally prove robustness [5].

2.2. Voting robustness

We define woting robustness as the minimum number of model predictions that
must change to alter the ensemble’s final decision. This concept is analogous to
the vote margin in classical voting theory.

For a majority vote ensemble of n > 0 models, voting robustness is simply the
number of votes by which the leading class exceeds the runner-up (e.g., if 6 out of
10 models vote for the predicted class, at least two votes must flip to change the
outcome). In soft-voting ensembles, robustness relates to the confidence margin
— the gap between the averaged probability assigned to the predicted class and
the next highest class. A large margin indicates that more substantial changes in
individual model outputs are needed to alter the final prediction.

Voting robustness is particularly crucial for safety-critical Al systems, as high
robustness ensures that even if some ensemble members fail or behave incorrectly,
the system’s overall decision remains unaffected.

2.3. Robustness metrics

To capture an ensemble’s tolerance to component failures, we summarize and define
several complementary metrics beyond raw accuracy.

Ensemble Accuracy: The accuracy of the ensemble on a test set under normal
conditions, serving as the baseline for comparison.

Accuracy Drop: The reduction in accuracy when one or more models are cor-
rupted or removed. A robust ensemble should degrade gracefully, typically
losing less than 1% accuracy when a single member is compromised.

Class Switching Probability (CSP): The probability that the ensemble’s pre-
dicted class changes when a single model’s prediction changes. Low CSP
values mean that no single model has undue influence on the decision.

Ensemble Margin: The difference between the ensemble’s support for the pre-
dicted class and the runner-up class. A larger margin indicates greater deci-
sion stability, meaning that individual model failures are less likely to overturn
the ensemble’s output.

Leave-One-Out (LOO) Impact: A diagnostic analysis where each model is re-
moved in turn to measure the effect on predictions and accuracy. Significant
accuracy drops or frequent class changes upon removal reveal that a model
is critical to the ensemble’s decision-making.
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2.4. Formal verification of neural networks

The formal methods community has developed several approaches for verifying
properties of neural networks, including Satisfiability Modulo Theories (SMT) solv-
ing, linear programming (LP), and abstract interpretation. These methods have
been applied to tasks such as verifying robustness to input perturbations and en-
suring other safety properties [8, 11].

Tools such as Marabou [8, 13] encode a network’s ReLU activation constraints
as LP constraints, enabling solvers to determine whether specific outputs can be
altered under given conditions. These techniques provide certified guarantees (e.g.,
proving that no adversarial example exists within a bounded input region).

However, most verification research to date has focused on single networks [2,
3, 7]. Ensemble models introduce additional complexity, particularly when using
discrete majority voting, which creates combinatorial branching. Encoding major-
ity voting in a formal verification setting is challenging due to the large number of
possible vote distributions, significantly increasing the combinatorial complexity.

By contrast, averaging (soft voting) produces continuous outputs that can be
expressed as an additional network layer, effectively fusing the ensemble into a
single verifiable network. This transformation enables existing verification pipelines
— whether based on SMT, LP, or abstract interpretation — to be applied to ensemble
models without incurring the combinatorial explosion caused by discrete voting
schemes.

2.5. Related work

Adversarial training with generated examples has been explored to close the ro-
bustness gap, and ensemble adversarial training has demonstrated that ensemble
diversity improves defense effectiveness [4].

Formal verification of neural networks is an active field, with recent advances
extending verification techniques to a wider class of activation functions and input
sets. For example, Antal et al. [1] generalize verification methods for piece-wise lin-
ear activation functions, supporting both bounded and unbounded input domains,
and demonstrate their effectiveness on multiple case studies.

Our work builds directly on these insights by adopting soft voting for ensemble
verification, thereby enabling formal analysis while preserving robustness. To our
knowledge, this is among the first studies to wverify ensemble voting robustness
formally, combining empirical results with SMT-based verification to certify that
ensemble predictions remain stable even when some members are corrupted or
removed.

3. Methodology

We designed an experiment to empirically evaluate the robustness of ensemble vot-
ing across multiple neural network architectures and simulated model failures. Our
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methodology encompasses the neural network models employed, the construction
of ensembles, the introduction of failures via corrupted models, and the evaluation
procedure. We focus on classification of 10-digit classes (0-9), a scenario where
some models might be “blind” to certain digits to simulate partial failure.

3.1. Neural network models
We consider five types of neural network (NN) architectures of varying complexity:

SimpleLinear: A simple linear classifier (logistic regression) with no hidden layer,
directly mapping 784 input features to 10 class scores. This model has 7,850
parameters (784 x 10 weights + 10 biases) and serves as a minimal baseline.

HiddenMLP: A multi-layer perceptron (MLP) with one hidden layer of 64 units
and ReLu activation, adding non-linearity and capacity compared to Simple-
Linear. The model maps 784 inputs to 64 hidden units and then to 10 class
scores through the hidden layer for a total of 50,370 parameters.

SingleConv: A small convolutional neural network (CNN) with a single convo-
lutional layer of 32 filters of size 3 x 3, followed by flattening and a dense
layer of 10 units. This model has approximately 3,074 parameters. It enables
spatial feature extraction while keeping the network lightweight.

TinyCNN: A slightly deeper CNN with a single convolutional layer of 16 filters
of size 3 x 3 and a dropout layer, followed by flattening and a dense layer of
10 units. This model has 1,498 parameters and achieves higher accuracy on
digit classification due to its additional depth.

CompressedModel: A compressed MLP with a single hidden layer of 32 units
and ReLU activation, mapping 784 inputs to 32 hidden units and then to 10
class scores through the hidden layer for a total of 25,370 parameters. This
simulates scenarios where model size is constrained, potentially at some cost
to accuracy.

Each architecture was trained on the digit classification task. We trained 17 full
models per architecture, where “full” means the model was trained on the complete
set of 10 digit classes (0-9). These 17 models were independently trained with
different random initializations to provide diversity.

In addition to full models, we trained corrupted models to simulate omission
failures. For each architecture, we trained models on datasets where 3 out of the 10
digit classes were omitted from the training set (the model never saw those classes
and would likely misclassify them). We created four corruption schemes:

o Scheme 0: Models trained without digits {0, 1, 2}.
o Scheme 1: Models trained without digits {1, 2, 3}.

o Scheme 2: Models trained without digits {2, 3,4}.

Scheme 3: Models trained without digits {3,4,5}.
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For each scheme, we trained seven models (28 corrupted models per architec-
ture). The multiple models per scheme account for randomness in training and
reduce bias from any single corrupted instance.

3.2. Ensemble construction

From the pool of 17 full models for each architecture, we constructed 100 ensembles,
each consisting of 5 models. Each ensemble was created by randomly selecting 5
models out of the 17, ensuring diverse combinations.

While it is standard practice to balance ensembles by avoiding concentration of
the best or worst models in the same group, in our case the performance deviations
between models were so small that we omitted this step.

Each ensemble used soft voting: each model produced a probability distribution
over the 10 classes (via softmax), and the probabilities were averaged element-wise.
The predicted class was the one with the highest average probability. Soft voting
naturally allows confident models to influence the decision while outliers are diluted
by the consensus.

3.3. Simulating model failure (corruption schemes)

To evaluate robustness, we simulated single-model failures by replacing one model
in an ensemble with a corrupted version of that model. For each of the 100 original
ensembles, we generated four corrupted ensembles, one for each corruption scheme
defined in Section 3.1.

Precisely one of the 5 ensemble members was swapped out, representing a single-
point failure. The first model in each ensemble was replaced with a corrupted model
from the same architecture’s corrupted model pool. This yielded 100 corrupted en-
sembles per scheme, per architecture. All ensembles (both original and corrupted)
employed the same soft voting mechanism.

3.4. Evaluation procedure

We evaluated every ensemble (and each corrupted variant) on a common test
dataset of digit images specifically the MNIST dataset[9]. For each ensemble, we
computed the metrics defined in Section 2: Ensemble Accuracy, Ensemble Mar-
gin, Accuracy Drop, and Class Switching Probability (CSP). We also conducted a
leave-one-out (LOO) analysis, in which each model was removed in turn to assess
its impact on predictions.

The entire experimental pipeline — model training, ensemble construction, cor-
ruption injection, and evaluation — was implemented using TensorFlow/Keras.
Trained models were saved and converted to the ONNX (Open Neural Network
Exchange) format for interoperability with verification tools. ONNX conversion
also enabled formal analysis using solvers by representing the ensemble as a single
verifiable network with a soft-voting layer.
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All metrics were computed from model predictions using Python scripts. We re-
lied on numpy for statistical aggregation (e.g., averaging ensemble accuracies across
100 random ensembles per architecture and calculating standard deviations). When
comparing original vs. corrupted predictions, we ensured the exact same test inputs
were used and fixed all sources of randomness so that predictions were deterministic
and reproducible.

Automated scripts generated random 5-model ensemble compositions from the
pool of trained models and systematically injected corrupted models for each cor-
ruption scheme. Each original ensemble produced four corrupted versions (one per
scheme), ensuring fair and uniform comparisons across all architectures.

All accuracy measurements, CSP calculations, and leave-one-out statistics were
stored in structured logs and tables for traceability. This structured workflow
enables the empirical results to align directly with the models used for formal veri-
fication, ensuring consistency between the experimentation and verification stages.

3.5. Formal verification on voting robustness

In order to encode NN models as a set of mathematical constraints, we rely on
Marabou [8, 13]. The tool provides functionality for loading NN models from
ONNX files and encoding them as a combination of linear equalities and inequali-
ties, piecewise-linear constraints, and disjunctive constraints. Since Marabou does
not support the encoding of Softmax layers due to their non-linearity, all Softmax
layers must be removed in advance. Instead, we use the raw output values (logits)
directly and encode the Argmax operation by introducing disjunctive constraints
over the logits.

When loading multiple NN models and merging them into a single Marabou
network, variable indexing must be handled carefully: (1) the input variables must
be shared among all NNs, and (2) all other variables, including the outputs, must
be shifted by an offset, computed on the fly, to avoid collisions in variable indices.

Encoding averaging for soft voting

To implement a soft voting scheme, the average of the output logits for each class
must be computed. In Marabou, averaging can be encoded simply by summing
the output variables and equating the result to a fresh variable — division by the
number of models is unnecessary for verification purposes.

Let n > 0 be the number of NN models in the ensemble, and m > 0 the
number of output classes. Let the variables o;; denote the jth output logit of the
ith NN model, where 1 <4 < n and 1 < j < m. We define s; as a fresh variable
representing the sum of logits for class j across all models:

n
Vj € {L...,m}: Zoij = 5.
i=1
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Encoding distinct argmax outputs

Let $1,...,8m and s}, ..., s}, denote the summed logits for two different ensembles
(or models). We wish to encode the condition that the two ensembles predict

different classes after applying Argmax. This can be expressed as the following

disjunction:
\/ ((/\(sl > sk)) A sy < sé)

i,j=1 \ “k=1

Since Marabou supports only non-strict inequalities, the strict inequality s} < s;
must be rewritten as s} < 59 — ¢, where € > 0 is a tunable constant controlling the
precision for non-strict inequalities.

4. Experimental results

4.1. Experimental environment

All experiments were conducted on a cluster of 20 identical machines, forming a
distributed computing setup. Each machine was equipped with an 8-core Intel(R)
Xeon(R) W-2225 CPU at 4.10 GHz, 32 GB of RAM, and an NVIDIA RTX A4000
with 16 GB of VRAM. This setup allowed experiments to be parallelized across
multiple machines. While this hardware configuration provided adequate compu-
tational resources for the neural network training phase and verification of simpler
architectures, memory limitations became apparent during formal verification of
more complex models.

The software environment consisted of TensorFlow 2.15 for training individual
neural network models, NumPy for ensemble voting and statistical aggregation,
Marabou 2.0 for formal verification encoding and constraint solving, and Gurobi
1.2.3 as the underlying optimization solver. The distributed setup enabled parallel
execution of the 100 ensemble trials across multiple architectures and corruption
schemes, significantly reducing the overall experimental runtime.

Following the training phase described in Section 3, all trained models were
saved and subsequently converted to the ONNX (Open Neural Network Exchange)
format to ensure compatibility with the Marabou verification framework. This
conversion process maintained the mathematical equivalence of the models while
enabling the constraint-based encoding required for SMT-based verification.

4.2. Empirical results

Now we present the empirical results demonstrating the impact of single-model
corruption on ensemble performance over 100 random trials. Table 1 presents
ensemble evaluation metrics for the different neural network architectures under
both non-corrupted and corrupted conditions across four corruption schemes (SO0,
S1, S2, S3). The Model column represents the different neural network archi-
tectures. The Corr. column corresponds to the different corruption schemes and
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their absence. The label “none” references the scenario with ensembles composed
entirely of fully trained models, serving as a reference baseline, while S0. ..S3 cor-
respond to ensembles where one model has been replaced by a corrupted model
according to the specified corruption scheme. Acc. shows the average prediction
accuracy over the trials. Acc. Drop indicates the decrease in accuracy relative to
the baseline. Margin represents the average difference between the top two pre-
dicted class probabilities, quantifying prediction confidence. CSP (Class Switching
Probability) measures how often the ensemble prediction changes when one mem-
ber is removed or corrupted. LOO Drop quantifies the impact of leaving out a
single model on ensemble accuracy.

4.2.1. Accuracy

As shown in the results, the accuracy did not vary significantly even when one model
in the ensemble was replaced by a corrupted one. The largest observed accuracy
drop is only 0.16% (see SimpleLinear in Table 1), demonstrating the robustness of
our ensemble approach against individual model failures. This robustness is critical
in maintaining reliable performance despite the presence of corrupted inputs.

4.2.2. Margin

While accuracy remained relatively stable, the ensemble margin consistently de-
creased under corruption, with the largest reduction being approximately 12%.
Even the best performing model TinyCNN experienced a margin drop of roughly
11-12%. Nonetheless, the ensemble voting mechanism ensures that the corrupted
model could not outweigh the consensus of the remaining four models, preserving
decision stability.

4.2.3. Class Switching Probability (CSP)

The ratio of class switches, measured by the CSP, remained quite small; this indi-
cates that our ensembles are stable under perturbations caused by corrupted mod-
els. CSP quantifies the proportion of samples for which an individual model alone
changes the voting outcome. A low CSP implies that the corrupted model rarely
influences the ensemble’s decision, enabling rapid SAT verification by the Marabou
tool. High CSP values correlate with easier SAT input detection, while low CSP
values correspond to more robust ensembles that resist corrupted influences.

4.2.4. Leave-One-Out (LOO) drop

The LOO drop, which measures the accuracy decrease when removing one model
from the ensemble, reflects the accuracy drop seen with corrupted models. Smaller
LOO drops indicate that even reduced ensembles perform comparably to the full
ensemble, emphasizing the resilience of the voting mechanism. A large LOO drop
signifies a model’s key role in correct decisions, meaning if corrupted, the ensemble
is more likely to encounter SAT conditions. Conversely, small LOO drops suggest
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Table 1. Evaluation results for different ensemble architectures
(non-corrupted and corrupted).

Model Corr. Acc. Acc. Drop | Margin CSP LOO Drop
- 0.92570 0.00000 0.84442 | 0.00000 0.00000
S0 0.92430 0.00140 0.74527 | 0.00960 -0.00140
SimpleLinear  S1 0.92410 0.00160 0.75020 | 0.01130 -0.00160
S2 0.92450 0.00120 0.75910 | 0.01210 -0.00120
S3 0.92460 0.00110 0.76557 | 0.00990 -0.00110
- 0.97430 0.00000 0.95354 | 0.00000 0.00000
S0 0.97480 -0.00050 0.84248 | 0.00388 0.00050
HiddenMLP S1 0.97490 -0.00060 0.84143 | 0.00310 0.00060
S2 0.97350 0.00080 0.84680 | 0.00380 -0.00080
S3 0.97390 0.00040 0.85247 | 0.00420 -0.00040
- 0.98148 0.00000 0.97727 | 0.00005 -0.00001
S0 0.98162 -0.00013 0.86241 | 0.00291 0.00013
SingleConv S1 0.98216 -0.00067 0.86128 | 0.00263 0.00067
S2 0.98211 -0.00062 0.86461 | 0.00272 0.00062
S3 0.98212 -0.00063 0.87166 | 0.00311 0.00063
- 0.98232 0.00000 0.96820 | 0.00005 0.00000
S0 0.98345 -0.00113 0.85642 | 0.00296 0.00113
TinyCNN S1 0.98319 -0.00088 0.85450 | 0.00304 0.00088
S2 0.98230 0.00002 0.85936 | 0.00332 -0.00002
S3 0.98239 -0.00008 0.86576 | 0.00308 0.00008
- 0.96500 0.00000 0.93244 | 0.00000 0.00000
S0 0.96649 -0.00149 0.82676 | 0.00649 0.00149
CompressedM. S1 0.96550 -0.00050 0.82351 | 0.00550 0.00050
52 0.96430 0.00070 0.83104 | 0.00570 -0.00070
S3 0.96420 0.00080 0.83674 | 0.00560 -0.00080

that corrupted models have limited impact on voting outcomes, often resulting
in UNSAT conditions. In our case, the LOO Drop is equal to the inverse of the
accuracy drops of the corrupted ensembles, showing us that the smaller ensemble
containing 4 full models is just as strong as our full 5 model ensemble.

Notable observations In some cases, ensembles containing a corrupted model
appear to achieve slightly higher accuracy than the corresponding full ensemble.
This behavior is likely due to the combination of two factors: (i) the MNIST dataset
is relatively small and well-separated, so omitting a few classes in one model does
not drastically affect predictions on the test set, and (ii) the corruption itself is mild,
meaning the corrupted model may occasionally make correct predictions by chance
that complement the other ensemble members. Consequently, random variations
across the 100 ensemble trials can produce instances where the corrupted ensemble
performs marginally better than the full ensemble. Importantly, these occurrences
are rare and do not undermine the overall robustness trends observed across all
metrics.
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4.3. Formal verification results

We now present the verification results for the ensemble models described above. In
our experiments, we used the Marabou solver to assess whether it could complete
verification tasks within a timeout of 1200 seconds, and — most importantly —
whether it could return a correct SAT (satisfiable) or UNSAT (unsatisfiable) result
for different NN models under various corruption schemes.

For each NN model, we constructed 50 ensemble instances by randomly selecting
5 full models and 1 corrupted model. We then executed three distinct verification
tasks on each ensemble:

Model Failure: Checks whether the full ensemble and a corrupted ensemble (in
which the first intact model is replaced by the corrupted one) can produce
different class predictions. If the verification result is SAT, then such inputs
exist; if it is UNSAT, the two ensembles always agree on their prediction. In
SAT cases, our tool also returns a set of input values as a counterexample.

Leave-One-Out (LOO): Checks whether the corrupted ensemble and the ensem-
ble from which the corrupted model is entirely removed can predict different
classes. The SAT/UNSAT interpretation is the same as in the Model Failure
task.

Ensemble Equivalence: Checks whether two instances of the corrupted ensem-
ble can produce different predictions. This task was implemented primarily
to study how the solver handles UNSAT instances, as verifying UNSAT cases
is generally considered more computationally demanding than verifying SAT
cases.

Table 2 provides insights into the scale of the verification problem instances solved
for different types of ensemble models and verification tasks. The column #Vars
denotes the number of decision variables, while ##ReLUs represents the number of
ReLU constraints. The #Eqs column reports the total number of equations and
inequalities, followed by two statistical measures describing the number of addends
in these constraints — Mean indicates the average number of addends, and Median
shows the corresponding median value.

Figures 1, 2, and 3 present the verification results for the SimpleLinear, Hid-
denMLP, and CompressedModel ensembles, respectively. The bars are grouped
according to the three verification tasks, with each group containing results for the
four corruption schemes (S0, S1, S2, S3). The stacked bars display the distribution
of SAT and UNSAT results, timeouts, and solver crashes across the 50 ensemble
instances. The line plot shows the solver’s average runtime in seconds (note that
the right-hand vertical axis is log-scaled).

As expected, most of the Model Failure and LOO instances are SAT, indicating
that the ensembles are not completely robust with respect to their voting behavior.
For these SAT cases, the solver successfully found counterexamples (adversarial
inputs), even though these inputs were artificially crafted by the solver and are
not part of the original dataset. However, some Model Failure and LOO instances
were proven to be UNSAT, meaning that they are absolutely robust — the solver
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Table 2. Statistics on the verification problem instances as
modeled by Marabou.

Model Ver. Task #Vars | #ReLUs | #Eqs Mean Median
Model Failure 864 0 80 590 785
SimpleLinear LOO 854 0 70 562 785
Equivalence 844 0 60 655 785
Model Failure 1632 384 464 658 785
HiddenMLP LOO 1494 320 390 653 785
Equivalence 1484 320 380 670 785
Model Failure | 260448 129792 129872 20 10
SingleConv LOO 217174 108160 108230 20 10
Equivalence 217164 108160 108220 20 10
Model Failure | 130656 64896 64976 20 10
TinyCNN LOO 109014 54080 54150 20 10
Equivalence 109004 54080 54140 20 10
Model Failure 1248 192 272 562 785
CompressedM. LOO 1174 160 230 554 785
Equivalence 1164 160 220 579 785

Figure 1. Verification results for SimpleLinear ensembles.
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was able to guarantee that no adversarial inputs exist.

Interestingly, for all SingleConv and TinyCNN ensembles, the solver crashed
in every case due to the system running out of available RAM. We suspect that
the solver was unable to handle the computational overhead introduced by con-
volutional layers in these models, though this issue requires further investigation.
Similarly, we plan to investigate why the solver occasionally crashed when check-
ing the equivalence of HiddenMLP and CompressedModel ensembles (see Figures 2
and 3).

We note that a few UNSAT instances were incorrectly reported as SAT by the
solver. However, a manual review of the logs revealed that, in these cases, the
two ensembles under investigation produced identical predictions. The apparent
discrepancy arose from the encoding used for comparing Argmax outputs (see Sec-
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Figure 2. Verification results for HiddenMLP ensembles.
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Figure 3. Verification results for CompressedModel ensembles.
50 & E 103
2 40 - 1
O 4102 %
4% 30 e - - — o | o g 10 CSD
2200 o B
=10 E
0 10
SO S1 S2 S3 SO S1 S2 S3 SO S1 S2 S3
Model Failure LOO Equivalence
’ [IsaT BMUNSAT [ITimeout M Crashed ‘ ’ —e— Avg. runtime

tion 3.5), where the predicted values differed by less than the chosen precision
threshold of € = 0.001.

5. Conclusion

Robustness in neural network ensembles is paramount for safety-critical AI appli-
cations, where high reliability is required even if some individual models fail. In
this work, we introduce voting robustness as a measure of an ensemble’s tolerance
to model failures and demonstrate, through extensive experiments, that soft-voting
ensembles can maintain accurate and stable predictions despite single-model cor-
ruption. Empirically, our results showed a negligible drop in accuracy (less than
1% in the worst case) when one network was compromised, confirming that the en-
semble’s performance degrades gracefully. No single member has undue influence
on the final decision, and the consensus of the ensemble preserves overall reliability
beyond what any standalone model could achieve.

Equally important, we combined empirical analysis with formal verification
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to provide a rigorous assurance of robustness. Using an SMT-based verifier, we
encoded the entire soft-voting ensemble into a single model and demonstrated that,
in many cases, the ensemble’s prediction remains unchanged under any single-model
failure. The formal analysis not only confirmed the ensemble’s resilience observed
in testing but also identified corner-case adversarial inputs for certain ensembles,
highlighting that empirical robustness alone does not guarantee absolute security.
By uniting these approaches, our study offers both practical evidence and provable
guarantees of robustness. This comprehensive evaluation enhances confidence in
soft-voting ensembles and demonstrates the value of integrating empirical results
with formal methods to verify the reliability of AI systems.

The challenges we encountered with current verification engines (e.g., solver
memory exhaustion on convolutional networks and occasional precision-related er-
rors) point to the need for more scalable and reliable neural network verifiers.
Future verification frameworks should enhance their handling of complex architec-
tures and large ensembles — for instance, by optimizing memory usage or incorpo-
rating problem-specific heuristics — so that formal certification can keep pace with
the growing complexity of models. Furthermore, maximizing the vote margin and
limiting the influence of any single model will not only improve empirical resilience
but also facilitate formal verification.

Our study focused on single-model failure scenarios in a controlled classification
task, and the SMT-based verification struggled with very deep or convolutional
models due to scalability constraints. These limitations mark directions for future
work. Exploring multiple simultaneous model failures, applying our framework to
larger real-world datasets, and devising more efficient verification algorithms are
natural next steps to generalize our approach. Despite these challenges, our work
demonstrates a promising step toward neural network ensembles that combine high
accuracy with provable robustness.

Code availability

The trained ensemble models, their ONNX representations, and all scripts used in
the experiments are openly accessible at our Zenodo repository: https://doi.or
g/10.5281/zenodo.17286858.

References

(1] L. ANTAL, E. ABRAHAM, H. MASARA: Generalizing neural network verification to the family
of piece-wise linear activation functions, Science of Computer Programming 243 (2025),
p. 103269.

[2] R. BUNEL, I. TURKASLAN, P. H. TORR, P. Kounrl, P. K. MuDIGONDA: A Unified View of
Piecewise Linear Neural Network Verification, in: Advances in Neural Information Processing
Systems (NeurIPS), Curran Associates, Inc., 2018, pp. 4795-4804, DOI: 10.48550/arXiv.17
11.00455.

184


https://doi.org/10.5281/zenodo.17286858
https://doi.org/10.5281/zenodo.17286858
https://doi.org/10.48550/arXiv.1711.00455
https://doi.org/10.48550/arXiv.1711.00455

Annal. Math. et Inf. Soft voting robustness in neural network ensembles . ..

3]

[4]

(8]

[9]

(10]

(11]

(12]

(13]

R. EHLERS: Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks, in:
Automated Technology for Verification and Analysis (ATVA), vol. 10482, Lecture Notes in
Computer Science, Springer, 2017, pp. 269—286, DOI: 10.1007/978-3-319-68167-2_19.

S. GowaL, C. K. QIN, J. Ugesato, T. MANN, P. KOHLI: Improving Robustness using Gen-
erated Data, Advances in Neural Information Processing Systems 34 (2021), pp. 42114224,
DOI: 10.48550/arXiv.2110.09468.

D. Gross, N. JANSEN, G. A. PEREZ, S. RAALIMAKERS: Robustness Verification for Classifier
Ensembles, in: Automated Technology for Verification and Analysis, 2020, pp. 271-287, DOI:
10.1007/978-3-030-59152-6_15.

D. HENDRYCKS, K. ZHAO, S. BASART, J. STEINHARDT, D. SONG: Natural adversarial exam-
ples, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, 2021, pp. 15262-15271.

G. KA1z, C. BARRETT, D. L. DiLL, K. JULIAN, M. J. KOCHENDERFER: Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks, in: Computer Aided Verification (CAV),
vol. 10426, Lecture Notes in Computer Science, Springer, 2017, pp. 97-117, po1: 10.1007/9
78-3-319-63387-9_5.

G. Karz, C. BARRETT, D. L. DiLL, K. JuLIAN, M. J. KOCHENDERFER: The Marabou Frame-
work for Verification and Analysis of Deep Neural Networks, in: Computer Aided Verification
(CAV), Springer, 2019, pp. 443-452, DOI: 10.1007/978-3-030-25540-4_26.

Y. LECuN, L. BorTou, Y. BENGIO, P. HAFFNER: Gradient-based learning applied to docu-
ment recognition, Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.

T. Pang, K. Xu, C. Du, N. CHEN, J. ZHU: Improving adversarial robustness via promot-
ing ensemble diversity, in: International Conference on Machine Learning, PMLR, 2019,
pp. 4970-4979.

G. SinGH, T. GEHR, M. MIRMAN, M. PUSCHEL, M. VECHEV: An Abstract Domain for Cer-
tifying Neural Networks, in: Proceedings of the ACM on Programming Languages (POPL),
vol. 3, 2019, pp. 1-30, DOI: 10.1145/3290354.

F. TRAMER, N. CARLINI, W. BRENDEL, A. MADRY: On adaptive attacks to adversarial ex-
ample defenses, Advances in neural information processing systems 33 (2020), pp. 1633—
1645.

H. Wu, A. OzDEMIR, A. ZELJIC, K. JULIAN, A. IRFAN, D. GOPINATH, S. FouLADI, G. KATZ,
C. PASAREANU, C. BARRETT: Parallelization Techniques for Verifying Neural Networks, in:
Formal Methods in Computer Aided Design (FMCAD), IEEE, 2020, pp. 128-137, pot1: 10.3
4727/2020/isbn.978-3-85448-042-6_20.

185


https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.48550/arXiv.2110.09468
https://doi.org/10.1007/978-3-030-59152-6_15
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1145/3290354
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_20
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_20

Annales Mathematicae et Informaticae
61 (2025) pp. 186-201

DOI: 10.33039/ami.2025.10.004

URL: https://ami.uni-eszterhazy.hu

We are not afraid of the wolf! —
AT usage attitudes among
Hungarian informatics students

Gabor Kusper, Gyorgy Istvan Matyas, Tamas Balla

Eszterhazy Karoly Catholic University
{kusper.gabor, matyas.gyorgy.istvan,balla.tamas } Quni-eszterhazy.hu

Abstract. We report a multi-instrument study of Hungarian informatics
students’ attitudes toward generative Al in programming education. Large
Language Models (LLMs) are increasingly used to generate code, explain
concepts, and support coursework, raising questions about reliability, skill
development, and job security. Our study, We Are Not Afraid of the Wolf!,
conducted at Eszterhazy Kaéroly Catholic University, combined six surveys
across two waves with BSc students in Computer Science and Business In-
formatics. We tested three hypotheses: Hl—students are not concerned that
increasingly intelligent AI tools will hinder their job prospects; H2—better
programmers use Al more effectively for programming tasks; H3—Dbetter pro-
grammers evaluate Al-generated code more critically. Results: H1 was par-
tially supported—most view Al as a tool and express limited near-term con-
cern, though medium-term uncertainty remains. H2 received partial support:
programmer-quality proxies (course grade and self-assessment) showed weak-
to-moderate positive associations with output in a 10-minute Al-assisted
game development task. H3 was strongly supported: higher-competence stu-
dents consistently review, debug, and seek to understand Al-generated code.
Overall, students adopt a critical yet pragmatic stance: they leverage AI
to increase efficiency while maintaining verification routines. The dataset is
openly available and will be updated annually. So, there is new hope: higher
education in informatics still makes sense, as in our results more skilled pro-
grammers outperform less skilled peers even when both use powerful Al tools.
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1. Introduction

When we asked Roland, a 2nd-year Computer Science BSc student, whether he
was afraid of Al, his immediate reply was: “Not at all!” This unexpected answer
made us wonder: perhaps today’s students approach AI with far less fear than
our generation, which often views it with caution. This observation motivates our
study: how do young computer science students perceive Al in their learning and
future careers?

Roland’s response is not just an isolated remark but a starting point for a
broader inquiry. To situate this question, we must consider the wider educational
and technological context in which generative Al is emerging.

The rapid development of generative artificial intelligence (AI) has created new
opportunities and challenges in computer science education. Large Language Mod-
els (LLMs), such as ChatGPT, GitHub Copilot, or Gemini, are increasingly used
by students to generate source code, explain programming concepts, or assist in
software development projects. While these tools provide immediate support and
inspiration, they also raise questions about reliability, dependence, and their long-
term effect on programming skills and job security.

The title of this paper, We are not afraid of the wolf!, reflects this debate.
The “wolf” symbolizes the fear that Al may replace human programmers or reduce
the value of their skills. Our research investigates whether Hungarian informatics
students share this fear, or whether they instead approach Al with curiosity and
acceptance. More specifically, the study explores how students majoring in Com-
puter Science and Business Informatics at Eszterhazy Karoly Catholic University
(EKCU) use Al in programming tasks, exam preparation, and creative projects,
and how these experiences influence their self-confidence and career expectations.

The contribution of this paper is threefold. First, we describe our study design
and data-cleaning methodology across two survey waves (total n = 72 4 110, pre-
dominantly second- and third-year Computer Science BSc students). Second, we
evaluate the pre-defined hypotheses and report exploratory findings on relation-
ships among Al usage, self-efficacy, creativity, and labor market attitudes. Third,
we outline how other researchers can reuse our openly released datasets and bilin-
gual codebook to facilitate replication and secondary analysis. We do not engage in
a sustained ethical analysis here, even though the questionnaires included several
items on this topic.

This study investigates three hypotheses: H1 (The Wolf): Informatics students
are not concerned that increasingly intelligent AI solutions will make it harder for
them to find jobs on the labor market. H2 (A New Hope): Good programmers are
more effective at using Al solutions to complete programming tasks than less skilled
programmers. H3 (An Old Style): Good programmers evaluate Al-generated code
more critically.

The results of these hypotheses are presented in Sections 3 and 4. To support
reuse and replication, we also make our dataset openly available at: https://ze
nodo.org/records/17013486.
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1.1. Related work

Early work on large language models for code highlighted both their promise and
limitations for program synthesis. DeepMind’s AlphaCode showed that models
trained on public code can solve competition-level problems, yet still produce frag-
ile solutions [6]. Following this, research on GitHub Copilot examined usability,
correctness, and productivity. User studies found that developers value Copilot for
speeding up tasks but can struggle with understanding and debugging longer snip-
pets [13]. Empirical evaluations further assessed correctness across benchmarks
[7, 10], and classroom experiments reported substantial efficiency gains in specific
tasks [14].

In computer science education, a growing body of work investigates whether
LLMs help novices learn to program. Classroom studies suggest that access to
ChatGPT can support task completion and perceived understanding, though out-
comes vary with scaffolding and assessment design [14]. Systematic reviews indicate
generally positive short-term effects on performance and motivation, coupled with
concerns about reduced cognitive effort and the need for responsible integration
[1, 3]. Further studies analyze students’ attitudes toward Al-generated code and
the detectability of such submissions in coursework [2, 4]. Recent surveys syn-
thesize open challenges around reliability, assessment, and academic integrity in
AT-assisted education [11].

In the Hungarian context, several strands of research highlight the diverse
ways in which generative Al is entering education. A recent pilot study explored
retrieval-augmented Al tutoring in higher education, demonstrating feasibility and
strong learner engagement [9]. Earlier work examined the integration of Al into
electronic learning environments, emphasizing its potential to extend e-learning in-
frastructures [8]. More recently, Toldi investigated adaptive learning enhanced by
generative models [12], and Kiraly raised concerns about the erosion of algorithmic
thinking in the context of LLM use among computer science students [5]. Our
study adds to this emerging body of Hungarian research by providing empirical,
multi-instrument evidence from informatics undergraduates on Al usage patterns.

2. Methodology

This study investigates how undergraduate informatics students use and perceive
generative Al in programming-related contexts. We combine questionnaires with
short, task-based activities to address three predefined hypotheses:

o labor market attitudes (H1 — The Wolf),
o programming proficiency and effective ATl use (H2 — A New Hope), and
o critical evaluation of Al-generated code (H3 — An Old Style).

Data were collected in two survey waves during regular classes and lab sessions
at EKCU in Spring 2025. Participation was voluntary; informed consent and insti-
tutional ethics approval were obtained. Across the two waves, we obtained 72 and
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110 responses, respectively, from second- and third-year BSc students in Computer
Science and Business Informatics.
We administered six questionnaires across the two waves:

1. General AI Attitudes (Wave 1): broad, multi-block survey on AI use
attitudes, self-efficacy, perceived overreliance and reliability, ethics, and labor
market views.

2. Game Development Pre (Wave 1): prior experience, tool familiarity,
learning goals, and flow antecedents.

3. Game Development Post (Wave 1): perceived speed, reliability, error-
fixing effort, satisfaction, and creativity after a 40-minute Snake implemen-
tation with AI support.

4. Rust Pre (Wave 1): confidence and intended Al strategies before an Al-
tutored Rust learning session.

5. Rust Post (Wave 1): perceived tutor quality, learning, motivation, and
confidence after the session.

6. Consolidated H2 Questionnaire (Wave 2): a single-form instrument cap-
turing programmer quality and task performance in a 10-minute minimalist
Snake game implementation. The full questionnaire appears in Appendix A.

Unless noted otherwise, items used 5-point Likert scales; several binary items
(Yes/No) and free-text questions were also included. In task settings, students
were allowed to use AI (e.g., ChatGPT or Copilot) to the extent specified in the
activity instructions.

The Wave 1 game task required implementing a minimalist Snake game within
40 minutes (core mechanics mandatory; optional features such as score counters
allowed). The Wave 2 task used an intentionally 10-minute time box to elicit
rapid Al-assisted development: students implemented as many minimal functions
as possible and reported them both as a checklist and as a single total. The Rust
activity followed a pre—post design with an Al tutor: the pre-questionnaire captured
prior confidence and plans for Al use; the post-questionnaire captured perceived
learning and tutor experience.

3. Results of the first wave

In this paper we present the results of two data collection waves. This chapter
presents the result of the first one.

3.1. Data collection and cleaning

Survey-based analyses are sensitive to careless responding and incomplete records.
Since our goal was to capture motivated respondents, we implemented a two-stage
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cleaning strategy applied to all questionnaires (actual removals occurred in the
General AT Attitudes survey and in Rust Pre):

o Motivation filter (missingness): rows were retained only if at least 50%
of the numerically convertible items (grades, Likert, averages, binary answers
(e.g., Yes/No)) were answered. Free-text fields did not count toward this
ratio.

o Uniformity filter (entropy): we computed the effective number of unique
responses as exp(H), where H is the Shannon entropy (natural logarithm)
of the respondent’s numeric answer distribution. Binary items were coded
as 1/0; free-text and other non-numeric values were ignored for these cal-
culations. If exp(H) < 1.3, the row was excluded, indicating near-constant
responding (e.g., almost all 4s with occasional deviations).

This two-step filtering left 36 valid responses out of 71 raw entries in the
General Al Attitudes survey. For the other questionnaires, the same checks were
run; only Rust Pre required exclusions due to uniformity, while the game-related
and Rust Post datasets remained essentially unaffected.

The rationale behind this procedure was to exclude respondents who provided
low-effort answers, either by skipping large parts of the survey or by mechanically
repeating the same response option. By focusing on motivated participants, the
analysis better reflects the genuine attitudes and behaviors of students toward Al
usage.

Table 1. Data cleaning outcomes per questionnaire.

Questionnaire Raw Removed Final Primary reason
General AT Attitudes 71 35 36 Missing data
Game Development Pre 38 0 38 -
Game Development Post 37 0 37 -
Rust Pre 34 7 27 Uniformity
Rust Post 28 0 28 -

3.2. Analysis plan and validity

For scale-level reliability we computed Cronbach’s a on Likert-type items (integer
responses in [1,5]). To handle missingness consistently across questionnaires, we
applied a simple inclusion rule for reliability: keep items with > 80% non-missing
responses and rows with > 80% non-missing across the selected items, then com-
pute a on complete cases.!

1This avoids unstable estimates due to sparse item coverage; exploratory factor analysis is
outside this paper’s scope.
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Table 2. Reliability summary per questionnaire (Likert items only;
80% item/row rule).

Questionnaire Final n Items used Rows used a
General Al Attitudes 36 10 36 0.605
Game Development Pre 38 7 38 0.142
Game Development Post 37 11 37 0.678
Rust Pre 27 8 27 0.765
Rust Post 28 9 28 0.696

The Rust questionnaires exhibit satisfactory internal consistency (a ~ 0.70-
0.77). The Game Development Post questionnaire shows acceptable reliability
for exploratory analysis (« = 0.68). The General AI Attitudes questionnaire’s
reduced item count under the 80% rule still yields a moderate « (= 0.61), indicating
heterogeneous but usable attitudinal indicators. The Game Development Pre block
was intentionally diverse (experience, tools, motivation), which explains the low «;
we therefore treat it as a descriptive questionnaire rather than a single latent scale.

We report descriptive statistics (means, SDs, distributions) for all main vari-
ables. For predefined hypotheses we use Pearson correlation on Likert scores (com-
mon in education research); as a robustness check we replicate key correlations with
Spearman’s p. For comparisons across Al-usage strata, we use two-sample tests:
Welch ¢ or Mann—Whitney, depending on normality /scale. All inferential analyses
are computed on the cleaned datasets (Table 1).

Internal validity is limited by self-report and the correlational nature of several
analyses. External validity is constrained by a single-institution Hungarian sample.
Measurement validity is affected by short scales in some blocks and evolving Al
tools. We mitigate these risks via transparent cleaning, a reproducible pipeline,
reliability reporting, and robustness checks.

3.3. Results

All analyses use the cleaned General AT Attitudes sample (n = 36) and quality-
checked task datasets. Before presenting detailed analysis for each hypothesis, we
provide a brief overview.

o« H1 (The Wolf): Partially supported. Students mostly view Al as a tool
rather than a competitor, though some express medium-term labor market
concerns.

« H2 (A New Hope): Not decided in the first wave. In the first wave, the
planned pairing between programming quality and Al effectiveness could not
be tested due to missing cross-questionnaire linkage.

o H3 (An Old Style): Supported. Higher-competence students critically eval-
uate Al-generated code through review, debugging, and understanding.
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3.4. H1: The Wolf

The first hypothesis states: HI (The Wolf): Informatics students are not concerned
that increasingly intelligent Al solutions will make it harder for them to find jobs
on the labor market.

H1 addresses labor market concerns: whether students fear that Al will reduce
programming jobs, whether they see Al as a tool or a competitor, and whether
they report direct experiences of job-search difficulties or dismissals.

On the item “I see AI more as a tool than a competitor”, students leaned
strongly toward the tool perspective (z = 3.58, SD = 0.63, n = 26). On the
5-point scale, 7.7% disagreed (1-2), 26.9% were neutral (3), and 65.4% agreed
(4-5). Expectations about AI “taking over” programming jobs varied by timeframe:

e 1-2 years: 7 = 2.56, SD = 0.60, n = 18; 1-2: 50.0%, 3: 44.4%, 4-5:
5.6%.

e 34 years: 7 = 3.00, SD = 0.83, n = 23; 1-2: 30.4%, 3: 30.4%, 4-5:

39.1%.

8l
I

e 5—6 years:
23.1%.

2.85, SD = 0.77, n = 26; 1-2: 38.5%, 3: 38.5%, 4-5:

Direct labor market experiences were rare: 15.2% reported knowing a program-
mer who could not find employment (n = 33), and only 2.9% reported knowing
someone dismissed in the last 1-2 years (n = 34).

The frequency of Al use (e.g., asking an LLM to explain code) showed only
weak, non-significant associations with attitudes: with the tool vs. competitor
item r = 0.09 (n = 24), and with the 1-2 year takeover probability item r = —0.12
(n=18).

After entropy- and missingness-based filtering, the data indicate that students
do not generally fear near-term job losses due to Al. Most frame Al as a tool, see a
1-2 year “takeover” as unlikely, and hold mixed expectations for 3-6 years. Direct
negative experiences exist but remain in the minority. Overall, H1 is partially
supported: students do not exhibit widespread short-term fears, yet medium-term
uncertainty about AI’s labor market impact persists.

3.5. H2: A New Hope

The second hypothesis states: H2 (A New Hope): Good programmers are more
effective at using Al solutions to complete programming tasks than less skilled pro-
grammers.

We used two indicators of programmer quality: the theoretical programming
exam grade (High-level Programming 2, lecture) and a self-assessment item on
programming competence. For Al effectiveness, four questionnaires were designed
(Game Development Pre/Post, Rust Pre/Post) to capture speed, reliability, bug-
fixing effort, satisfaction, and tutor quality.
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Our intended primary test was to pair each student’s quality indicators with
their task-level outcomes. However, the questionnaires were not linked by a com-
mon identifier: anonymity was prioritized, which prevented direct individual-level
associations. As a result, only indirect proxies within single surveys could be
analyzed (e.g., tool-vs-competitor framing, debugging practices, or post-task confi-
dence). These showed weak and inconsistent relationships, making them insufficient
for a decisive H2 test.

Rather than a simple limitation, this outcome highlights an important method-
ological lesson: anonymity safeguards must be balanced with the ability to test
hypotheses across instruments. To address this, we designed a consolidated ques-
tionnaire; see Appendix A. This introduces an optional, privacy-preserving call
sign. We used this questionnaire in the second wave; see Section 4.

3.6. H3: An Old Style

The third hypothesis states: H3 (An Old Style): Good programmers evaluate Al-
generated code more critically.

H3 examines whether good programmers evaluate Al-generated code more crit-
ically.

Table 3 summarizes post-generation routines. A majority review Al code before
running it (z = 3.45, 55.3% select 4-5). Many report fizing bugs themselves (z =
3.15), and an even larger share try to understand the generated code (z = 3.65,
70.6% select 4-5). Consulting documentation is less frequent on average (Z = 2.81),
and restyling to personal conventions sits in the mid-range (Z = 3.35). Systematic
cross-checking across multiple AI tools is comparatively less common (Z = 2.86).
Students report encountering errors in Al-generated code with moderate frequency
(z = 3.37), underlining the need for critical verification steps.

Table 3. Descriptive summary for H3 items (cleaned dataset). For
5-point items, percentages refer to response distribution within each

item.

Ttem n Mean SD 12% 3% 4-5%
Review Al code before running 38 3.45 0.69 10.5 34.2 55.3
I fix bugs myself after Al generation 52 3.15  0.75 21.2 423 36.5
Try to understand the generated code 17 3.65 0.61 59 235 70.6
Look up documentation to understand 43 2.81 0.73 372 44.2 18.6
the code

Restyle the generated code to my 46 3.35 0.71 13.0 39.1 47.8
conventions

Compare answers from multiple Al tools 42 2.86 0.75 35.7 429 21.4
How often do you find errors in 68 3.37  0.90 13.2 426 44.1

Al-generated code?

Overall, students show a clear tendency toward classical quality assurance be-
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haviors when working with Al-produced code: they review and actively try to
understand it, often taking responsibility for bug fixing and, to a lesser extent,
restyling. Documentation lookup and cross-tool triangulation are less common,
which — together with the reported error frequency — suggests room for scaffold-
ing (e.g., checklists or required code reviews) to ensure robust verification of Al
outputs.

4. Results of the second wave: Is there a new hope?

This section presents the results of the second survey wave. It specifically addresses
H2 (A New Hope) which was left undecided in the first wave, by using a single,
consolidated questionnaire that enables direct pairing of programmer-quality in-
dicators and task outcomes. The survey was completed by 110 participants, all
2nd- and 3rd-year Computer Science BSc students. The full questionnaire
appears in Appendix A.

4.1. Data collection and cleaning

The task was a time-boxed (10 minutes) Snake game implementation with Al
support. We focused on two constructs: (i) programmer quality (Al, course
grade; A2, self-assessed competence, both on 1-5 scales) and (ii) task perfor-
mance recorded in Section C. Specifically, C3 asked respondents to tick which
game features worked at the end of the task — via a checklist that included the core
mechanic (growth on dot; game over on wall/tail) and optional extras (e.g., score,
accelerating snake, pick-up lives, obstacles, level switching, different dot types,
sound/music, hall of fame), plus three other slots. We parsed this checklist into
a numeric count, denoted C8 count. By contrast, C4 requested a single total,
the number of features implemented within ten minutes. Thus, C8 count derives
from the marked features, while C4 is the participant’s self-reported total. The
full wording of C3—C4 appears in Appendix A.

The questionnaire also contained two manual timestamps (B5 and C1), but
they proved unusable. The Snake programming task was introduced in the header
of Section C; B5 was the last item before Section C, and C1 the first item within
it. Both B5 and C1 asked participants to enter the current time in hh:mm format.
We intended to compute time-on-task as C1—Bb5; however, in almost all responses
the difference is only one minute, indicating that most participants read the task
and immediately filled out C1 before beginning the work. Consequently, we did
not use B5/C1 for cleaning.

Instead, we relied on C4, which records the self-reported number of functions
implemented for the Snake game within 10 minutes using the chosen AI tool. To
balance inclusiveness with engagement control, we defined two analysis cohorts
based on C4:

e Permissive cohort: rows with non-numeric C4 were removed; C4 = 0 was
dropped as non-engagement; all cases with C4 > 1 were retained.
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o Strict cohort (“engagement filter”): same preprocessing but only cases
with C4 > 3 were retained, reflecting the expectation that 2nd—3rd year BSc
students using an LLM can implement at least three minimal functions in
ten minutes.

4.2. Results on H2

We will see the following result in this chapter. H2 (A New Hope): Partially
supported. Higher programmer-quality proxies show weak to weak-to-moderate
positive associations with task performance in a 10-minute Al-assisted setting.

Analysis plan: We report Pearson correlations with Spearman’s p as a robust-
ness check for ordinal/non-normal data. To bound the impact of the engagement
filter, all primary associations are presented on both cohorts. Our focal question is
whether Al and A2 are positively associated with C8_count. All analyses use the
consolidated second wave questionnaire and the cleaning rules above.

Analysis: Across the Permissive cohort (C4 > 1; N = 104 valid pairs), Al
showed a weak, positive trend with C3__count (Pearson r = 0.19, p = 0.052; Spear-
man p = 0.17, p = 0.081), while A2 exhibited a weak-to-moderate, positive asso-
ciation (Pearson r = 0.228, p = 0.020; Spearman p = 0.274, p = 0.0049). In the
Strict cohort (C4>3; N = 86), the A1-C3__count trend persisted with similar
magnitude (Pearson r = 0.19, p = 0.078; Spearman p = 0.18, p = 0.099), and A2-
C3__count remained positive (Pearson r = 0.170, p = 0.118; Spearman p = 0.212,
p = 0.050). In short, stronger programmers (by grade and self-assessment) tended
to list more implemented functions in the short Al-assisted task; effects were small
and more clearly detectable for self-assessment (A2), especially in the permissive
cohort.

Table 4. Summary of H2-related associations.

Pair Cohort N r/p p Note

Al <> C3_count Permissive (C4>1) 104 r=0.19/p=0.17 p=0.052 /0.081 Weak, positive trend

Al +» C3_count Strict (C4>3) 86 r=019/p=018 p=0.078 /0.099 Similar magnitude

A2 +» C3 count Permissive (C4>1) 104 r=0.228 / p=0.274 p=0.020 / 0.0049 Weak-to-moderate, positive
A2 +» C3_count Strict (C4>3) 8 r=0.170 / p=0.212 p=0.118 / 0.050 Borderline p

4.3. Interpretation

Taken together, these results offer partial support for H2. In a short, Al-assisted
programming task students with higher programmer-quality proxies (A1, A2) tend
to achieve more implemented functions. The pattern is clearest for the self-assess-
ment proxy (A2), while the grade proxy (A1) shows a consistent but weaker trend
hovering near conventional significance thresholds. A reasonable reading is that
the two proxies capture partly different aspects of “being a good programmer”:
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the course grade reflects broader curricular achievement over time, whereas self-
assessment may track task-immediate confidence and strategy use that matter when
orchestrating Al assistance under time pressure.

Effect sizes are modest, which is unsurprising for at least three reasons. First,
the task was intentionally brief (10 minutes), compressing performance variance.
Second, our outcome measures trade precision for feasibility: C8_count aggregates
a checklist of heterogeneous features, and C4 is a single self-reported total. These
two can diverge under time pressure, introducing measurement noise that typically
attenuates observable associations. Third, differences in how students prompt,
decompose, and verify AI outputs likely add further variance that our minimal
instrument does not fully capture. Against this backdrop, the fact that the A2
signal remains detectable, especially in the permissive cohort, suggests a stable
underlying tendency rather than a spurious fluctuation.

Reporting results on both a permissive and a strict cohort helps bound sensitiv-
ity to low-engagement cases. As expected, the strict cohort yields slightly higher
average performance and reduced dispersion, yet the direction and relative strength
of the A1/A2 associations persist. This stability implies that the observed tenden-
cies are not driven solely by respondents with near-zero engagement. At the same
time, we avoid over-interpreting the magnitude of the effects: the present design
was optimized for short, classroom-feasible data collection rather than fine-grained
performance measurement.

From a pedagogical perspective, the findings support a pragmatic view of Al in
programming education. More skilled students appear to extract somewhat greater
task-level benefits from the same class of Al tools, even in a tightly time-boxed set-
ting. For instructors, this points to two complementary actions: (i) continue inte-
grating Al workflows that reward strong problem-solving and code comprehension
skills; and (ii) provide scaffolds (e.g., concise review checklists, debugging prompts,
minimal test-driven steps) that help less skilled students translate AT outputs into
working features more reliably.

In sum, within the constraints of a micro-task and minimalist measurement,
we find that programmer-quality proxies relate positively — albeit modestly — to
short-horizon Al-assisted output. This aligns with the broader narrative of the
paper: Al tools can amplify productivity, but classical strengths in programming
still matter.

4.4. Limitations and lessons

The principal instrumentation limitation was timing: because the time fields were
positioned before task completion, we could not validate time-on-task. Future
iterations should either place time entry at the end of the task block or, preferably,
instrument an automatic timer. Likewise, manual enumeration of functions can
diverge across C3 and C4 under time pressure; parsing and consistency flags help
but do not eliminate noise. The consolidated instrument, available in Appendix A,
will be deployed annually, and the datasets have been integrated into the We are
not afraid of the wolf! open data release on Zenodo, enabling replication and
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longitudinal analyses.

5. Open data release

Following ethics approval, we publish all datasets as open-access to support reuse,
replication, and secondary analysis. Open data improves transparency, enables
cumulative knowledge, and creates opportunities for new research beyond our own
hypotheses (e.g., items on Al ethics, not analyzed here).

All materials are hosted on Zenodo, ensuring long-term preservation through
OpenAIRE and CERN. The project landing page is at https://zenodo.org/r
ecords/17013486. FEach release includes cleaned CSV files, metadata, and a
bilingual (Hungarian—English) codebook. Updates will be issued annually with
versioned DOIs, enabling both single-year and longitudinal analyses.

All data are anonymized and distributed under a CC BY 4.0 license. Users are
asked to cite both the dataset DOI and this article.

Wave-specific releases:

First wave dataset: https://zenodo.org/records/17013486
Second wave dataset: https://zenodo.org/records/17218128

6. Conclusion and future work

This study offers a multi-instrument snapshot of how Hungarian informatics un-
dergraduates perceive and use generative Al in programming. We find that stu-
dents typically frame Al as a tool rather than a competitor and, consistent with
classical software-engineering practice, higher-competence students tend to review,
understand, and debug Al-generated code (supporting H3). While short-term la-
bor market fears are limited, medium-term uncertainty remains (partial support
for H1). A key limitation was our inability to decisively test H2 due to missing
cross-form linkage; this was an anonymity-driven design error that we have reme-
died by introducing an optional, privacy-preserving call sign and a consolidated
instrument, see Appendix A.

Beyond H1-H3, we formulated Observation 1 (Prompt Productivity): is-
suing more prompts to the Al is associated with producing more working features
within a tight, 10-minute time box. We observed positive associations between the
number of prompts and task output, suggesting that rapid, iterative interaction
can be beneficial in short-horizon, Al-assisted coding.

We also note Observation 2 (Better Programmers Use Better Tools)
emerging from group-level patterns: more skilled programmers may gravitate to-
ward, or extract more value from higher-yield Al tools. While suggestive, this
requires controlled studies to disentangle self-selection from tool effects.

We plan to evaluate these observations in future work. We also plan to repeat
the surveys in the upcoming academic years to build a larger dataset.
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A. Questionnaire on attitudes toward AI use
in programming

This single questionnaire captures (A) baseline programmer quality, (B) general
AT use attitudes in programming, (C) task-specific outcomes after a short coding
exercise, (D) post-generation quality assurance attitudes, (E) attitudes toward Al
assistance in programming, and (F) vibe coding experience.

Administration and ethics. The survey is part of a research study conducted
at the EKCU Faculty of Informatics. Participation is entirely voluntary and anony-
mous. An ethics approval was granted by the EKCU Scientific Committee. Note:
This form is not optimized for mobile. Please fill it on a laptop/desktop with a
development environment available.

Please choose a private call sign you can remember (e.g., AI-User11). Use the
same call sign whenever you fill in any similar form. Do not include personal data
(name, nickname, birth date/age).

Unless stated otherwise, items use a 5-point Likert scale: 1 = Strongly disagree,
2 = Disagree, 8 = Neutral, 4/ = Agree, 5 = Strongly agree.

Administrative header

ID1. Call sign (e.g., AI-Userll):

A. Baseline programmer quality.

A1l. High-level Programming 2 (lecture) grade: 1 (Fail) 2 3 4 5 (Excel-
lent) (select one)

A2. By my own assessment, I am a good programmer. (1-5)

B. General AI use attitudes in programming.

B1. I use large language models (e.g., ChatGPT/Copilot) to generate code. (1-5)
B2. Using AI helps me complete programming tasks faster. (1-5)

B3. With AI I finish more tasks within a fived time. (1-5)

B4. AT use reduces the effort I spend on routine coding. (1-5)

B5. Please enter the current time (HH:MM), e.g., 11:23:
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C. Task-specific outcomes (to fill after the following short task). Short
task (10 minutes, measure time precisely). Develop a SNAKE game with Al
assistance.

Core function: The snake grows when it eats a dot; the game ends if it hits a
wall or its own tail.

Possible extra features: score; accelerating snake; pick-up lives; obstacles; level
switching; different dot types (e.g., speed-up/slow-down/bonus points); sound ef-
fects or background music; hall of fame; or any other cool feature.

C1. Please enter the current time (HH:MM), e.g., 11:23:
C2. Which Al solution did you use for developing the game?
C3. Which features work (check all that apply)?

— O Core function (growth on dot; game over on wall/tail)
— O Score

— O Accelerating snake

— [ Pick-up lives

— O Obstacles

— O Level switching

— [ Different dot types (e.g., speed-up, slow-down, bonus points)
— O Sound effects or background music

O Hall of fame

— [ Other cool feature #1.

— [ Other cool feature #2.

— O Other cool feature #3.

C4. Total number of features implemented in 10 minutes (select one): 0, 1, 2, 3,
4,5,6,7,8,09,10, 11, 12

C5. While developing the game, I fized bugs myself. (1-5)

C6. Total number of prompts I issued to the Al:

D. Post-generation quality assurance attitudes.

D1. [ review Al-generated code before running it. (1-5)

D2. [ try to understand Al-generated code, not just execute it. (1-5)

D3. I fix bugs in Al-generated code myself. (1-5)

D4. I create (or generate) unit tests for Al-generated code (either before or after
generation). (1-5)
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E. Attitudes toward Al assistance in programming.

E1l. I see AI more as a tool than a competitor. (1-5)

E2. After using Al I feel more confident that my solution is correct and complete.
(1-5)

F. Vibe coding experience.

F1. I enjoyed working with AI support during the Snake development task. (1-5)

F2. I experienced “vibe coding” (a creative flow state with AI) while working on
the task. (1-5)
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1. Introduction

Sports betting, particularly football prediction, has become a global-scale phe-
nomenon with both economic and social implications. The global betting market
exceeded USD 240 billion in 2023 and is projected to reach nearly USD 350 bil-
lion by 2030 [7]. In the United States alone, the legal sector generated a record
USD 13.7 billion in 2024 [6], while sportsbooks maintain stable profit margins of
9-10% [19].

Alongside its financial significance, sports betting also carries social risks, in-
cluding problem gambling and addiction, particularly among young men [1, 13, 18].
These contrasting aspects — strong financial incentives versus societal challenges —
make academic investigation into betting efficiency both timely and relevant. This
paper addresses a central question: can probabilistic forecasting combined with
structured betting strategies achieve sustainable long-term profit?

To explore this, we evaluate six prediction models: Poisson regression [14], Elo
ratings [5, 10], Monte Carlo simulation [15, 16], logistic regression [9], and two
novel heuristics developed for this study, the Veto and Balance models. These are
tested with five betting strategies: flat betting, Martingale, Fibonacci progression,
value betting, and the Kelly criterion [12].

The contribution of this work lies in identifying model-strategy combinations
capable of outperforming bookmaker odds, while highlighting the roles of prob-
ability calibration, risk management, and market dynamics. Special emphasis is
placed on the interpretability and performance of the proposed Veto and Balance
models.

2. Related work

Research on sports betting has focused mainly on two areas: (1) probabilistic
modeling of match outcomes and (2) betting market efficiency.

Early approaches were Poisson-based, starting with Maher [14] and later refine-
ments such as Dixon—Coles [4] and Karlis-Ntzoufras [11]. The Elo rating system,
originally for chess [5], has been adapted for football [10], while logistic regres-
sion models use team-level features to estimate outcome probabilities [8]. Monte
Carlo simulations have been applied to account for uncertainty in match and season
forecasts [16]. More recently, machine learning techniques have also been tested,
though often limited by data sparsity and overfitting risks [2].

Market efficiency studies examined biases such as the favorite-longshot ef-
fect [17], expected value modeling [3], and the use of staking systems like the Kelly
criterion [12]. However, relatively few works combined probabilistic modeling with
automated betting simulations using real historical odds, and even fewer assessed
actual profitability under multiple strategies.

To the best of our knowledge, no prior study has proposed the Veto or Balance
models. These heuristic approaches aim to translate team form and balance into full
1X2 probability distributions with high interpretability and low computational cost.
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Our work builds on the above foundations while specifically addressing whether
custom-built models can achieve sustainable profit in realistic betting conditions.

3. Prediction models

We evaluate six probabilistic models for football prediction. Four are standard in
the literature:

e Poisson: assumes independent Poisson goal distributions, with expected
goals aggregated into 1X2 probabilities [14].

e« Monte Carlo: simulates thousands of matches using Poisson sampling, de-
riving outcome frequencies [16].

e Elo: updates league-based ratings after each match and converts rating dif-
ferences to probabilities using logistic functions [10].

o Logistic Regression: multinomial model trained on team-level features
(e.g., shots, possession) with softmax normalization [8].

In addition, two novel form-based heuristics were developed for this study: the
Veto and Balance models. Unlike the statistical or machine learning approaches
above, these focus on recent team form and opponent strength to produce inter-
pretable and computationally efficient forecasts.

Model Design and Naming Logic

e The Veto model is based on an asymmetric logic: the chance of a team
winning is diminished by the strength of the opponent — hence, the opponent
may “veto” the win.

e The Balance model represents a symmetric design: it averages a team’s
performance with the weakness of the opposing team in equal proportion.

Definition 3.1 (Veto Model). Let n denote the number of recent matches con-
sidered for each team, and let decay_factor € (0,1] be the exponential decay
parameter. Define:

w; = decay_factor™ ' (weight assigned to the i-th most recent match)

For a team T, define the exponentially weighted outcome probabilities:

Pr(win) = ot B

Z?:l wj - ]Idraw(i)
D Wi ,

Pp(draw) =

204



Annal. Math. et Inf. Evaluating profitability in sports betting using probabilistic models . . .

:'L:l wj - Doss (Z)

Pr(loss) = 2 ST,

where Iesui4(7) is the indicator function for result type.
Let H and A denote the home and away teams respectively. The raw match
outcome probabilities are computed as:

P(1) = Py(win) - (1 — P4(win))

P(2) = Pa(win) - (1 — Py (win))

_ Pg(draw) - ng + Pa(draw) - na
N ng +na

P(X)

These values are then normalized:

oy P(r)
Pi(r) = P T PX) PO 100 for r € {1,X,2}

Definition 3.2 (Balance Model). This model computes probabilities using sym-
metric averaging. For the same notation as above:

P(1) = (PH(Win) + (; - PA(win))) . 100

P(2) _ (PA(WiIl) + (;— PH(Win))) 100

P(X) = (PH(draW) ;—PA(draW)) 100

Final normalization is applied:

P'(r) = P+ PX) 1 P@) -100 for r € {1, X, 2}

Key Distinction Between the Two Models

e The Veto model is asymmetric: it suppresses a team’s win probability if
the opponent is also strong.

e The Balance model is symmetric: it applies equal weight to both teams’
performance metrics in a balanced averaging approach.

Author’s note These models were independently developed and offer novel heuris-
tic approaches based on form-weighted probabilities. No similar implementation
was found in existing literature.
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4. Betting strategies
Five common strategies were tested for managing stake allocation:

« Flat Betting: Fixed stake per bet, regardless of confidence or odds. Serves
as a baseline.

e Martingale: Doubles the stake after each loss to recover losses. High
bankruptcy risk due to exponential growth.

e Fibonacci: Stake increases by the Fibonacci sequence after each loss. Slower
than Martingale but still risky.

e Value Betting: Bet only when:
P -odds>1

indicating positive expected value. Uses a fixed stake.
e Kelly criterion: Stake fraction:

b-P—(1-P
f:—b( ), where b = odds — 1

Maximizes long-term growth while avoiding overbetting.

Each strategy was applied consistently per model. Key metrics included total
profit, bankroll evolution, and bankruptcy rate.

5. Simulation setup

A custom Python-based framework was developed to evaluate the combined perfor-
mance of prediction models and betting strategies. It integrates a GUI, database
storage, and API-Football data access, enabling interactive match selection, model
execution, and result visualization.

Data. The dataset contained 539 unique matches played between March and
May 2025. Teams were required to have sufficient historical statistics and valid
1X2 odds; matches with incomplete data were excluded.

Simulation Design. We generated 10,000 synthetic match groups (25 matches
each), yielding 300,000 model-strategy runs (6 x 5 x 10,000) across six prediction
models (Veto, Balance, Monte Carlo, Poisson, Logistic Regression, Elo) and five
betting strategies (Flat, Martingale, Fibonacci, Value, Kelly criterion). Each run
started with a bankroll of 10,000 units; fixed-stake betting used 1,000 units, while
Kelly applied dynamic stake sizing. Value bets were placed only when P-odds > 1.
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Odds and Output. For each outcome, the best available bookmaker odds were
used to approximate optimal odds shopping, providing an upper bound on theo-
retical returns. Simulation results included bankroll trajectories and detailed ta-
bles. Core components were unit-tested, and the full code is available at: https:
//github.com/JocmanHUN/Szakdolgozat-Pal_Jozsef_Gergo_NZ5MI3

Note. Optimal odds shopping is idealized and likely overestimates achievable
ROI; in practice, account limits, taxes, and latency reduce effective profitability.

6. Results and discussion

The extensive simulation experiments presented insightful results on the intricate
relationship between probabilistic model accuracy and betting strategy efficiency.
While general profitability across all strategies remained challenging, significant
variations emerged depending on specific model-strategy combinations. The key
findings are detailed below.

Overall Predictive Performance. Table 1 presents a statistical summary of
each model’s performance across 539 unique matches. While the Elo model achieved
the highest accuracy, its lower average odds limited profitability. The Veto model
produced competitive accuracy with higher win-odds, supporting its success un-
der the Kelly criterion. In contrast, the Logistic Regression model, though less
accurate, frequently selected high-return opportunities, contributing to its volatile
performance.

Table 1. General model performance statistics based on 539 unique
matches. The last two columns report the mean odds conditional
on wins and losses, respectively.

Model Avg. Odds Correct Pred. Accuracy (%) Win. Odds Loss Odds
Logistic Regression 2.91 218 40.45 2.34 3.29
Veto 2.80 225 41.74 2.34 3.12
Balance 2.58 238 44.16 2.13 2.94
Monte Carlo 2.48 254 47.13 2.12 2.80
Poisson 2.45 248 46.01 2.08 2.77
Elo 2.25 262 48.61 1.97 2.51

Detailed Analysis of Model Performances. Figure 1 illustrates all 10,000
bankroll trajectories produced by the Balance model under the Value Betting strat-
egy. Despite the theoretical potential of the Balance model, the performance proved
consistently weak across the simulations. Although some individual bankrolls
showed moderate growth, the aggregate average was negative, demonstrating poor
value identification. A plausible explanation for this behavior is the model’s inabil-
ity to consistently select truly value-rich matches, leading to a frequent selection
of marginal or negative expected-value bets.
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Figure 1. Detailed bankroll curves for the Balance model using
Value Betting. All 10,000 simulations are shown; the black curve is
the average bankroll.
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Figure 2. Detailed bankroll trajectories for the Veto model under
the Kelly criterion. All 10,000 simulations are shown; the black
curve is the average bankroll.
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Contrastingly, the Veto model delivered remarkable results when combined with
the Kelly criterion (Figure 2), which plots all 10,000 simulated bankroll paths along-
side their average (black curve). This pairing stood out as the only consistently
profitable combination across extensive testing. The exceptional outcome can be
attributed to the model’s strong probability calibration, particularly within odds
ranges most advantageous to Kelly-style proportional staking. Importantly, no
bankruptcies occurred over 10,000 simulations, indicating both a stable risk profile
and robust profitability potential. The success of the Veto model underscores the
strength of heuristic-based approaches that incorporate recent team form and op-
ponent quality into their calculations. Additionally, an important practical advan-
tage of the Veto model is its extremely low computational resource requirements,
allowing it to operate efficiently even on modest hardware.

ROI Analysis by Odds Range. To further investigate the Veto model’s success
under the Kelly strategy, Table 2 breaks down the return on investment (ROI) by
odds intervals. While the hit rate naturally declines with increasing odds, the high-
est ROI (4+30.43%) was achieved in the 2.21-3.50 range — confirming that the model
is particularly well-calibrated for identifying underpriced moderate-to-high odds.
Surprisingly, very low odds (1.01-1.30) yielded perfect accuracy but only moderate
ROI, while high odds consistently outperformed the others in profitability.

Table 2. ROI of the Veto model under Kelly strategy by odds

range. Match Count counts only placed wagers (rounds where the

Kelly fraction was zero are excluded). Bins were chosen to align

with the model’s preferred odds corridor; alternative nearby binning
yielded the same qualitative result.

Odds Range Hit Rate | Match Count ROI
Very Low (1.01-1.30) 100.00% 1,725 | +23.74%
Low (1.31-1.60) 71.77% 4,602 -4.81%
Medium (1.61-2.20) 38.13% 33,641 | -24.54%
High (2.21-3.50) 38.40% 76,017 | +30.43%
Very High (3.51-10.00) 22.72% 73,144 -0.90%

The Logistic Regression model showed distinct characteristics under the Value
Betting strategy, depicted in Figure 3. Its performance was marked by high volatil-
ity, frequent bankroll swings, and a considerable bankruptcy rate. All 10,000 simu-
lated bankroll paths are plotted, with the black curve marking the mean trajectory.
Nevertheless, the Logistic Regression was consistently able to detect matches where
odds implied higher-than-actual risks, capitalizing on high-odds betting opportuni-
ties. The volatility is likely due to occasional overestimation of event probabilities,
suggesting that while the model excels at identifying valuable bets, improved cali-
bration or additional filtering mechanisms could stabilize its performance.

An overarching comparison of all models under the Kelly criterion (Figure 4)
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Figure 3. Detailed bankroll trajectories for the Logistic Regression
model under Value Betting. All 10,000 simulations are shown; the
black curve is the average bankroll.
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Figure 4. Comparative average bankroll performance of all models
under the Kelly Criterion strategy.
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plots the mean bankroll trajectory for each model; the Veto curve therefore coin-
cides with the average line already shown in Figure 2, whereas the other curves
depict the corresponding averages for their models. Unlike other models, which
showed declining bankroll trends, the Veto model demonstrated a consistent up-
ward trajectory, highlighting its superior long-term stability. The Elo model, de-
spite having high prediction accuracy, suffered minor losses due to overly conserva-
tive odds selection, limiting its profitability potential. Models like Monte Carlo and
Poisson showed moderate losses, indicating reasonable calibration but insufficient
precision for consistently profitable outcomes.

It is essential to consider several practical limitations inherent to this research.
The study’s timeframe (March—May) was strategically chosen due to the density of
competitive matches, yet following this period, notably fewer matches are available
during the summer months, potentially altering model performance due to seasonal
effects. Furthermore, many matches had to be excluded entirely due to missing or
incomplete statistical data, limiting the total predictive coverage achievable in real-
world scenarios.

Another critical assumption within the simulation was the use of optimal odds
shopping, wherein the best available odds were always selected. However, in a prac-
tical environment, odds shopping is significantly more complex, as bettors must
continuously monitor multiple bookmakers, navigate various platforms, and han-
dle differing national regulations and taxes, all of which may substantially reduce
realized profitability. Moreover, executing a successful betting strategy — especially
strategies relying on dynamically adjusting stakes such as Kelly — requires constant
attention and rapid decision-making. This implies a significant time and logisti-
cal commitment from bettors, which might not be feasible for every participant in
real-world settings.

Key Insights on Strategy Efficiency. The simulations reaffirmed the critical
importance of choosing betting strategies compatible with the predictive model’s
inherent risk profile and calibration characteristics. Aggressive strategies like Mar-
tingale and Fibonacci exhibited high bankruptcy rates across all models, indicating
their unsuitability for sustainable long-term use. Conversely, the Kelly criterion and
Value Betting strategies demonstrated clear potential, but only when aligned with
appropriately calibrated models. Specifically, the Veto model’s compatibility with
Kelly criterion betting points towards a best-practice combination for maximiz-
ing returns while minimizing financial risk, albeit with the previously mentioned
practical limitations considered.

7. Conclusion

This research sought to rigorously evaluate the profitability potential of combining
probabilistic sports betting models with well-known betting strategies. Through
extensive computational experiments involving 10,000 simulations per strategy-
model combination, several critical conclusions emerged:
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Predictive Accuracy and Odds Calibration. All models demonstrated sta-
tistically significant predictive skill compared to random guessing (33.33%). Elo
ratings produced the highest accuracy (48.61%), closely followed by Monte Carlo,
Poisson, and Balance models. Despite slightly lower accuracy rates, the Veto and
Logistic Regression models effectively targeted higher odds, crucial for profit gen-
eration under specific strategies.

Sustainable Profitability. Achieving long-term profitability proved challenging
for most model-strategy pairs. The notable exception was the Veto model combined
with the Kelly criterion strategy, consistently generating positive average returns
(410.17%) without bankruptcy occurrences. This underscores the paramount im-
portance of probability calibration and disciplined stake sizing in betting scenarios.
The Logistic Regression model showed profitability potential through Value Betting
but required improved volatility management.

Influential Factors. Several factors emerged as essential to successful betting
systems:

e Probability Calibration: Precise probability estimation was critical. Poor
calibration quickly eroded bankrolls, especially under strategies like Kelly,
which heavily penalize inaccuracies.

o Risk Management: Strategies incorporating dynamic stake adjustment
(e.g., Kelly) demonstrated significant resilience against bankroll depletion,
highlighting the importance of adaptive risk management.

e Selective Odds Range Betting: Models excelling within particular odds
ranges, such as Veto in moderate-odds markets and Logistic Regression in
high-odds markets, significantly benefited from tailored betting strategies.

Significance of the Proposed Models. The study introduced two original
heuristic-based models: Veto and Balance. While Balance underperformed, pri-
marily due to insufficient value detection and overly concentrated betting sug-
gestions, the Veto model exhibited outstanding performance. Its combination of
exponentially weighted recent form and asymmetric opponent strength assessments
provided exceptional calibration and robust predictive reliability. This highlights
that even relatively simple heuristics can compete effectively with more sophisti-
cated statistical models when carefully calibrated and appropriately applied.

Future Research Directions. Future extensions could significantly enhance
model accuracy and practical usability:

« Integration of advanced machine learning algorithms (e.g., ensemble methods,
neural networks, XGBoost).

212



Annal. Math. et Inf. Evaluating profitability in sports betting using probabilistic models . . .

e Incorporation of additional predictive factors such as player injuries, lineup
changes, weather conditions, or betting market dynamics.

e Expanding historical datasets to strengthen statistical reliability.

e Enhancing computational resources via parallel computing or cloud-based
systems.

e Development of a public-facing web-based betting advisory platform based
on refined versions of these models.

These extensions could further validate whether the identified Veto—Kelly com-
bination maintains profitability in broader and more realistic contexts.

Final Remarks. This work clearly demonstrates the challenges inherent in gen-
erating consistent profits from sports betting but also highlights viable pathways
towards sustainable profitability through rigorous model calibration, strategic bet-
ting approaches, and disciplined risk management. The exceptional performance
of the Veto model within the Kelly criterion framework serves as a compelling
proof-of-concept, emphasizing that carefully designed probabilistic models, even
heuristic-based, can yield meaningful advantages in competitive betting environ-
ments.

Ethical note. This work is for academic analysis only. Sports betting carries
risks, including gambling addiction; results here should not be construed as betting
advice, and real-world frictions (limits, taxes, latency) further reduce practical
applicability.
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Abstract. In the context of Industry 4.0, the increasing complexity of 5G-
enabled Internet of Things (IoT) systems demands efficient and scalable
methods for optimizing information flow across distributed architectures.
This paper presents a novel approach to optimizing information flows in
IoT systems by leveraging a three-dimensional cubic lattice model aligned
with a customized Reference Architectural Model for Industry 4.0 (cRAMI
4.0). The novelty and improvement consist in the use of a three-dimensional
lattice structure that maps three critical axes, detection level functions (X-
axis), analysis and maintenance processes (Y-axis), and access control levels
(Z-axis), onto a unified spatial model for representing and optimizing in-
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formation flows in IoT systems. Each node within the lattice represents a
combination of these dimensions, enabling a comprehensive representation of
functional, procedural, and security aspects in IoT environments. This spatial
model facilitates the visualization, analysis, and optimization of data flows
and access control mechanisms, enhancing system efficiency, security, and
maintainability. The approach offers practical benefits for designing scalable
and secure [oT architectures compliant with the main RAMI 4.0 principles.
We formalise the proposed system using Petri net based modelling to simulate
process transitions across Cloud-IoT-Lattice domains. Each IoT layer (per-
ception, network, application) is treated as a distinct computational zone,
and transitions between zones are defined across lattice-encoded relations.
This interdisciplinary approach bridges informatics and industrial informat-
ics, offering a new paradigm for adaptive, low-latency IoT systems in smart
manufacturing, healthcare, and logistics.

Keywords: Internet of Things, RAMI 4.0, cRAMI 4.0, cubic lattice model,
Petri nets

1. Introduction

The concept of the Internet of Things (IoT) describes a highly interconnected
world, in which various objects are integrated with sensors and other digital devices,
enabling their networking for the collection and exchange of data [19]. These
devices, often referred to as connected objects or IoT devices, range from household
appliances to industrial machines, and are equipped with sensors and actuators to
gather and transmit data [8].

In the context of manufacturing, [oT enables real-time data collection and shar-
ing among various production resources, such as machines, workers, materials, and
tasks. Furthermore, IoT can provide enhanced connectivity across objects, systems,
and services, allowing data exchange [19].

In the future, a convergence of IoT-related technologies is anticipated, includ-
ing ubiquitous wireless standards, Data Analytics, and Machine Learning (ML)
[19]. Industrial IoT (IToT) is considered a key driving force for increasing produc-
tivity and efficiency in industrial landscapes. IoT is one of the core technologies
underpinning Industry 4.0 [8].

The Reference Architectural Model Industrie 4.0 (RAMI 4.0) is widely regarded
as the preferred framework for implementing Industry 4.0 architectures [9, 15, 18].
It is represented as a three-dimensional cube encompassing the most important
business elements and technological innovations of Industry 4.0. RAMI 4.0 aims
to guide the implementation of compatible system architectures and to provide a
shared framework for stakeholders to understand and communicate effectively. The
model facilitates the classification of objects such as machines, and the description
and implementation of complex Industry 4.0 (I4.0) concepts.

Regarding the integration of IoT within the RAMI 4.0 structure, the RAMI pro-
vides a framework for incorporating information technology/operational technol-
ogy (IT/OT) systems (in which IoT plays a crucial role) into industrial ecosystems.
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Those three axes of RAMI 4.0 (hierarchical levels, life cycle stages, and architec-
ture layers) allow mapping and analysis of how IT/OT microsystems interact and
contribute to value creation. The 3D visualisation of microsystems within RAMI
4.0 cubes demonstrates how legacy IoT systems can be integrated with newer 14.0
technologies by treating legacy systems as closed systems. Mapping administra-
tive shells and technical assets to appropriate layers ensures the functional and
communication properties are correctly assigned [13].

Petri nets [1] have long been employed as a formal modeling tool for the analysis
of discrete event systems, particularly in the context of concurrency, synchroniza-
tion, and resource sharing [4, 16, 21]. Due to their graphical nature and rigorous
semantics, Petri nets are especially suited for representing the behavior of dis-
tributed systems, making them a natural fit for modeling Internet of Things (IoT)
environments. In recent years, their use has expanded into Industry 4.0 contexts,
where complex device interactions and process flows require formal verification and
simulation tools.

Lattice structures are widely used in computer science and engineering to rep-
resent discrete, multi-dimensional spaces in which elements are organized based
on defined rules of adjacency and interaction. In the context of system modeling,
a lattice provides a structured way to map complex relationships across multiple
dimensions, enabling clear visualization and analysis of interdependencies. Partic-
ularly in domains where hierarchical, procedural, and control aspects intersect -
such as in industrial IoT systems - a lattice can serve as an effective abstraction
for organizing system components and their interactions. By defining nodes at
the intersection of key dimensions, lattice-based models allow for both conceptual
clarity and computational tractability in modeling, simulation, and optimization
tasks.

The innovative contribution of this work lies in the integration of a three-
dimensional cubic lattice model with a customized RAMI 4.0 (cRAMI 4.0) frame-
work, where the axes correspond to detection level functions, analysis and mainte-
nance processes, and access control levels. This structural approach enables a new
perspective on modeling and optimizing information flows in IoT systems. Based
on this architectural model can be described agent-based systems in Industry 4.0
developments [10, 11].

To capture the dynamic and often unpredictable nature of IoT environments,
we extend our modeling approach to include both deterministic and stochastic Petri
net simulations. While deterministic models provide a baseline for system behav-
ior under ideal conditions, stochastic modeling allows us to incorporate variability
in transition delays, fault occurrences, and data flow rates. This dual perspec-
tive enables a more realistic evaluation of system responsiveness, fault tolerance,
and access control enforcement, especially in scenarios involving fluctuating sensor
inputs, network latency, or probabilistic failures.

The following sections detail the theoretical foundation of the model, its map-
ping to the custom RAMI axes, and the simulations with experimental evaluation
purposes using Petri Nets.
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2. Reference Architectural Model Industry 4.0

Internet of Things (IoT) refers to the network of interconnected physical devices
that can collect, transmit and process data from the real world (sensors, actua-
tors, smart devices, etc.) [17]. In the following, we will highlight several aspects
concerning data analysis in IoT systems and their architectures [8].

Data Analysis Challenges in IoT. These include the vast volume and variety of
data, the need for real-time processing and long-term maintenance.

IoT Data Processing Techniques. Techniques such as data denoising, outlier
detection, missing data imputation, and data aggregation are frequently employed.

Integration with Emerging Technologies. Data analysis in IoT is increasingly
integrated with cloud computing, fog computing, and edge computing to address
specific challenges in sensor networks and data analytics.

Typical IoT Architectures. These include multiple layers: the Perception Layer
(sensors and actuators), the Network Layer (routers and gateways, connectivity and
protocols), the Application Layer (cloud/servers, industrial applications), and occa-
sionally a middleware or support layer for intelligent data processing and decision-
making [8].

The RAMI 4.0, proposed for understanding and implementing Industry 4.0,
highlights the importance of security as a fundamental condition.

RAMI 4.0 plays a central role in structuring and providing a common under-
standing of the complex systems specific to Industry 4.0 [22]. Its main roles include
the following:

e Developing a shared understanding: The main goal of RAMI 4.0 was
to guarantee that all parties involved understood Industry 4.0.

e Structuring complexity: RAMI 4.0 is a three-dimensional model that
helps to address the problem of Industry 4.0 in a structured manner.

e Integrating components: Combines the IT elements and components into
a layered model of the lifecycle. This includes aspects such as data privacy
and IT security.

RAMI 4.0 as an Architectural Model. Previously discussed as a three-dimen-
sional reference framework for Industry 4.0. Its dimensions include Architecture
Layers, the Life Cycle / Value Stream, and Hierarchy Levels. RAMI 4.0 helps to
structure and understand the complexity of Industry 4.0 systems and facilitates
the integration of components and data [22].

3. Lattice definition in the context of our research

Algebraically, a lattice is an abelian group that spans a vector space; geometrically,
it forms a grid. The space exists only at the lattice nodes, meaning that entities
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(components, objects, amino acids, molecules, particles) are constrained to these
fixed positions [6, 14].

A Walk on a lattice is defined as a sequence of adjacent nodes and serves as
a way to encode spatial configurations. In a two-dimensional (2D) square lattice,
each node has four nearest neighbors, corresponding to the four cardinal directions:
right (R), up (U), left (L), and down (D). In absolute encoding, each step of the
walk is represented by one of these direction symbols.

In a three-dimensional (3D) cubic lattice, each node has six nearest neighbors,
aligned with the three spatial axes. The absolute directions are: right (R), left (L),
up (U), down (D), forward (F), and backward (B). Thus, in 3D, each step in the
walk is encoded using one of these six direction symbols. Figure la and 1b show
the representation of a 2D square lattice and 3D cubic lattice, respectively [20].
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(a) 2D square lattice. (b) 3D cubic lattice.

Figure 1. Lattices visual overview.

4. A novel customised architecture of RAMI 4.0

An innovative approach is introduced in this paper, specifically for analysing and
interpreting information within IoT environments. This approach utilises a three-
dimensional cubic lattice model.

While existing sources address IoT data analysis, varied architectures (including
the 3D RAMI 4.0 model), and advanced communication technologies like 5G, this
paper introduces a novel, innovative methodology: a three-dimensional cubic lattice
model for the analysis and interpretation of data in 5G-based IoT environments.

IoT offers the connectivity and data necessary for operational execution, while
RAMI 4.0 provides the architectural framework to organise and contextualise these
capabilities by linking physical assets to the digital IoT ecosystem.

4.1. Formal mapping of cRAMI 4.0 from a cubic lattice struc-
ture to Petri nets

The RAMI 4.0 provides a multidimensional framework for modeling industrial sys-
tems, typically structured along three conceptual axes: hierarchy levels, product
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life cycle, and IT/OT layers. In this work, we propose a customized interpretation
of these axes of the RAMI 4.0, that we called cRAMI 4.0, more directly aligned with
practical aspects of IoT system design and management. Specifically, we define the
following mapping;:

o X-axis (horizontal axis to the left) — Detection Level Functions:
This axis represents the range of sensing and detection functionalities in the
IoT system, from basic physical sensors to higher-level data acquisition and
pre-processing modules. Each step along this axis corresponds to increasing
levels of functional complexity and semantic interpretation of raw data.

o Y-axis (horizontal axis to the right) — Analysis and Maintenance
Processes: This axis models the procedural flow from data collection to
fault diagnosis, maintenance planning, and system reconfiguration. It reflects
the temporal and logical sequence of actions applied to maintain or enhance
system performance.

o Z-axis (vertical axis) — Access Control Levels: This axis captures the
vertical segmentation of system access permissions, from low-level device ac-
cess (e.g., automated processes or field operators) to higher-level adminis-
trative or supervisory roles. It enables the modeling of security policies and
role-based data accessibility across the system.

By structuring the system along these three axes, the cubic lattice model allows
for a granular representation of each component and its interactions.

To simulate the behavior of the proposed cRAMI 4.0 architecture, we for-
mally map each lattice node (x;, y;, 2) to a Petri net place representing a system
state. Each node in the lattice denotes a specific configuration defined by a triplet:
(xi, Y5, 2), where x; a specific detection-level function (e.g., sensor activation, data
acquisition), y; to a stage in the analysis or maintenance process (e.g., fault di-
agnosis, reconfiguration), and z; to an access control level (e.g., field operator,
supervisor, administrator)

This mapping provides a powerful abstraction for identifying, analyzing, and
optimizing information flows across the IoT system. It enables a spatial under-
standing of data paths, process dependencies, and security constraints, offering a
comprehensive perspective that bridges functionality, operations, and governance
within Industry 4.0 environments.

We model a cloud-connected smart manufacturing system comprising: a Per-
ception Layer: temperature and vibration sensors on industrial machines; a Net-
work Layer: edge gateways and routers; and an Application Layer: cloud-based
analytics and decision support. Each layer is encoded in the lattice and mapped to
Petri net zones. The system includes: 18 places (P) representing discrete states; 12
transitions (T) modeling actions and data movement and 3 zones: IoT, connection
interface, and cloud. Transitions in the Petri net represent the data flow between
adjacent detection levels, the procedural advancement in analysis/maintenance and
the role-based access control enforcement.
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Figure 2 presents the main architectural model presented above. In the lattice
representation, the X-axis corresponds to detection level functions (left to right),
the Y-axis represents the progression of analysis and maintenance processes, and
the Z-axis extends in depth, capturing the hierarchical access control levels.
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Figure 2. The proposed cRAMI 4.0 Architecture.

The current study’s contributions are based on three main goals related to IoT
and Cloud, which are also essential elements of RAMI 4.0 [3]:

1. The fundamental study of Petri nets for analysis and validation within dis-
crete systems.

2. Application of Petri nets for modeling and analyzing discrete-event systems,
particularly within the detection and analysis layers of IoT architectures.

3. Compare deterministic vs. stochastic behavior in process transitions. Vali-
dation methods and results obtained from the analysis of the subject model,
which are used to reorganize and reevaluate the system and increase its flex-
ibility. Stochastic modeling introduces variability in transition delays.

This hybrid architecture combines formal modelling (Petri nets), distributed
computing (cloud), cyber-physical sensing (IoT) and structured analysis (3D lat-
tices). It exemplifies the integration of computational models [2, 5] with domain-
specific goals, such as those in smart manufacturing, health, or molecular biology.
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4.2. Simulations using Petri nets

To model and simulate the proposed architecture, we adopt Petri nets (the simula-
tions were performed in Visual Object Net++ application software [7]), which are
relatively easy to use, cost-effective, provide real-time insight, and support dynamic

intervention without deviating from the systems original purpose.

Table 1. Simulation parameters and variables.

Parameter

Description

Value Range

Sensor activation rate
Transition delay
Access level

Token count

Fault injection rate

Data throughput

Frequency of data generation
Time between state changes
Role-based permission tier
Number of active processes
Probability of error occurrence
Volume of data per unit time

1-10Hz
0.1-2.0 s

1 (low) to 3 (high)

0-100
0-0.2

10-1000 KB/s

RAMIAD

Figure 3. General Petri nets model architecture.

Figure 3 illustrates the key stages of an ideal cloud manufacturing system built
based on the cRAMI architectural model Petri net structure: P = place (state), T =
transition (action), mXX = monitored metric. All elements used in the simulation
are discrete, which can be difficult to achieve in practice. The modeled system is
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schematic and contains the basic components of 10T, cloud, cRAMI 4.0, and their
interconnections. It is a generic system designed to capture the main structural
elements.

During the simulations, intense activity is observed throughout the requested
time window in the IoT zone. In the Figures 4-6, flow variations across IoT,
connection, and cloud zones takes place. In the Cloud zone, responses occur only
at required levels. The diagram displays three fundamental levels: initial, interme-
diate (monitoring), and final stages of the process. This branch serves as a bridge
between the IoT and the rest of the system, ensuring data security and seamless
information transfer throughout the entire structure (see Figure 4).

Figure 5 presents both the variation in input data flow and the dynamics of
information handled within the cloud system, with real-time accessibility from
both RAMI 4.0 and IoT. Figure 6 shows variation in information flow caused by
input data and the systems processing capacity.

Figures 7, 8 and Figure 9 illustrate the ordered information dynamics along
each cRAMI axis (X = detection, Y = analysis, Z = access control). Variations are
caused by either the high volume of data or complex data structures in the system.
As seen in Figure 9, large variations can arise due to an error within the analysis
process. Since the system is secure, other components are not severely impacted.
The error may stem from sudden data fluctuation, hardware malfunction, or even
human error in the case of incorrect data routing.
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Figure 4. Information flow variation between the IoT system and
the connection system.

5. Discussion

This complex system benefits from a well-developed and relatively accessible IoT
component, crucial for monitoring and communication. In our model, the IoT
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Figure 6. Information flow between RAMI 4.0 and the system
connected to the cloud.
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Figure 7. Information flow along RAMI 4.0 - X direction.

system is linked to the cloud via a dedicated connection component that ensures
data security and facilitates efficient information flow. cRAMI 4.0 decomposes into
its three core axes, each mapped to its specific structure, with no overlap in data,
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thanks to the interconnectivity of the cube surface. Functional and communication
mappings are preserved for every axis.

Challenges related to this approach include the need for novel data models
and coordination mechanisms between cloud devices, cloud servers, and artificial
intelligence systems. Also, important integration of advanced data quality assess-
ment methods like those presented in [12]. Consequently, the IoT architecture for
cloud-based devices has been conceived as a modular framework that supports low-
power wearable and implantable devices, compatible with others using similar data
formats and capable of wireless interaction.

Limitations and challenges. Existing models and systems still face significant
limitations that must be addressed to ensure the effective use of cloud devices in
dedicated systems. These include issues such as energy consumption, optimal data
scheduling, low-latency models, privacy, joint offloading, limited data availability,
data security, system downscaling, and overhead costs. To overcome these, further
exploration of new architectures, development of optimised training techniques,
interpretable models and architectures for resource-constrained environments are
needed. Ethical and concerns also require attention to prevent bias and discrimi-
nation, especially in sensitive application areas.
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6. Conclusions

This paper proposed a three-dimensional cubic lattice model for structuring and
optimizing information flows in IoT systems, based on a customized interpretation
of the RAMI 4.0 framework, called cRAMI 4.0. This paper proposes a three-
dimensional cubic lattice model for structuring and optimizing information flows
in IoT systems, based on a customized interpretation of the Reference Architec-
tural Model for Industry 4.0 (RAMI 4.0), referred to as customized RAMI 4.0
(cRAMI 4.0). The model defines three orthogonal axes, detection level functions,
analysis and maintenance processes, and access control levels, allowing a spatial
representation of the system’s operational, procedural, and security dimensions.
The specific lattice-based representation enables a clear visualization of interac-
tions, supports granular system analysis, and facilitates optimization of data flow
and security mechanisms. Systems based on cRAMI 4.0 can be utilized, offering
grouped benefits, real-time responsiveness, and low data and energy consumption.
It supports the development of multiple applications across different sectors, tai-
lored to user-specific requirements. The knowledge obtained is more structured,
and more relevant for decision-making in developing Industry 4.0 developments.

To validate this approach, simulations were conducted using Petri nets in Visual
Object Net++4, enabling graphical representation and analysis of information flow
dynamics across all three axes. The results confirm the models suitability for iden-
tifying critical paths, analyzing interdependencies, and supporting optimization
strategies in complex IoT architectures. Future work will focus on extending the
model with dynamic reconfiguration capabilities and integrating real-time system
data.
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Abstract. Community detection holds significant value in discovering hid-
den structures in complex networks. In this paper, we propose a betweenness-
driven community detection based on the label propagation algorithm. First,
at the multiple labels’ assignment phase, we detect communities using label
propagation and apply labels for the nodes using the betweenness and degree
centrality as references. Second, we refine the modularity and stability using
several configurations, such as global modularity and stability pruning, to
avoid nodes that have not changed for several iterations. This algorithm was
tested with the most common datasets, such as Zachary’s Karate Club Net-
work, Polbooks, Football, and 12 LFR synthetic datasets, which resulted in
improved scores on modularity, overlapping normalised mutual information,
omega index, generalized F1-score, and extended various pieces of informa-
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1. Introduction

Network analysis is implemented and used in various disciplines to represent their
complex interactions, such as social sciences, computer sciences, biology, and ma-
terials science. Networks consisting of nodes with edges connecting them encode
information through their structural characteristics; one of the most popular re-
search areas is the study of community structures. While it has no formal defini-
tion, a community can be considered a densely connected subgraph of a network,
which means that nodes within the community have strong relationships but are
sparsely connected to the rest of the network. Generally, there are two types of
communities: non-overlapping or disjoint communities and overlapping commu-
nities. The non-overlapping community detection separated the nodes based on
their membership, where each node only belongs to exactly one community. Mean-
while, the overlapping communities consider the nodes that belong to one or more
communities.

Community detection is considered an important task because it can uncover
the hidden structure of a complex network. Most community detection algorithms
have been developed to solve the non-overlapping community detection problem,
but some algorithms work well to solve both non-overlapping and overlapping com-
munity detection problems [4]. Many approaches have been proposed to solve
the community detection problems, such as clique percolation approach [23], label
propagation [25], non-negative matrix factorization (NMF) [28], fuzzy set theory
[8], evolutionary algorithms [24], and even the statistical models [9]. The Newman-
Girvan modularity measurements have become one of the most popular methods
to measure the density of communities within the network [21], since they provide
an objective way to evaluate the communities’ quality. This measurement indi-
cates that nodes are more closely connected to their community compared to other
nodes in the network. A modularity score near zero indicates that there is no real
community structure, while a score near one means the communities are dense and
well-structured. The label propagation algorithm (LPA) approach has received a
lot of interest because of its simplicity and scalability [7]. As an extension of its
original non-overlapping version [25], it consists of simple steps for the overlapping
community detection [8], such as 1) label every node with its unique label; 2) label
the current node based on its neighbours’ labels; 3) propagate for all the nodes in
the network; 4) compare the label of each node in the current iteration with the
previous iteration; and finally 5) labels indicate the communities for each node (a
node may have multiple labels). The weighting system is usually applied in stage
3. The iteration is terminated at stage 4 if convergence occurs; otherwise, another
iteration is executed.

There are several notable overlapping community algorithms based on label
propagation. In 2010, Gregory [8] designed a specific algorithm called COPRA
(Community Overlap Propagation Algorithm) to allow nodes to hold multiple la-
bels simultaneously using the belonging coefficient as a degree of membership.
Later, the dynamic process where each node acts as a speaker and a listener was
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introduced as SLPA [29], which identified both the number and the strength of
each node’s community affiliation. Another approach, which combined with LPA
is a local spectral method called LEMON [15]: a sparse vector is obtained by min-
imising the ¢1 norm over a local spectral subspace with seed constraints, which
ensures the seed nodes to be included and highlights additional nodes to include
in the community.

In 2021, Attal et. al. [1] introduced a method to find overlapping community
detection using pre-computed disjoint communities. This algorithm, leveraging
density and clustering coefficient as belonging function, compares to closeness and
betweenness centrality as average node measures, defining a node’s memberships.
These results show that communities with high density and clustering coeflicient
performed better than closeness and betweenness centrality measures. In the same
year, Li and Sun [14] introduced a combination of local expansion and label prop-
agation (LELP), which uses local expansion to generate some immature communi-
ties, prunes the network, and uses LPA to obtain a stable network.

In 2022, density based-label propagation algorithm (D-LPA) [31] was developed,
combining the density peak clustering with traditional LPA to improve the stability
and accuracy of community assignments. The vector-label propagation algorithm
(vVLPA) was also introduced in this year [3], where gradient descent was utilised to
improve the modularity. This approach retains weak structural information, but
obtains better performance when the community structure is weak. The influence-
based COPRA approach introduced as INF-COPRA [30], is an algorithm that
ranks the influence of nodes and labels, thereby improving the extended modularity
(EQ) and normalised mutual information. One of the latest expansions of LPA was
the degree and betweenness-based label propagation (DBLPA) [22], which combines
the degree and betweenness centrality to provide the core nodes in layer-by-layer
LPA [34].

Label propagation algorithms have a fast runtime but have strong randomness
and weak robustness causing difficulties in obtaining effective community detection
results. The expansion of the label propagation algorithms conducted with several
approaches, such as the multistep greedy, to increase modularity, but sacrifices the
fast-running time [17]. There is also a kernel label approach proposed to reduce
the complexity, but at the same time improve the randomness of the algorithm
[16]. Meanwhile, others proposed the accelerated modularity gain by analysing
Newman’s modularity function [33].

Overlapping community detection is important because real-world networks
rarely consist of cleanly separated groups. Detecting overlapping communities can
lead to the nature of multiple roles of nodes, provide more accurate prediction of
network behaviour, capture phenomena such as redundancy and robustness in com-
plex systems, and define the characteristics that strengthen the interpretability and
predictive utility of community detection methods. Modularity is one of the most
widely accepted quality functions in community detection because it measures how
well a given community separates dense intra-community connections from sparse
inter-community connections. However, overlapping communities often underes-
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timates the quality of the community structure because nodes can contribute to
multiple groups simultaneously. If the overlapping assignments are not refined,
the modularity may remain low, indicating communities are not cohesive or not
well-defined. Improving modularity in overlapping community detection ensures
the structural density and avoids the risk of generating fragmented communities.

Betweenness centrality quantifies the shortest paths between others, showing a
strong indicator of a boundary in the networks. In overlapping community detec-
tion, betweenness nodes are precisely where community memberships are likely to
overlap since they act as the bridge across different groups of nodes in the network.
This betweenness-driven approach leverages the inverse betweenness, causing these
nodes to retain multiple memberships in the overlap assignment phase. This ap-
proach utilises the balance between degree centrality capturing the local influences
and betweenness centrality, which highlights global structure.

This paper proposes a novel overlapping community detection algorithm utilis-
ing the fast propagation through the network of LPA combined with the nature of
the betweenness centrality score of a node. This algorithm is split into two phases:
multi-assignment label propagation and modularity refinement. In the first phase,
the algorithm will quickly build an overlapping community structure using LPA
with betweenness as its voting mechanism to decide the memberships of each node.
This allows strong local leaders to influence community growth while boundary
nodes exert more measured influence. In the second phase, modularity refinement
is executed using Newman’s modularity [21] with temporal projections to refine the
modularity of the communities within the network. Finally, overlapping communi-
ties are defined by assigning the nodes to all communities where their membership
strength exceeds the threshold. In this proposed algorithm, several adaptation
parameters are used to maximise the modularity, such as top-k filtering to make
sure that the nodes can hold £ maximum labels as their possible communities, and
minimum gain as a threshold when maximising the modularity.

The main contributions of this paper are as follows:

1. Balancing high-speed and high-quality communities, addressing the weak-
nesses of the classic label propagation algorithm.

2. Flexible filtering strategies (such as Top-K filtering, minimum gain threshold,
and stability pruning) which lead to an increase in the quality of communities
produced.

3. Utilising the nature of betweenness nodes to define the overlapping nodes.

The remainder of the paper is organised as follows. Section 2 explains the method-
ology, data, and evaluation techniques used in this study. Section 3 presents the
main results, with tables highlighting the main findings. Section 4 concludes the
contribution, takeaways, and future research.
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2. Methodology

The Betweenness-Driven Label Propagation Algorithm (BD-LPA) is an overlapping
community detection method that combines local label propagation with a global
modularity-based refinement. The high-betweenness nodes often sit at community
boundaries and influence how strongly a node is pulled by its neighbours’ labels.
By seeding each node with a unique label and weighting those labels according to
both how often they appear in the neighbourhood and how central their owners
are, BD-LPA builds a soft membership vector for every node. This vector encodes
the node’s membership towards multiple communities, allowing for overlapping
structures. The algorithm proceeds in two main phases—first, a fast, distributed
voting scheme that spreads labels with influence proportional to neighbour degree
and inverse to neighbour betweenness, and then a slower, global refinement that
uses modularity gains to reinforce coherent groupings. This proposed method is
split into two phases, namely the multi-assignment label propagation phase and
the global modularity refinement phase.

2.1. Degree and betweenness centrality

Degree centrality measures the number of edges connected to a node [5]. This

centrality shows the position of a node in the networks based on its connections
and can be measured as follows. For a simple undirected graph G = (V, E), the
degree centrality Cy of node v is

Cp(v) = deg(v),

where deg(v) is the degree of node wv.

While degree centrality measures the node’s centrality using the direct connec-
tion to the node, betweenness centrality measures the node’s centrality based on
how often the node lies on the shortest path between other nodes [6]. Betweenness
centrality Cj of a node v can be measured as follows. Let o4, be the number of
shortest path between nodes = and y, and o,y (v) the number of paths that pass
through node v, with v # x # y. The betweenness centrality of v is

Colv)= > UL(U)

o
vEzty Y

The nature of a node with a high betweenness value is becoming a hub for the
network, meaning that they are node with a high possibility of having multiple
community memberships. On the contrary, nodes with low betweenness are more
likely to have single community membership but not necessarily rely only on their
betweenness centrality value. Thus, in this study, we propose to combine the
use of degree and betweenness centrality as the community membership voting
mechanism.
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2.2. Multi-assignment label propagation

In Phase 1, each node maintains a weight vector over candidate community labels.
In each iteration, nodes are visited in random order and vote for labels: each
neighbour contributes to the vote for its own dominant label in proportion to
its degree divided by one plus its betweenness centrality. The candidate labels
with the highest votes are then added to the node’s weight vector with a fixed
gain factor, and the vector is renormalised as probabilities, retaining only the
top L labels. Over multiple fast iterations, this process diffuses label influence
through the graph, enabling nodes at the fringes of communities to accumulate
membership probabilities in several nearby groups. Since the voting weight uses
degree and penalises high-betweenness nodes, labels spread more readily within
densely connected regions while respecting bottlenecks. The node membership
voting mechanism can be computed as follows.

deg(u)
te[l;] += —————
votellu] += T htw(a)”
where £ is the dominant label of neighbor u, deg(u) is the degree of node u,
btw(u) is the betweenness centrality of node u, and vote[¢] is the cumulative vote
weight for label received by node u from its neighbors. The algorithm for phase 1
is presented in Algorithm 1.

2.3. Modularity refinement

In Phase 2, modularity refinement measurement utilises Newmann’s modularity
with temporary projection or hard mapping[26, 27]. This shifts the measurement
from local diffusion to global optimisation by temporarily hard-assigning each node
to its highest-weight label and computing the resulting modularity. It then at-
tempts to improve modularity by considering, for each node in random order, re-
assigning it to one of its neighbours’ labels if it results in a modularity gain above
a small threshold. Whenever a better community label is found, the node’s weight
vector is reset to that single label before moving on. Iterations continue until no
single-node swap can further increase modularity. Crucially, these hard-assignment
trials only guide the search; at the end of refinement, the algorithm reverts to the
soft weight vectors and applies thresholds to produce overlapping communities,
preserving multi-membership while ensuring that each switch meaningfully boosts
global cohesion. The algorithm for phase 2 is presented in Algorithm 2, and the
modularity measurement is conducted as follows.

1. After phase-1, each node v has membership weight w,, ()
2. Temporay projection (hard mapping) performed as ¢ = argmax, w;(¢)

3. Compute the modularity using Newman’s modularity [21] for the temporary
hard mapping as follows.

QPTOJ — L Z[A kikj]é(c:,c;), (2.1)

2m g 2m
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Algorithm 1 Phase 1: Multi-Assignment Label Propagation

Require: G = (V, E) > undirected graph
Require: T > fast propagation iterations
Require: k > top-k votes per node
Require: Lnmax > max labels per node
Require: 7 > vote gain factor
Ensure: {w,} > soft label weights

1: // Initialisation
2: for each v € V do

3: assign unique label £,

4: wy  {€, — 1.0}

5: end for

6: // Propagation

7: for t =1 to Ty do

8: SHUFFLE(V')

9: for each v € V do

10: vote < {}

11: for each u € N(v) do
12: £y + arg maxg wy [£]

. * _ deg(u)
13: vote[ly] += T btw(a)
14: end for
15: T < top-k labels by wvote
16: for each £ € T do
17: wy [€] += nvote[l]

18: end for

19: W,y 4— TruncatedSoftmax(wy, Lmax)
20: end for

21: end for

where A;; is actual adjacency between node i and j; k;, k; are the degrees
of node ¢ and j; m is the total number of edges; and (¢}, cx;) shows the
position of node ¢ and j on their temporary mapping, 1 means both nodes
are in the same community, and 0 otherwise.

Here is an example of the approach.
1. Graph: G with V = {A, B,C, D}, a 4-cycle, m = 4
2. Communities: Cy = {A, B,C},Cy = {A,C, D}
3. Assumed that memberships after phase-1:

e« A:(C1:0.7,C5:0.3
e« B:(1:06,C5:04
« C:(C1:02,05:0.8
e D:(Cy:01,C5:0.9
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4. Temporal projection:

e A ()
e B— (4
o O (Cy
e D (Cy
e Projected community C7 = {A, B,C},C5 = {D}

5. Using equation (2.1) QP™%/ = 0.08

2.4. Evaluation

This proposed algorithm was evaluated using several standard metrics that are
widely adopted, such as modularity, overlapping normalized mutual information
(ONMI), omega index, generalized F1l-score, and extended variation of informa-
tion (extended VI) as the proper evaluation for overlapping community detection
[7, 11]. Modularity introduced by Newman and Girvan [21] to quantify the inter-
nal structure of the community, while ONMI measures the similarity between the
results and the ground truth [18] as follows:

(X :Y)
max(H(X),H(Y))’

NMIpan =

where I(X :Y) = $[H(X)— H(X|Y)+H(Y)— H(X|Y)]is the mutual information
and H(X|Y) = Ziel,me is the total information.

To evaluate the accuracy, imbalance community, and discrepancy in shared
information, the omega index was used [20] as follows.

04(C1, Ca) — 06(Cr,C2)
1 —06(01,02) ’

Q(Ch,Cq) =

where 0,(C1, C3) is the fraction of pairs that occur in the same number of commu-
nities in both communities, and o.(C1, Cs) is the expected fraction under random
assignment.

The generalized Fl-score [32] is also used to measure the best-matching com-
munity produced by the algorithm compared with the ground truth, which can be
measured as follows.

1
2 |c*

Z F1( C’“C’g(l ZFl 9/ (1) G |,

c,eC* C cC

where the best matching g and ¢’ is defined as g(i) = argmax; Fl(Ci,C'j) and
¢'(i) = argmax; F1(C;,C;).
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Algorithm 2 Phase 2: Modularity Refinement

Require: G = (V, E) > undirected graph
Require: {wy}vev > weight vectors from Phase 1
Require: T’ > refinement iterations
Require: ¢ > modularity-gain threshold
Ensure: {w,}vev > refined weight vectors

1: function HARDMAP(v)

2 return arg maxe wy [

3: end function

4: function BUILDCOMMUNITIES

5: C+{} > map label—node list
6: for each v € V do

7 ¢ < HARDMAP(v)

8 append v to C[{]

9: end for

10: return list of communities in C'

11: end function

12: Q + modularity (G, BUILDCOMMUNITIES )
13: fort+ 1 to T, do

14: changed < false; SHUFFLE(V)

15: for each v € V do

16: ¢o < HARDMAP(v)

17: Cand < {HARDMAP(u) | u € N(v)} \ {co}
18: best, Apest < o, 0

19: for each ¢ € Cand do

20: save w9 «— w,

21: wy — {£— 1.0}

22: Q' + modularity (G, BUILDCOMMUNITIES )
23: A+—Q —-Q

24: if A > e and A > Apest then

25: best, Apest < £, A

26: end if

27: restore wy, w;’ld

28: end for

29: if best # ¢o then

30: w, < {best — 1.0}

31: Q + Q + Apest

32: changed < true

33: end if

34: end for
35: if not changed then

36: break
37: end if
38: end for

Another evaluation measurement used was the extended VI [19] as follows.

VI(X,Y) = H(X|Y) + H(Y|X),
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where H(X|Y") is the conditional entropy of community X given community ¥ and
vice versa. Conditional entropy measures the certainty of a community assignment
given knowledge of the other communities. It captures the average amount of extra
information to describe the communities. A lower conditional entropy implies that
knowing one community almost fully explains the other (strong agreement), while
a higher value means the communities disagree more, reflecting greater divergence
in how overlaps are assigned.

The datasets used in this evaluation are Zachary’s Karate Club Network [5],
Football [5], Polbooks [10], and synthetic datasets generated using the LFR frame-
work [12].

3. Experimental results and analysis

The proposed algorithms were benchmarked using four standard metrics, such as
modularity, ONMI, Omega Index, Generalized F1-score and Extended VI, over the
four datasets mentioned before. The results were compared to three overlapping
community detection algorithms such as COPRA [8], SLPA [29], and Motif-LPA
[13], to evaluate their performance to the LPA-based algorithm.

« COPRA: Expansion of traditional LPA using membership coefficients to
allow nodes to belong to multiple communities.

e SLPA: Dynamic model of LPA where nodes act as speakers and listeners,
allowing nodes to remember the community label and become its member.

o Motif-LPA: Introducing a motif-based approach (recurring structural pat-
terns) and capturing high-order connectivity to allow nodes to become mem-
bers of more than one community

3.1. Datasets

Three real-world datasets are commonly used in community detection benchmark-
ing, utilised in this research. The Zachary’s Karate Club network describes rela-
tionships between club members, which are divided into two communities. The
Football dataset was created from the American College Football League, where
nodes represent the football team and edges represent the game played between
them. The Polbooks network was created based on the interaction between readers
of American politics books. Alongside the real-world datasets, we generated 12 syn-
thetic datasets using the LFR model [12] with different settings. The LFR model
is widely adopted in community detection research because it produces networks
with realistic structural features (heterogeneous degree distributions and commu-
nity sizes) while allowing precise control over the embedded community structure.

Unlike real-world networks, where communities are inferred from contextual
meaning, in LFR networks, communities are explicitly defined by the generation
process, making them suitable for controlled benchmarking. Each synthetic dataset
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in Table 1 is characterised by: n (Nodes) and Edges: the size and connectivity
of the generated network; ¢ (Communities): the number of planted communities
generated by the model; k (Average degree): the average number of edges per
node; p (Mixing parameter): the proportion of edges that connect a node to nodes
outside its community. A low p (close to 0) indicates well-separated communities,
while a higher p implies stronger inter-community mixing and weaker community
structure; on (Overlapping nodes): the number of nodes that belong to more than
one community; om (Overlapping memberships): the number of communities each
overlapping node belongs to. For example, om = 2 indicates that overlapping nodes
belong to exactly two communities, while om = 3 allows nodes to be shared across
three communities.

The parameterisation across the LFR datasets was chosen to cover different
scenarios of network size from 1000 to 10000 nodes, degree distributions, mixing
levels, and varying degrees of community overlap. This diversity ensures the algo-
rithm’s robustness under a wide range of structural complexities and community
structures. Table 1 provides the summary of the datasets, where c is the number of
communities, k is the average degree, p is the mixing parameter, on is overlapping
nodes, and om is overlapping memberships.

Table 1. Comparative metadata of benchmark datasets.

Dataset Nodes Edges «c k I on om
Karate 34 78 2 - - - -
Football 115 613 3 - - - -
Polbooks 105 441 12 - - - -
LFR1 1000 10455 44 2091 0.10 100 0
LFR2 1000 12555 35 25.11 0.30 100 2
LFR3 1000 6003 27 12.01 0.15 100 3
LFR4 2000 24555 40 24.55 0.20 200 0
LFR5 2000 31461 39 31.46 0.30 200 2
LFR6 2000 15495 32 1549 0.15 200 3
LFR7 5000 70518 57 28.21 0.10 500 0
LFRS 5000 84899 61 33.96 0.25 500 2
LFR9 5000 93743 56 37.50 0.30 500 3
LFR10 10000 113290 61 22.66 0.10 1000 O
LFR11 10000 120047 75 24.01 0.20 1000 2
LFR12 10000 190440 84 38.09 0.25 1000 3

3.2. Parameter settings

The proposed algorithm is an adaptive algorithm by nature, meaning that the
parameters can be tuned to achieve good community detection results. The config-
ured parameters are the number of fast iterations in the first phase, the number of
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refinement iterations, top-k labels, max labels, overlapping threshold, gain thresh-
old, and gain factor. The fast iteration converged well within 8 iterations, while
the modularity can be stabilised in 6 iterations. The top-3 neighbour labels is
a good balance between noise and diversity, and limiting 3 labels per node helps
avoid fragmentation. The low number of 7, ¢, and 7 is to control the overlapping
sets, prevent overfitting, and ensure effective propagation speed. The best average
setting for the dataset used in this experiment is presented in Table 2.

Table 2. Parameter settings.

Name Symbol Value Function/Role

Fast iterations Ty 8 Number of label-voting passes

Refinement itera- T, 6 Number of modularity-refinement

tions

Top-k labels k 3 Number of neighbor can be considered

Max labels Las 3 Number of labels a node can hold

Overlapping T 0.25 Weight threshold to allow a label into

threshold overlapping set

Gain threshold € le-4 Minimum modularity gain to allow a
node to change label

Gain factor n 0.6 Scaling factor for the neighboring votes

Random seed - 75 Ensure the reproducibility

3.3. Modularity evaluation

The modularity measurement is a common and widely used method to evaluate
community detection algorithms to show the density or sparsity of the results. The
larger value indicates a densely connected structure within the results, but it does
not indicate the accuracy of the community detection. The results presented in
Table 3 show that compared to other algorithms, BD-LPA performed well and
almost achieved the highest score for most datasets, with a peak score of 0.853
in LFR12. Motif-LPA performs competitively in synthetic datasets but struggles
in real datasets, while SLPA and COPRA show moderate results. The average
modularity across all datasets shows the superiority of BD-LPA with an average
score of 0.647. This indicates BD-LPA is not only consistent but also adaptable to
different network structures.

3.4. ONMI evaluation

The ONMI evaluation assesses the results of overlapping community detection al-
gorithm against the ground truth of the datasets. The ONMI results of BD-LPA
achieve the highest score on real-world datasets such as Karate, Football, and Pol-
books. The results presented in Table 4 show that BD-LPA performs well for most
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Table 3. Modularity score obtained from the datasets.

Dataset SLPA COPRA Motif-LPA BD-LPA

Karate 0.419 0.420 0.226 0.419
Football 0.520 0.530 0.557 0.571
Polbooks 0.370 0.380 0.415 0.457
LFR1.gml 0.803 0.802 0.802 0.897
LFR2.gml 0.000 0.000 0.494 0.580
LFR3.gml 0.000 0.000 0.713 0.718
LFR4.gml 0.501 0.000 0.509 0.519
LFR5.gml 0.665 0.667 0.668 0.662
LFR6.gml 0.000 0.000 0.736 0.749
LFR7.gml 0.529 0.000 0.532 0.536
LFRS8.gml 0.610 0.595 0.610 0.624
LFR9.gml 0.827 0.811 0.829 0.812
LFR10.gml  0.000 0.000 0.613 0.621
LFR11l.gml  0.000 0.000 0.689 0.689
LFR12.gml  0.000 0.000 0.840 0.853
Average 0.349 0.280 0.616 0.647

datasets, competing with Motif-LPA which performs strongly on synthetic datasets
but shows poorly in real-world datasets. Considering its average performance, BD-
LPA is superior to other algorithms with an average of 0.922 ONMI scores. This
indicates that BD-LPA not only finds community with high modularity (as seen
in Table 3) but also closely aligns its detected structure with ground truth across
datasets.

3.5. Omega index

The omega index is specifically designed to handle overlapping community de-
tection as the extension of the adjusted rand index (ARI) [2, 20]. This metric
measures the similarity between the node memberships in predicted communities
and the ground-truth communities. The range is from —1 to 1, where 1 indicates
perfect similarity, 0 means random communities, and —1 means that pairwise co-
membership assignments are as discordant as possible relative to chance. Table 5
presents the omega index score from the datasets. BD-LPA performed well for the
real-world datasets and almost all the synthetic datasets. BD-LPA consistently
achieves high scores across datasets, notably reaching the highest scores for LFR6,
LFR7, LFR8, LFR9, and LFR11. Motif-LPA performs competitively and reaches
high scores in the synthetic dataset; however, it performed poorly on real-world
datasets. Averaging across datasets, BD-LPA attains the highest mean omega index
of 0.930, indicating its ability in overlap-sensitive agreement metrics and showing
its reliability across scenarios.
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Table 4. ONMI score.

Dataset SLPA COPRA Motif-LPA BD-LPA
Karate 0.334 0.048 0.178 0.837
Football 0.283 0.283 0.339 0.771
Polbooks 0.296 0.429 0.444 0.569
LFR1.gml 0.892 0.946 1.000 0.947
LFR2.gml 0.649 0.838 0.980 0.986
LFR3.gml 0.725 0.624 0.990 0.981
LFR4.gml 0.743 0.876 0.998 0.929
LFR5.gml 0.799 0.860 1.000 0.939
LFR6.gml 0.750 0.672 0.980 0.999
LFR7.gml 0.780 0.865 0.998 0.987
LFR8.gml 0.805 0.859 0.999 0.983
LFR9.gml 0.857 0.826 1.000 0.950
LFR10.gml  0.806 0.892 1.000 0.981
LFR11l.gml 0.777 0.681 0.990 1.000
LFR12.gml 0.814 0.748 1.000 0.965
Average 0.687 0.696 0.860 0.922
Table 5. Omega index score.
Dataset SLPA COPRA Motif-LPA BD-LPA
Karate 0.210 0.048 0.247 0.882
Football 0.671 0.080 0.536 0.778
Polbooks 0.546 0.700 0.568 0.637
LFR1.gml 0.954 0.425 1.000 0.977
LFR2.gml 0.612 -0.033 0.989 0.973
LFR3.gml 0.790 0.155 0.997 0.991
LFR4.gml 0.760 -0.024 0.998 0.936
LFR5.gml 0.905 0.244 1.000 0.964
LFR6.gml 0.855 0.166 0.985 1.000
LFR7.gml 0.905 -0.022 0.998 1.000
LFR8.gml 0.940 -0.003 1.000 1.000
LFR9.gml 0.972 0.287 1.000 1.000
LFR10.gml  0.957 0.002 1.000 0.900
LFR11l.gml 0.946 0.184 0.991 1.000
LFR12.gml 0.972 0.281 1.000 0.957
Average 0.800 0.166 0.887 0.930
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3.6. Generalized F1-score

The generalized F1-score compares the similarity between the predicted community
with the ground-truth community. This metric focuses on quality rather than the
structure of the compared communities. Table 6 presents the results of generalized
Fl-score across the datasets and shows that BD-LPA consistently deliver high
scores across the datasets and reaches perfect alignment in LFR6. Its performance
in real-world datasets is mixed, with an exceptional score of 0.971 in the Karate
dataset but lower in other datasets; however, it performed exceptionally well in
structured synthetic datasets. Motif-LPA also performed well in most datasets
and reached perfect alignment in several cases. In terms of averages, BD-LPA
leads with a mean score of 0.899, followed by Motif-LPA (0.837), COPRA (0.803),
and SLPA (0.599). This indicates BD-LPA as the most accurate and balanced
method across datasets, maintaining its strong precision-recall trade-offs.

Table 6. Generalized F1l-score.

Dataset SLPA Copra Motif-LPA BD-LPA

Karate 0.609 0.600 0.278 0.971
Football 0.616 0.215 0.277 0.489
Polbooks 0.456 0.726 0.047 0.596
LFR1.gml 0.688 0.976 1.000 0.772
LFR2.gml 0.541 0.924 0.993 0.923
LFR3.gml 0.570 0.765 0.983 0.984
LFR4.gml 0.554 0.934 0.999 0.942
LFR5.gml 0.572 0.935 1.000 0.982
LFR6.gml 0.543 0.809 0.985 1.000
LFR7.gml 0.536 0.948 0.999 0.985
LFR8.gml 0.548 0.952 0.999 0.985
LFR9.gml 0.563 0.906 1.000 0.983
LFR10.gml  0.531 0.951 1.000 0.900
LFR11l.gml 0.524 0.766 0.994 0.994
LFR12.gml 0.532 0.636 1.000 0.985
Average 0.559 0.803 0.837 0.899

3.7. Extended variation of information

This metric quantifies the amount of information lost and gained when the nodes
move from one community to another. The extended VI score ranges from 0
upwards, where 0 means identical communities, while the larger value indicates
the dissimilarity between predicted communities and the ground-truth. Table 7
presents the extended VI across the benchmark datasets. BD-LPA has the best
extended VI score, indicating there is no discrepancy between its detected com-
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munities and ground truth. The average score shows that BD-LPA is far superior
to other algorithms, indicating its precision and consistency in producing ground-
truth communities across diverse datasets.

Table 7. Extended VI score.

Dataset SLPA COPRA Motif-LPA BD-LPA

Karate 1.000 1.252 1.000 0.306
Football 1.000 3.276 1.000 0

Polbooks 1.000 0.954 1.000 0.364
LFR1.gml 0.008 0.012 0.000 0.000
LFR2.gml 0.0413 0.0431 0.004 0.000
LFR3.gml 0.028 0.125 0.003 0.000
LFR4.gml 0.018 0.029 0.000 0.000
LFR5.gml 0.012 0.037 0.000 0.000
LFR6.gml 0.016 0.111 0.005 0.000
LFR7.gml 0.007 0.024 0.000 0.000
LFR8.gml 0.005 0.024 0.000 0.000
LFR9.gml 0.004 0.033 0.000 0.000
LFR10.gml  0.003 0.014 0.000 0.000
LFR11l.gml 0.004 0.048 0.001 0.000
LFR12.gml  0.003 0.026 0.000 0.000
Average 0.210 0.401 0.200 0.045

4. Conclusion and future research

In this paper, we propose an overlapping community detection method based on a
label propagation algorithm (LPA) and betweenness centrality. In the presence of
numerous communities, nodes that exhibit high betweenness are prospective over-
lapping nodes, which may lead to a reduced membership score within a community.
Multilabel assignment are quickly applied to nodes using label propagation, and
using the inverse betweenness as the weight for community assignment. The mod-
ularity refinement phase uses the detected communities as the base community to
be evaluated with the modularity measurement. If the modularity of the node
exceeds the threshold, the designation will be altered.

The utilisation of betweenness centrality as the voting mechanism provides a
simple computation yet better structure for the proposed communities. The use of
betweenness suppresses label flow across communities, resulting in higher modular-
ity. This avoids false overlapping memberships since nodes with low betweenness
are most likely to become a single community member node, thereby affecting the
label purity, and improving ONMI scores. The limitation of a high betweenness
score also contributes to pairwise consistency in co-membership across all pairs of
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nodes. Betweenness also minimises label diffusion, which leads to reducing the
label entropy for better performance.

Across evaluation metrics such as Modularity, ONMI, Omega Index, General-
ized Fl-score, and Extended VI, BD-LPA consistently performs well. It produces
highly accurate and robust community structures compared to the ground truth,
optimally balancing precision and recall. This enables effective and accurate iden-
tification of overlapping communities without sacrificing detection sensitivity while
minimising information loss between detected and actual community structures.

This study used parameter settings that were adjusted for all datasets and pro-
duced good results across all evaluations. For specific implementation tasks, such
as biological networks, social networks, or communication systems, addition pa-
rameter settings may need to be adjusted to optimise community detection tasks
achieve better results. Overall, these results suggest that this approach is particu-
larly powerful in enhancing community detection quality for structured networks,
although further refinements could improve accuracy on datasets with ambiguous
or noisy metadata.

Future work on this algorithm could focus on three key areas. First, real-world
network adaptation should be conducted, as performance on irregular graphs
suggests potential sensitivity to noisy or incomplete structures. Second, the scal-
ability and efficiency need to be explored for handling massive networks with
millions of nodes potentially through parallelised or distributed implementation.
Third, dynamic and temporal network extension offers a promising direction
for the algorithm to track evolving overlapping communities over time, which is
potentially useful for applications in social media, biological networks, and commu-
nication systems. Additionally, integration with a graph neural network pipeline
could allow the algorithm to serve as a high-quality label generator or preprocessor
for deep learning-based community detection.
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Abstract. The spread of large language models (LLMs) has transformed sci-
entific writing, enabling the generation of fluent and convincing text with min-
imal human input. This development poses significant challenges for author-
ship verification, especially when Al-generated or Al-assisted content is em-
bedded in academic manuscripts. While most existing detection approaches
rely on surface-level lexical features or stylometric clues, our study proposes a
novel syntactic-level method to distinguish between human-authored, trans-
lated, and Al-generated scientific texts. We constructed a controlled corpus
of 24 scientific articles in the field of computer science, divided into four cat-
egories: native-authored, human-translated, ChatGPT 4.0-generated, and
ChatGPT 4o-generated with deep research. Each corpus was processed using
part-of-speech (POS) and dependency parsing, followed by statistical profiling
and sentence-structure discovery via process mining. Our results reveal that
Al-generated texts differ significantly in their use of modal verbs, participles,
coordination, and syntactic complexity. We demonstrate that process-mined
graphs of syntactic transitions provide an interpretable and robust fingerprint
of authorship, enabling us to detect Al-generated patterns and differentiate
them from translated or native writing. The proposed framework contributes
a novel methodological perspective to the growing field of Al authorship de-
tection.
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1. Introduction

AT tools built on large language models (LLMs) such as ChatGPT have become
increasingly widespread in academic writing. From brainstorming and drafting
to paraphrasing and summarization, LLMs are now embedded in the workflow
of researchers and students alike. This shift in authorship practices has raised
important questions about the authenticity of scientific writing and the ability to
distinguish Al-generated text from human-authored content.

Current approaches to Al detection focus predominantly on surface-level charac-
teristics such as word frequency patterns, perplexity scores, and stylometric irregu-
larities [9, 16]. While these methods offer fast and scalable detection, Al-generated
texts can slip through these systems by means of paraphrasing, translation, or
editing, which obscure the statistical fingerprints of Al models. Moreover, stylo-
metric features tend to treat grammatical elements as isolated tokens rather than
analyzing how sentences are structured syntactically [6].

In this paper, we argue that syntactic patterns, especially sentence-level gram-
matical structures, offer a deeper and more robust basis for detecting Al-generated
writing. We focus on sentence structure as a distinctive linguistic fingerprint and
investigate how it varies across different types of text: native-authored, human-
translated, ChatGPT-generated, and ChatGPT 4o-generated (in deep research
mode). To this end, we created a four-part scientific text corpus, each group
consisting of six scientific papers written or generated under controlled conditions
in the computer science domain. We apply two complementary methods: (1) sta-
tistical profiling based on part-of-speech (POS) tags and dependency roles, and (2)
process mining to discover generalized syntactic flow patterns in sentence construc-
tion using the Heuristics Miner algorithm [14]. While the former quantifies gram-
matical characteristics, the latter visualizes structural tendencies through heuristic
process graphs. This experiment introduces a novel application of process mining
in linguistic analysis.

2. Related works

Detecting Al-generated or Al-influenced text has become a prominent research
field, particularly with the widespread use of large language models (LLMs) in
academic writing. Stylometric methods relying on features such as function-word
usage, part-of-speech (POS) distributions, and sentence-length metrics are proving
effective in distinguishing Al-generated content from human-authored text. No-
tably, Zaitsu & Jin [16] achieved 98 % accuracy in classifying GPT-generated ver-
sus human-written Japanese scientific text using POS bigrams and function-word
frequencies. Prova (2024) [9] presents a hybrid detection model using feature-based
classifiers (XGBoost, SVM) alongside a BERT-based architecture. Trained on a
balanced dataset of Al- and human-generated samples, the BERT model achieved
93 % accuracy, outperforming XGBoost (84 %) and SVM (81 %). The recent Sty-
loAI model [6] applies 31 stylometric features, including new grammatical markers,
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using Random Forest classifier and achieves up to 98 % accuracy in multi-domain
detection tasks.

However, these approaches treat syntactic structure as static features, such
as isolated POS or dependency tag frequencies. Researchers have advanced the
field by using POS n-grams and syntactic n-grams. For instance, Pokou et al. in
[7] introduced variable-length POS patterns for authorship attribution, capturing
frequent POS sequences rather than single-tag statistics. Posadas-Duran et al. in
[8] used complete syntactic n-grams from dependency trees to profile writing style,
demonstrating improved performance over lexical n-grams. Still, these methods
remain static, focusing on patterns without modeling the sequential structure of
syntactic roles.

Structured dependency stylometry has also gained attention. Murauer & Specht
in [5] proposed DT-grams, language-independent dependency-tree-gram features
for cross-language authorship identification, proving their utility in capturing gram-
matical style when transferring texts across languages. However, like POS and
syntactic n-grams, DT-grams treat dependency substructures in isolation and do
not model the flow of syntactic roles within sentences.

In parallel, Al-influenced translation, where human text is revised or translated
by LLMs, poses new detection challenges. Systems like GPTZero struggle to iden-
tify Al-assisted rewriting, with performance dropping to 28 % F1 in paraphrased
cases and producing false positives in human writing [3]. Krishna et al. in [4] report
similar challenges, noting that Al-assisted paraphrasing often avoids detection due
to preservation of human syntactic patterns.

Our earlier work addresses part of this challenge through lexical profiling. In
[13], we introduced a synonym set based approach using WordNet synsets to mea-
sure conceptual recursion and redundancy. We found that translated texts exhibit
higher lexical density than Al texts, while native texts share greater concept over-
lap with AT output. We also analyzed lexical redundancy and conceptual overlap,
showing clear distinctions between AI- and human-authored scientific writing in
[12].

While stylometry outlines linguistic fingerprints, it does not capture the dy-
namic flow of sentence construction. Process mining has been recently combined
with NLP for extracting structured models from event logs, with applications such
as semantic role labeling from textual logs [10] and exploratory process model dis-
covery via language models [11]. However, no prior work directly applies process
mining to syntactic dependency sequences in text.

Our present approach applies Heuristic Miner to build dependency-role tran-
sition graphs from sentence-level parse sequences, yielding graphical models that
reflect typical structures. This method extends traditional syntactic analysis by
representing how roles (e.g., subject — verb — object — modifier) sequentially
co-occur, offering a novel, process-oriented view. To our knowledge, it is the first
attempt at such structural profiling. In the context of translated texts, which
may combine human sentence planning with Al-driven surface-level phrasing, our
process-mining approach reveals patterns such as syntactic chaining or padding
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that are indicative of Al involvement. These structural patterns supplement lexi-
cal measures, enabling a more robust detection of Al assistance in translation.

3. Methodology

3.1. Corpus design

The text corpus used in this study consists of 24 scientific articles from the Com-
puter Science domain, divided into four categories, each containing six texts. The
first category includes human-written papers authored by native English speakers
and published between 2000 and 2015, prior to the emergence of LLMs. Their coun-
terparts form the second category: articles generated by ChatGPT-4. For these,
the title and abstract of each human-written paper were provided as prompts, to-
gether with an instruction to write a full scientific article of about 10,000 words.
In practice, however, ChatGPT-4 produced outputs of approximately 5,000 words,
and none of the generated texts exceeded this length.

The third category consists of translations of papers written by non-native re-
searchers after 2020. These texts were created with moderate AI support, which
was used only to improve linguistic quality, such as correcting grammatical er-
rors, smoothing the discussion flow, and enhancing stylistic variety. The fourth
category contains the Al-generated counterparts of these translations, produced
with ChatGPT-40’s deep research function. As in the previous case, the model
was given the title and abstract of each translated paper and instructed to write
a full scientific article of about 10,000 words. In this case, ChatGPT-40 complied
with the requested length and generated significantly longer articles, typically over
10,000 words.

The use of these two different Al models explains the variation in text length
between the paired categories. All texts nevertheless exceed 3,000 words, ensuring
sufficient syntactic complexity and topic depth for the analysis. The basic char-
acteristics of the papers in the collection, as well as their lexical comparison, are
reported in a recent paper [13].

3.2. Syntactic annotation

Text files were first cleaned and segmented into individual sentences using a com-
bination of regular expressions and the NLTK python library’s sentence tokeniza-
tion function. Non-linguistic elements such as titles, metadata, and references
were excluded. Sentences were then normalized by: (1) removing punctuation, nu-
meric tokens, and special characters; (2) filtering short, non-informative lines (e.g.,
headings) and retaining sentences with sufficient lexical and grammatical complex-
ity. Next, each sentence was POS-tagged and dependency-parsed using spaCy’s
en_core_web_sm model to enable sentence-level syntactic profiling.
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3.3. Sentence structure discovery

In this study, we introduce a novel methodological contribution by applying process
mining techniques to explore and visualize the structural complexity of natural
language sentences. Traditionally used in business process management and system
logs, process discovery allows the extraction of structured workflow models from
event logs [2]. Here, we adapt this technique to syntactic dependency data, treating
each sentence as a trace and each dependency label as an event within that trace.
For this approach, all texts had to be transformed into an event log that captures
the sequence of syntactic roles. To illustrate the concept, a simplified example is
shown below:

L={(A, B, C, D),(A, C, D),(A, B, D)}

In this example, log £ contains three traces, each representing a sentence as an
ordered list of dependency labels. A, B, C, and D are placeholder symbols standing
for different dependency labels that represent syntactic roles (e.g., subject, verb,
object, modifier).

Event logs typically contain at least a case ID (a unique identifier for a pro-
cess instance), an activity label (representing an event), and a timestamp. In our
setting, the timestamps do not carry linguistic information but are required by
the process mining algorithm to determine the order of events within each trace.
They were therefore generated automatically according to the sequential order of
the dependency labels in a sentence. The syntactic annotation and log generation
pipeline is shown in Figure 1.

Annotated Text (spaCy)

The [det] model [nsubjpass] was
[auxpass] trained [ROOT] on [prep]
a [det] large [amod] dataset [pobj].

RAW Text

sentence_id -> case_id
The model was trained syntactic_role -> activity
on a large dataset.

timestamp: generated using the sentence position of the syntactic role

\

" Event Log (CSV)

case_id activity position timestamp
Annotated Text (spaCy) s 1 nsubjpass 1 2025-06-03 18:59:48.156
N ER auxpass 2 2025-06-03 18:59:48.157
The [det] model [nsubjpass] was s 1 ROOT 3 2025-06-03 18:59:48.158
lauxpass] trained [ROOT] on [prep] s 1 amod 4 2025-06-03 18:59:48.159
a [det] large [amod] dataset [pobj].|[s 1 pobj 5 2025-06-03 18:59:48.160

(a) Syntactic annotation. (b) Event log generation.

Figure 1. Text transformation into event log.

During the construction of the event logs, not all syntactic roles (dependency
labels) were considered equally relevant. To focus the analysis on core sentence
structure and reduce noise from frequent but less informative elements, several
dependency types were deliberately excluded from the logs. The omitted labels
include common grammatical markers such as determiners (det), prepositions and
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case markers (case), subordinating and coordinating conjunctions (mark, cc), pre-
conjunctions (preconj) and punctuation (punct). These roles typically represent
grammatical scaffolding rather than semantic or structural functions within a sen-
tence. By excluding them, the resulting log better captures the backbone of syn-
tactic constructions, such as subject—verb—object relationships and clause-level de-
pendencies.

Common process discovery algorithms include (1) Alpha Miner [1], that is suit-
able for simple, noise-free logs, (2) Heuristics Miner [14] which is robust against
exceptional or infrequent behavior, and (3) Inductive Miner [15] which produces
sound, block-structured models. For this study, the Heuristics Miner algorithm was
selected for two main reasons. Firstly, natural language sentence structures exhibit
high variability. Nearly every sentence can be seen as a unique case with different
syntactic sequences. This results in a highly exceptional log with few frequent pat-
terns. The Heuristics Miner is designed to handle such noisy, non-repetitive event
logs, making it ideal for linguistic applications. Secondly, unlike other algorithms
that produce complex Petri nets, the Heuristics Miner generates a graphical model,
called heuristic net, that emphasizes the most statistically significant transitions
between events. This representation is more interpretable for syntactic analysis,
where the goal is not strict process conformance but insight into sentence construc-
tion tendencies like how subjects relate to objects, or the placement of modifiers.

4. Results

This section presents the results of sentence-level grammatical profiling across
native-authored, translated, and Al-generated scientific texts. The analysis ad-
dresses two main objectives:

1. to quantify the statistical differences in grammatical structure between the
text categories, and

2. toidentify distinctive sentence structure patterns that can differentiate human-
authored and translated texts from Al-generated ones.

4.1. Quantitative analysis of grammatical differences

To quantify the differences between the four groups of texts, we have applied four
statistical measures. All grammatical comparisons are based on normalized or
sentence-level average metrics to eliminate distortions caused by differing document
lengths.

4.1.1. POS distribution

The normalized POS tag frequencies in Figure 2 reveal clear lexical patterns that
differentiate the three text groups. Notably, Al-generated texts stand out for their
higher frequency of modal verbs (MD), present participles (VBG), adjectives (JJ),
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plural nouns (NNS), and adverbs (RB). These patterns suggest a tendency toward
generalization, elaboration, and structural padding. These are typical features of
model-generated language that aims for academic style without strong referential
grounding. Native-authored texts lead in the use of proper nouns (NNP), infiniti-
val markers (TO), and personal pronouns (PRP), reflecting a more referential and
agent-oriented writing style. Not surprisingly, translated texts share features with
both groups. They resemble Al texts in their frequent use of common nouns (NN,
NNS) and TO, which suggests compact syntax likely arising from translation con-
ventions or simplification. On the other hand, they align more closely with native
texts in their use of past participles (VBN) and proper nouns (NNP), the features
associated with academic conventions like passive constructions and citations.

group
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Figure 2. Average POS distributions.

4.1.2. Syntactic role distribution

The syntactic structure of sentences was analyzed by grouping dependency roles
into higher-level categories (e.g., Subject, Object, Modifier). The radar chart in
Figure 3 visualizes the average number of each role per sentence, aggregated by
text group. Remarkably, Al-generated and native-authored texts show similar
syntactic role distributions across most categories. This suggests that Al writing
tools successfully replicate human-like sentence structuring in scientific text. The
most notable divergence is seen in the Modifier role. Human-written texts consis-
tently use more modifiers, indicating a tendency to enrich noun phrases or insert
descriptive elements. Al texts, by contrast, apply modifiers more conservatively,
potentially favoring structural clarity over elaboration. In terms of Coordination,
the pattern is reversed. Al texts exhibit higher coordination than human-written
ones, suggesting a preference for parallel or additive structures. Native texts rely
less on coordination, possibly favoring more hierarchical or subordinated construc-
tions. The Object role also shows a distinct contrast. Native-authored texts feature
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the highest object frequency, which may reflect more diverse transitive construc-
tions or greater syntactic density. Al texts exhibit lower values here, hinting at
more simplified or formulaic sentence building. Other roles such as Subject, Predi-
cate, and Adverbial remain relatively stable across all groups, indicating a shared
core structure in scientific writing regardless of authorship.

Syntactic role profile by text group — Native
Subject —— Translated
— A

Subordinatfon

Coordination Dbject

Adverbial

Figure 3. Average distribution of syntactic roles.

4.1.3. Position of key syntactic roles

The most frequent positions of the main syntactic roles (nsubj, ROOT, dobj) shown
in Figure 4 further distinguish the groups. Although native texts have the longest
sentences, averaging over 25 tokens, the subject (nsubj) typically appears in the
first position, while the predicate (ROOT) appears in the second position, which
aligns with canonical English word order (Subject—Verb—Object). In Al-generated
texts, these roles are delayed, likely due to the frequent use of fronted modifiers.
Direct object (dobj) shows the most notable difference. In Al-generated texts, it
appears later (usually at position 7), while in both native and translated texts the
object appears at position 5. This suggests that Al systems tend to insert more
modifiers between the verb and the object, creating syntactically padded structures.

4.1.4. Sentence complexity profiles

The comparison of normalized sentence structure distributions in Figure 5 high-
lights distinct tendencies across author groups. Interestingly, Al-generated texts
rely heavily on active constructions, with nearly 80% of sentences being active.
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Figure 4. (a) Average sentence length (b) Most frequent positions
of key syntactic roles.

They also show minimal use of complex and passive structures, suggesting syn-
tactic simplicity and regularity. This reflects the model’s preference for clarity
and reduced grammatical embedding. Native-authored texts, in contrast, display
greater structural diversity. While active voice still dominates, these texts feature
more passive and complex sentences, indicating a higher degree of syntactic flexi-
bility and subordination. Translated texts exhibit a hybrid behavior. Their use of
complex and fragmentary sentences is slightly higher than in native writing, possi-
bly due to literal rendering of source syntax or segmentation artifacts introduced by
translation tools. Passive constructions occur less frequently than in native texts,
but more than in Al-generated content, pointing to some retention of authentic
academic style.

Sentence structure
m active
complex
= fragment
passive

0.6
2
&
0.4
0.2
0.0
Al

Native Translated
Group

Figure 5. Normalized sentence structure ratios.
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While the statistical profiles above capture frequency-based syntactic tenden-
cies, process mining allows us to explore how these grammatical elements are se-
quenced and interact within individual sentences.

4.2. Sentence structure discovery

To identify structural patterns typical of each author group, we applied the Heuris-
tic Miner algorithm to generate dependency-role process graphs for every single
text in the corpus. These individual graphs model the transitions between ma-
jor dependency roles, capturing both their frequency and structural positioning
within sentences. We also experimented with creating aggregated process graphs
for entire groups; however, these models became overly large and heterogeneous,
making them less suitable for meaningful interpretation. For this reason, the paper
presents one representative graph from each group, selected to illustrate charac-
teristic sentence-level syntactic tendencies identified in that category. Specifically,
Figure 6a shows an example from the human-translated texts, Figure 6b from
the ChatGPT-4 generated texts, Figure 7a from the native-authored texts, and
Figure 7b from the ChatGPT-40 deep research texts. The development of more
effective methods for constructing generalized group-level process models is left for

future work.
e |

(a) Translated text. (b) ChatGPT 4.0 generated text.

Figure 6. Heuristic dependency structure graphs of translated and
ChatGPT 4.0-generated texts.

We can observe that the process graphs of human-translated and ChatGPT 4.0
texts are structurally similar. Both graphs display relatively shallow syntactic
structures which indicates a tendency toward simpler and flatter clause chains.
These texts exhibit frequent use of prepositional phrases which reflects compact
sentence construction and dense nominal modification (i.e., sequences of stacked
adjectives or noun modifiers within noun phrases). This is considered typical in
translated texts and baseline AI. The lower presence of subordinate structures
(xcomp, advcl, and csubj) suggests limited clause embedding. It is also worth
noting, that both groups rely heavily on direct object constructions, indicating
strong SVO alignment and topic-focus in sentence planning.

The process graphs of native writings and texts generated by ChatGPT 4o deep
research function show deeper syntactic complexity and stronger structural vari-
ation. Subordinate clause structures (advcl, xcomp, and acl) appear more often
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(b) ChatGPT 4o deep research generated text.

Figure 7. Heuristic dependency structure graphs of native and
ChatGPT 4o deep research generated texts.

and in richer configurations. Especially, subject and object (nsubj and dobj) are
embedded more frequently inside these clauses, which indicates syntactic elabo-
ration and hierarchical depth. Also, both graphs include more dependency roles
(conj and ccomp) and more transitions, which suggests the high use of coordinated
or parallel clause structures.

5. Discussion and conclusion

This study set out to identify grammatical features that can help infer the ex-
tent of AT involvement in human-translated scientific texts. Through a combina-
tion of frequency-based syntactic profiling and structural process mining, we have
uncovered clear patterns that distinguish Al-generated content from both native-
authored and translated texts.
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Our analysis revealed that Al-generated texts exhibit distinctive surface-level
tendencies. These include an elevated use of modal verbs, participles, and coordi-
nated structures, combined with reduced use of passive voice and embedded clauses.
Although these patterns aim to mimic academic tone, they often result in overly
regular sentence structures with less syntactic depth. By contrast, native-authored
texts demonstrated more referential grounding and syntactic variability, marked by
higher frequencies of proper nouns, passive constructions, and subordinate clauses.

Not surprisingly, translated texts emerged as a hybrid category. In many as-
pects, such as the prevalence of common nouns, infinitival markers, and prepo-
sitional phrases, they aligned with baseline AI output. This suggests the use of
translation systems which tend to apply simplification and structural compres-
sion. However, their use of passive voice, proper nouns, and past participles more
closely resembled human writing, particularly in stylistic conventions of scientific
discourse.

Notably, the most insightful patterns emerged from process mining. The struc-
tural graphs showed that baseline AT (ChatGPT 4.0 default) and translated texts
rely on flatter syntactic chains with limited embedding, while native and advanced
AT (ChatGPT 4o with deep research) texts reveal richer clause interactions which
reflect a deeper level of syntactic planning.

These findings suggest that it is possible to develop diagnostic criteria to detect
AT involvement in translated texts. Texts that display (1) high coordination but
low subordination, (2) frequent direct object placement at later sentence positions,
(3) dense nominal modification with limited clause embedding, and (4) reduced use
of referential markers (e.g., proper nouns, personal pronouns), are more likely to
contain Al-generated segments.

While translated texts may inherit some of these attributes from the source
language or the translation process itself, an over-concentration of such features,
especially when aligned with statistical outliers in modifier usage or syntactic role
position, can serve as a heuristic indicator of Al usage.

6. Limitations and future work

A limitation of the present study is that syntactic roles were automatically assigned
using the spaCy parser, which may introduce annotation inaccuracies. Another
limitation concerns the corpus size: with 24 papers divided into four categories,
the dataset is adequate for a proof-of-concept but relatively small for drawing
broader conclusions. While each paper is long enough to provide syntactic depth,
the limited number of texts constrains the representativeness of the findings. As a
direction for future research, we aim to expand the corpus and to develop methods
for constructing more interpretable generalized process graphs at the group level,
so that broader structural tendencies can be captured.
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1. Background

In recent years, large language models (LLMs) have gained significant attention,
as companies compete to develop models capable of solving a wide range of nat-
ural language processing tasks through extensive data training. The release of
ChatGPT! by OpenAI? showcased unprecedented capabilities, achieved through
a multi-stage fine-tuning process. Nevertheless, while ChatGPT and similar large
language models have been extensively trained for major languages, no conversa-
tional model has been developed specifically for Hungarian. Companies such as
OpenAl typically include minimal Hungarian content in their training corpora, as
is the case with most small, low-resource language with limited amount of available
datasets.

For Hungarian, the first instruction-following model was introduced by Yang et
al. [34], based on the Llama 2 architecture [29]. While this model demonstrated
significantly improved performance compared to previous Hungarian LLMs on local
benchmarks, it still lacks key functionality, most notably, the ability to engage in
natural, conversational interaction.

Conversational fine-tuning datasets require substantial human resources due to
their multi-turn interaction structure, and, as mentioned earlier, such datasets are
currently lacking in the Hungarian language. In our recent research, we lever-
aged the advantages of transfer learning and, following the approach of Yang et
al. [34], we applied continual pre-training to the Llama 3.1 8B Instruct [10] and
Qwen2.5 7B Instruct [31] models to adapt their conversational capabilities to the
Hungarian language. Our newly continual pre-trained base models are named
PULI-LlumiX-Llama-3.1 and PULI Trio Q. The name “PULI” refers to the
eponymous Hungarian dog breed. This dog is not only a cultural symbol in Hun-
gary, but is also known for its agility, energy, and intelligence despite its small size.
By choosing this name, we emphasize similar qualities in our small but capable
model. Our base models are available at our Hugging Face repository?.

2. Related work

The global prominence for decoder-only transformer-based large language chat
models was brought forth by OpenAI’s GPT model family [21] which was pri-
marily trained on English data. In the past years, an array of new models have
appeared at a rapid pace. Besides OpenAl’s GPT series, the most notable closed-
source families include Claude [2] by Anthropic and Gemini [7] by Google. More
recently, open-source Deepseek models [8] have emerged as one of the most no-
table developments within the LLM landscape. They introduced techniques such
as supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO),

Thttps://chatgpt.com
2https://openai.com
Shttps://huggingface.co/NYTK
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which helped improving training efficiency and lowering computational costs, while
maintaining competitive performance.

Other open-source model families include Alibaba’s Qwen series and the sub-
sequent Qwen2 models [31], which comprise a range of base models as well as
instruction-tuned LLMs, spanning from 0.5B to 72B parameters. The series also
includes a Mixture-of-Experts (MoE) model, further broadening the available ar-
chitectures and training strategies within open-source development.

In some instances makers of closed-source model families also release open-
source series such as is the case with Google’ Gemma model family. Their latest
model, Gemma 3 [28] is a multimodal and multilingual model, available in various
parameter sizes ranging from 1B to 27B, with a 128k-token context window.

Meta’s Llama series [29, 30] has also played a central role in improving ac-
cess to high-performance models. Their multilingual pre-training, range of model
sizes, and general-purpose capabilities have made them widely adopted, especially
in contexts of smaller language model development, where training data and in-
frastructural capacities are limited.

Llama-2-7b was adapted to Hungarian by Sambalingo for its pre-trained bilin-
gual base model, Sambalingo-Hungarian-Base [6]. The model, that also has its
chat version, was trained on 59 billion tokens sourced from the Hungarian split
of the Cultura-X corpus [19]. While it represents a significant step for Hungarian
LLM-development, the monolithic nature of the training data places limitations on
its ability to recognize the nuances and genre diversity of the language.

Finally, another model family with notable Hungarian representation is the Eu-
roLLM series [18]. As of the time of writing, their flagship model, EuroLLM-9B,
was trained on 4 trillion tokens drawn from all EU official languages. However,
during pretraining — prior to instruction tuning and alignment — the dataset re-
mained predominantly English, with the language comprising 32.5-50% of the over-
all token mix. This raises concerns about the effective representation of mid- and
low-resource languages in the model, including Hungarian.

Due to limited computational resources, we opted for an approach involving
continual pre-training. This method allows us to incrementally update the model
with new data without retraining from scratch, making it a more resource-efficient
alternative.

3. Datasets and PULI models

In our continual pre-training experiment, we followed the methodology of [34].
In Table 1, we present the main characteristics of the continual pre-training cor-
pora. For the PULI long and English parts, we used the same corpora (containing
8,077,464,716 words) as employed in the work of Yang et al. [34], but we addi-
tionally incorporated the Hungarian Wikipedia to enhance the model’s knowledge
of the Hungarian language. For the Chinese part, we used the Wu Dao 2.0 cor-
pus [37], which consists of long documents (over 15,000 characters) drawn from its
publicly available portion. During the pre-training experiments, we observed that
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the model generated more grammaticality errors in its outputs. To address this
issue, we concluded the training with a Hungarian-only dataset. In this final phase,
our goal was not only to enhance the model’s proficiency in Hungarian, but also to
provide it with up-to-date information. Accordingly, the dataset was composed of
carefully selected Hungarian articles published over the past six years. The corpora
used in this stage were: Hungarian Wikipedia (2019-2025), containing 174,945,601
words, and Hungarian news articles (2019-2025), containing 622,275,769 words.
The characteristics of the final-stage corpus are presented in Table 1.

Table 1. Corpus characteristics for continual pre-training.

Documents Words | Average document length

average / median (word)

PULI long (hu) 763 704 | 7902 519 115 10 823.38 / 7 149
Long Context QA (en) 88 957 | 1 009 562 704 11 348.88 / 11 274
BookSum (en) 9 600 42 339 698 4 410.39 / 3 266
Wu Dao 2.0 long (zh) 174 118 | 2 855 217 266 16 398.17 / 14 767
(Characters) (Characters)

Final stage (hu) 1411 979 797 221 370 443.65 / 217

The continual pre-training phase employed different multilingual mixtures for
each model. The PULI-LlumiX-Llama-3.1 (bilingual) model was trained on a com-
bination of the PULI long and English components. In contrast, the PULI Trio
Q (trilingual) model utilized a mixture of the PULI long, English, and Chinese
components. The training process for both models concluded with a final stage
using exclusively Hungarian data.

For fine-tuning, we used the same basic corpus as in the work of Yang et al. [34],
but we significantly expanded the instruction dataset. To better align the model
with conversational use, we also collected a large number of dialogue-style prompts
and replaced the Stanford Alpaca instruction template with the Llama 3 and Qwen2
chat templates to ensure consistency with the base models’ instruction style. Our
contributions to the fine-tuning dataset include:

o HuLU benchmark [15] prompts: Increased to 7,344 segments;
o MILQA benchmark [20] prompts: Increased to 2,191 segments;
e Graduation tasks: Increased to 5,589 segments;

o Title, keyword generation, and summarization tasks [3, 33]: Increased to
3,000 segments;

o Conversational and instructional prompts [14, 17, 26, 38]: Hungarian-specific
content, totaling 10,884 prompts;

o Psychiatric content [9]: 315 interviews;
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o Text simplification [24]: 2,274 prompts;

e Named Entity Recognition prompts: 2,300 prompts generated from NYTK-
NerKor [25];

e University exam: 166 publicly available questions covering tourism, business,
geography, and economics.

e User questions: Increased to 935 segments. These prompts are generated by
questions that users ask from our demo models. In these cases, the answers
are manually written by annotators.

« Poem prompts: 11,800 prompts collected from Hugging Face?.

e Miscellaneous: Increased to 3,358 segments. Prompts from different customer
datasets that can be made public.

In total, our Hungarian fine-tuning dataset consists of 44,626 segments. In our su-
pervised fine-tuning, inspired by Yang et al. [34], we mixtured English and Chinese
prompts to our Hungarian prompts:

« Bilingual prompt dataset: In the case of LlumiX model, we added 85,775
English prompts: Stanford Alpaca [27], Dolly [5] and llama-instruct®.

o Trilingual prompt dataset: In the case of Trio model, beside the English
prompts, we added 50,130 Chinese prompts: neo_sft phase2% Chinese part.

To evaluate the performance of our models, we compared them with the previous
PULI models:

o PULI 3SX is a GPT-NeoX-based [4] model with 6.85 billion parameters,
pre-trained from scratch on a monolingual Hungarian corpus of 36.3 billion
words.

e« PULI Trio: Another GPT-NeoX-based model, with 7.67 billion parameters,
trained from scratch as a Hungarian-English-Chinese trilingual model. The
Hungarian subset of the training data contains 41.5 billion words.

o PULI LlumiX: A continued pre-training adaptation of Llama 2 [30]. The
original Llama 2 model was trained on approximately 600 million Hungar-
ian tokens. This version was further trained on an additional 7.9 billion
Hungarian words, emphasizing long-form documents exceeding 5,000 words.
Additionally, the context window has been expanded to 32,768 tokens.

4https://huggingface.co/datasets/leinadsened/hungarian-poems-with-instructions
Shttps://huggingface.co/datasets/togethercomputer/llama-instruct
Shttps://huggingface.co/datasets/m-a-p/neo_sft_phase2
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4. Methods and experiments

In our current research, we adapted two multilingual LLMs to Hungarian. Our
goal was to balance computational efficiency and performance; therefore, inspired
by [34], we selected the Llama 3.1 8B Instruct [10] and Qwen2.5 7B Instruct for
continued pre-training to adapt it to Hungarian. According to prior research,
transfer learning plays a crucial role in language adaptation, and instruction-tuned
models contain valuable structured knowledge compared to base models. However,
we found no previous research that applies continued pre-training on an instruct
model for language adaptation.

For the training, we used the LLaMA-Factory [40] framework with the following
hyperparameters: global batch size = 128; learning rate = le-5; precision = bfl6
(Llama) / fp32 (Qwen); context length = 16,384 (Llama) and 32,768 (Qwen);
epochs = 1.

We trained two base models from the Llama and Qwen Intruct models, and two
conversational or chat models from it:

e PULI-LlumiX-Llama-3.1: The Llama 3.1 8B Instruct model were contin-
ual pre-trained on bilingual (Hungarian-English) dataset, then completed on
monolingual Hungarian dataset.

e PULI-LlumiX-Llama-3.1 Chat: The PULI-LlumiX-Llama-3.1 model
were supervised fine-tuned on our bilingual (Hungarian-English) fine-tuning
dataset, with 3 epochs.

e PULI Trio Q: The Qwen2.5 7B Instruct model were continual pre-trained
on trilingual (Hungarian-English-Chinese) dataset, then completed on mono-
lingual Hungarian dataset.

e PULI Trio Q Chat: The PULI Trio Q model were supervised fine-tuned
on our trilingual (Hungarian-English-Chinese) fine-tuning dataset, with 3
epochs.

For the conversational supervised fine-tuning, we also used the LLaMA-Factory
framework with the following hyperparameters: global batch size = 64; learning
rate = le-5; precision = bfl6 (Llama) / fp32 (Qwen); context length = 32,768;
epochs = 3.

For the fine-tuning evaluation on the HuLU benchmarks, we used the Hugging
Face implementation”.

All training was conducted on four NVIDIA A100 GPUs (80 GB each), utilizing
the Accelerate library [11], Fully Sharded Data Parallel [39] and Liger Kernel [12]
in all cases.

For the few-shot and zero-shot evaluation tasks, to ensure a fair comparison,
we applied the same settings, evaluation metrics, prompts, and methodologies as
described in the study by Yang et al. [35].

"https://github.com/huggingface/transformers/tree/main/examples/pytorch
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5. Results and evaluation

First, we examined the vocabularies and the Hungarian training data subsets of
the openly available Hungarian LLMs. In Table 2, the Hungarian dataset/subset
(in words), vocabulary sizes, and fertility values [1] are observed. The fertility val-
ues were calculated from the largest PULI corpus [36], which consists of 41 billion
words. Table 2 highlights the impact of training corpus composition on vocabulary
and fertility values. The earlier PULI models (3SX and Trio), trained exclusively
or primarily on Hungarian data, used vocabularies optimized for Hungarian mor-
phology and word formation, resulting in lower fertility values (1.58-1.63). This
reflects a tighter, language-specific tokenization. In contrast, the newer LlumiX
and Trio Q models — pre-trained on multilingual corpora with larger token vocabu-
laries — exhibit higher fertility (around 3.0), indicating a shift toward tokenization
schemes influenced by multilingual instruction models. This change reflects a bal-
ance between leveraging multilingual model architectures and retaining adequate
representation for Hungarian.

Table 2. Hungarian datasets, vocabularies and fertilities of

PULI LLMs.
Dataset Vocab  Fertility
PULI 3SX 36.38B 50,048 1.634
PULI Trio 41.5B 150,016 1.585
PULI LlumiX 7.9B 32,000 3.058
PULI-LlumiX-Llama-3.1 9.7B 128,256 3.062
PULI Trio Q 9.7B 152,064 3.126

Table 3. Few-shot and zero-shot results.

Few-shot
HuCOLA HuRTE HuSST
PULI 3SX 51.51 52.40 54.57
PULI Trio 53.47 54.30 54.96
PULI LlumiX 55.84 61.49 68.53
PULI-LlumiX-Llama-3.1 71.26 72.63 69.38
PULI Trio Q 63.85 62.98 70.79
Zero-shot
PULI 3SX Instruct 61.76 52.09 46.27
PULI Trio Instruct 51.97 74.54 54.50
PULI LlumiX Instruct 66.98 74.54 70.06
PULI-LlumiX-Llama-3.1 Chat 72.98 86.76 79.44
PULI Trio @Q Chat 76.68 86.10 78.04
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In our second evaluation phase, we conducted few-shot and zero-shot experi-
ments. To ensure a fair comparison with the previous work of Yang et al. [35], we
evaluated our models on HuCOLA, HuRTE, and HuSST using the same method-
ologies and metrics (balanced accuracy). Performance improved consistently across
both few-shot and zero-shot tasks from PULI 3SX to the latest models. The
PULI-LlumiX-Llama-3.1 Chat and PULI Trio Q models outperformed all previ-
ous iterations, with PULI-LlumiX-Llama-3.1 Chat achieving the highest scores
on the HuCOLA, HuRTE, and HuSST benchmarks compared to PULI Trio Q.
This underscores the effectiveness of continual pre-training and conversational fine-
tuning on Hungarian datasets in enhancing model generalization. Interestingly, in
the HuCOLA task, the Qwen-based PULI Trio Q model achieved the best result,
demonstrating strong adaptability to specific tasks, even when those tasks are lin-
guistically specialized.

Table 4 presents the few-shot and zero-shot experiments on English-Hungarian
(en—hu) and Hungarian—English (hu—en) machine translation tasks. The evaluation
metrics used were SacreBLEU [23] and ChrF [22], reported as BLEU / ChrF scores.
The results show that the latest models exhibit significantly improved translation
capabilities compared to the earlier PULI versions. In both few-shot and zero-
shot translation tasks, the PULI-LlumiX-Llama-3.1 Chat and PULI Trio @ Chat
models displayed marked improvements over their predecessors. The Chat vari-
ants significantly outperformed the earlier LlumiX and Trio models, particularly
in the zero-shot setting, with PULI-LlumiX-Llama-3.1 Chat achieving the highest
BLEU and ChrF scores. This suggests that conversational fine-tuning not only
enhanced dialogue handling but also contributed to stronger cross-lingual transfer
and translation capabilities.

Table 4. Comparison of PULI multilingual models on machine
translation task.

en-hu ‘ hu-en
Few-shot
PULI Trio 14.42 / 45.12 19.69 / 48.27
PULI LlumiX 13.73 / 42.30 15.43 / 35.84
PULI-LlumiX-Llama-3.1 19.31 / 50.58 29.27 / 56.77
PULI Trio Q 21.24 / 52.68 | 31.42 / 59.41
Zero-shot
PULI Trio Instruct 24.86 / 52.51 26.88 / 53.34
PULI LlumiX Instruct 18.32 / 50.63 27.85 / 56.56
PULI-LlumiX-Llama-3.1 Chat | 37.79 / 63.02 | 43.62 / 66.79
PULI Trio Q Chat 30.08 / 58.39 38.45 / 63.58

In the third phase of our evaluation, we performed fine-tuning experiments on
our LLMs. Table 5 presents the fine-tuning performance of our new models. For
evaluation, we further fine-tuned the models on four HuLU benchmarks [15] using
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the LoRA [13] and full parameter fine-tuning method. The evaluation metrics were
the original HuLLU metrics, Matthews Correlation Coefficient (MCC) and Accuracy
(ACCQ), respectively. We experimented with various hyperparameters; in the results
tables, we report only the best results achieved. The results from HuLU bench-
marks reinforce the superior performance of the conversationally fine-tuned models.
PULI-LlumiX-Llama-3.1 Chat consistently achieved the best scores across all tasks,
notably surpassing previous models in HuCOLA, HuCoPA, HuRTE, and HuSST.
PULI Trio Q Chat, while trailing slightly behind LlumiX, still outperformed all
older PULI models. This demonstrates the clear advantage of fine-tuning with a
carefully designed conversational dataset, especially when paired with continual
pre-training.

Table 5. Performance of the PULI-LlumiX-Llama-3.1 and PULI
Trio Q models, on the HuLU benchmarks.

HuCOLA HuCoPA HuRTE HuSST

(MCC) (MCC) (MCC) (ACCQ)

PULI 3SX Instruct 59.5 5.3 55.5 79.7
PULI Trio Instruct 63.1 44.5 59.2 79.1
PULI LlumiX Instruct 70.3 73.4 68.2 81.9
PULI-LlumiX-Llama-3.1 Base 69.2 74.1 71.9 82.2
PULI-LlumiX-Llama-3.1 Chat 72.54 74.1 76.0 83.1
PULI Trio Q Chat 64.7 67.1 68.8 82.1

We also conducted an experiment in which we fine-tuned the PULI-LlumiX-
Llama-3.1 Base and PULI-LlumiX-Llama-3.1 Chat models. As expected, the Chat
model achieved higher results in this comparison, likely because it had already
encountered some examples from the HuLU benchmarks during its conversational
training.

A sample conversation is shown in Table 6, demonstrating the model’s (PULI-
LlumiX-Llama-3.1 Chat) ability to follow instructions and maintain context across
multiple turns. In this example, we asked the model to list three characteristics
for various entities: dog, snail, table, carrot, love, and the transcendent. At the
end of the conversation, we asked it to list four characteristics instead. As shown
in Table 6, the model consistently provided three relevant features for each entity,
and correctly responded with four when requested.

6. Conclusion

In this work, we introduce PULI-LlumiX-Llama-3.1 Chat and PULI Trio Q
Chat, our first conversational Hungarian large language models, based on the
Llama 3.1 and Qwen2 architectures. Building upon the foundation laid by Yang
et al. [34], we expanded both the pre-training and fine-tuning datasets. Our
new model achieved notable improvements across multiple HuLU benchmarks and

269



Annal. Math. et Inf. Z. Gy. Yang, A. Banfi, R. Dodé, G. Ferenczi, F. Féldesi, ...

demonstrated enhanced conversational capabilities for Hungarian compared to pre-
vious LlumiX versions.

Table 6. Example snippet of a conversation.

User:

Assistant:

User:

Assistant:

User:

Assistant:

User:

Assistant:

mondj harom tulajdonsagot a kutyakrol

(’tell me three characteristics about dogs.)

1. A kutydk hiiségesek és odaaddak gazdaik irant.

2. A kutyak képesek felismerni és reagalni az emberi érzelmekre.

3. A kutydk nagyszerii képességgel rendelkeznek a szagokat és zajokat
érzékelni.

csigdk? (’snails?’)

1. A csigdk tgyesek a madszdsban és kivaléan képesek felmdszni a
feliileteken.

2. A csigdk képesek kemény héju otthonukat 6nmagukban visszahizni és
védelmet nyudjtani szamukra.

3. A csigdk nagyon valogatosak és csak bizonyos novényeket taplalkoznak,
melyek létfontossdgn tapanyagokat biztositanak szdmukra.

és a transzcendens? (’and the transcendent?’)

1. A transzcendens olyan fogalom, amely a mindennapi élettél vald fizikai
vagy szellemi tévolsdgra utal, és gyakran kapcsolédik a spiritudlis vagy
misztikus tapasztalatokhoz.

2. A transzcendens élmények olyan intenziv és mély élmények, amelyek
tulmutatnak az érzékelhetd vildgon, és gyakran egyfajta megvildgosodéas-
sal, békeélménnyel vagy egyesiilési élménnyel jarnak.

3. A transzcendens élmények gyakran meghatarozé és megvaltoztatd
hatassal lehetnek az emberek életére, inspiralva 6ket a személyes fejlédésre
vagy a vallasi gyakorlatokba valé mélyebb elmeriilésre.

legyen négy (’let there be four’)

1. A transzcendens olyan fogalom, amely a mindennapi élettdl valé fizikai
vagy szellemi tavolsagra utal, és gyakran kapcsolédik a spiritudlis vagy
misztikus tapasztalatokhoz.

2. A transzcendens élmények olyan intenziv és mély élmények, amelyek
tilmutatnak az érzékelhetd vilagon, és gyakran egyfajta megvildgosodas-
sal, békeélménnyel vagy egyesiilési élménnyel jarnak.

3. A transzcendens élmények gyakran meghatdrozé és megvéltoztatd
hatéssal lehetnek az emberek életére, inspirdlva 6ket a személyes fejlédésre
vagy a vallasi gyakorlatokba valé mélyebb elmeriilésre.

4. A transzcendens t6bb mint a szb szoros értelmében vett élmény lehet,
hanem egyfajta tudatillapot vagy spiritudlis tudatossidg, mely gyakran
meditacié vagy transzcendentdlis gyakorlatok segitségével érheto el.

These results also contribute to a possible framework of developing conversa-
tional models for small languages through tranfer learning and the application of
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continual pre-praining methods. Still, it is worth noting that while our research de-
livered measurable improvements, the results were limited by the need for manual
dataset curation, which remains a resource-intensive and time-consuming process.

In the future, we plan to evaluate our conversational models using LLM evalu-

ation benchmarks, as two new benchmarks for Hungarian, HuGME [16] and Open-
HuEval [32], have been released in recent weeks.
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