
Proceedings of the International Conference on
Formal Methods and Foundations of Artificial Intelligence
Eszterházy Károly Catholic University
Eger, Hungary, June 5–7, 2025
pp. 214–225 DOI: 10.17048/fmfai.2025.214

Perimeter defense game with nonzero
capture radius in a circular target

Sára Szénási, István Harmati

Department of Control Engineering and Information Technology,
Budapest University of Technology and Economics, Budapest

{szenasi,harmati}@iit.bme.hu

Abstract. In this paper, the problem of guarding a circular target wherein
the Defender is constrained to move along its perimeter and has nonzero
capture radius is posed and solved using a differential game theoretic ap-
proach. The Perimeter Defense Game is a special case of Pursuit-Evasion
Game, where the goal of the pursuer is capturing the evader. In the Perime-
ter Defense Game the Attacker seeks to reach the perimeter of the circular
target, whereas the Defender seek to align itself with the Attacker, thereby
ending the game. The Defender has nonzero capture radius, which means
that the Defender wins, when the distance between the Attacker and the
Defender is smaller than the value of the capture radius. The Perimeter De-
fense Game can be divided into two cases: Win of Defender and the Win of
Attacker scenarios. In the case when the Defender wins, the agents play a
zero sum differential game, where the cost/payoff is the Attacker’s terminal
distance to the target. In the case when the Attacker wins, the agents play
a zero-sum differential game, where the payoff/cost is the distance between
the Defender and the Attacker. The analytic solutions of optimal strategies
and the winning regions are also presented.
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1. Introduction

In the reach avoid games there are two competitive teams, where one team attempts
to arrive at a goal set in the state-space while avoiding some other undesired set of
states. The goal of the opposing team is to prevent the first player from arriving
at its goal [16]. The team consists of one or more players. The perimeter defense
games are the special case of reach-avoid games. In a perimeter defense game the
defender’s team constrained to move along the convex perimeter and the attacker’s
team move with simple motion [10, 11]. The turret defense games are similar of
perimeter defense games. In turret defense games the turret can be shoot the
attacker from a certain distance. It can be transformated the game when the
defender moves along a circular target and this way the problem can be solved
easily using analytical methods [15]. The main difference between the perimeter
defense and the transformated turret defense game is the winning condition of the
attacker. During perimeter defense games, if the attacker reach the target at the
same time as the defender makes an interception the defender wins, while in turret
defense game the attacker emerge victorious.

The problem of guarding a target has many important application in real world.
One example is protection of a building’s perimeter against a sequentially arriving
intruder [7]. In a real world there are not always information about the full state
space, therefore, the information must be collected beforehand, for example with
patrolling agents [12]. The target guarding can be applied in three dimension also,
for example in the perimeter-defense game between aerial defender and ground
intruder [6]. The survival is also a possible application, where one agent want to
reach a safety zone while one [14] or more turret [4] want to neutralize its. Turret
defense game with non-zero neutralization angle is also solved [8].

The perimeter defense game has many variant depending on the number of
defenders, the number of intruders and the goal of the intruder(s). In a basic
scenario there is one intruder and one or two defenders and the goal of the intruder is
maximalizing the angular separation from the defender(s) when its reach the target
[15]. The direct generalization is the perimeter defense game with more defenders
and more intruders. This game can be solved with splitting into subgames with
one or two defenders and one attacker [9, 10, 13].

In the reach avoid game the capture radius plays important role. The geometric
solution of a target defense game where the attacker and also a defender can move
freely in a full state space region with faster defenders with non-zero capture radius
and a convex target area using the Hamilton-Jacobi-Isaacs equation is proven, but
only partially appliable to our research, because of the constrained movements of
the defender [3]. But in most of the existing paper discussing the perimeter defense
games, the defender can capture with zero capture radius. There are proposals
mentioned for the solution for the case of non-zero capture radius [12], but it is not
complete proven and using only geometric solution. The most notable difference
in this paper compared to the previous results that we studied the case when the
capture radius is non-zero. In this analysis, we use the first order of necessary
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conditions for optimality according to a classical differential game approach [5].
The steps of solutions is identical to the basic turret defense game [15] with different
termination and optimalization constraints.

The main contribution of this paper is the analytic solution with use of differ-
ential game approach of the Perimeter Defense Game with nonzero capture radius
in a circular target. We give a step by step exploration of the solution.

The paper constructs as follows. After this introduction in Section 1, Section 2
presents the problem statement. Followed by Section 3, where the steps of the
solution method are demonstrated. In section 4 the results are shown and the
equilibrium flow field is presented. Last, in section 5 the conclusion and the future
works with possible research directions are explored.

2. Problem statement

This paper formulates the target guarding problem wherein the Defender (D) con-
strained to move along the circular target perimeter and the Attacker (A) moves
in the plane with simple motion. The Defender can make interception with r cap-
ture radius. In figure 1 can be seen the illustration and the rules of the game:
R denotes the distance between the target center and the attacker, θ denotes the
angular separation between the defender and the attacker and β the angular of the
defender referred to the x axis. The goal of the Attacker is to enter the target,
reach T without interception, and the goal of the Defender is preventing breach by
the Attacker. Selected assumptions are made on the problem statement:
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Figure 1. The illustration of the perimeter defense game with
nonzero capture radius.
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Assumption 2.1. The target is a circle with l = 1 radius.

Assumption 2.2. The player’s speeds are such that 0 < ν ≤ uD = 1, where ν is
the speed of Attacker and uD is the speed of Defender.

Assumption 2.3. The Defender makes interception with r capture radius. The C
Capture Circle is defined as the set of the states of satisfying

C = {(R, θ) | r2 ≥ R2 + 1 − 2R cos θ} (2.1)

Assumption 2.4. The initial separation angle is such that θ(t0) = θ0 ∈ [0, π)

Remark 2.5. The solution in case when θ0 ∈ [−π, 0) can be determined from the
symmetry result.

Assumption 2.6. The initial Attacker distance is such that R(t0) > 1, that is, A
begins outside the target circle.

Assumption 2.7. The initial states are outside the Capture Circle

(R0, θ0) /∈ C. (2.2)

The kinematics can be written as

f(x, u, t) = ẋ =

Ṙθ̇
β̇

 =

 −ν cosψ
ν 1
R sinψ − uD

uD

 (2.3)

The Defender control is the value of the speed of the defender and lies in the range
uD ∈ [−1, 1] and the defender speed direction is always the tangent of the T target
perimeter. The Attacker control is the heading angle referred to the line between
the target center and the attacker and lies in the range ψ ∈ [−π , π].

2.1. Defender wins scenario
In the Win of Defender (WoD) scenario, when D is able to make interception before
A can reach the target, the agents play zero sum game over the cost-functional

Jd := Φd(xf , tf ) = −Rf , (2.4)

where the subscript f denotes the termination, Φd denotes the terminal value
function that depends on the decision of the attacker and the defender. So the cost
functional is the negative Attacker’s distance from the target center at the end of the
game. The Defender is the minimizing player and the Attacker is the maximizing
player. The Value of the game if it exists, is the saddle-point equilibrium of the
cost-functional over state-feedback strategies

Vd = min
uD(·)

max
ψ(·)

Jd = max
ψ(·)

min
uD(·)

Jd. (2.5)
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The terminal constraint is

ϕd(xf , tf ) =
√
R2 + 1 − 2R cos θ − r = d− r = 0, (2.6)

that means that the game is terminated, if the distance between the Defender and
the Attacker equals to the r capture radius. The final time tf is the first time for
which d = r. Thus, the Terminal Surface is defined as the set of states of satisfying
(2.4)

Jd = {x |R > 1 and d = r}. (2.7)

y

x

D

A

Figure 2. The illustration of the Defender wins scenario radius.

2.2. Attacker wins scenario
In Win of Attacker (WoA) scenario, when A is able to drive R = 1 while avoiding
d ≤ r, because of the separation angle is proportional the distance of the agents in
case Rf = 1, the agents play zero sum game over the cost-functional:

Ja := Φa(xf , tf ) = θf − θr, (2.8)

where θr is the angular separation in the limiting case if df = r and Rf = 1
it can be determined from theorem of cosines from AOD triangle in figure 1
θr = arccos

(
2−r2

2

)
. The Defender is the minimizing player and the Attacker is

the maximizing player. The Value of the game if it exists, is the saddle-point
equilibrium of the cost-functional over state-feedback strategies

Va = min
uD(·)

max
ψ(·)

Ja = max
ψ(·)

min
uD(·)

Ja. (2.9)

Termination occurs when the Attacker reaches the target circle, therefore the ter-
mination constraint

ϕ(xf , tf ) = Rf − 1 = 0. (2.10)

The final time tf is the first time for which R(t) = 1. Thus, the Terminal Surface
is defined as the set of states of satisfying (2.10)

Ja = {x |R = 1 and d ≥ r}. (2.11)
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y
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Figure 3. The illustration of the Attacker wins scenario.

3. Methods
The steps of the analytic solution of the Defender wins scenario (WoD) follow
the steps of the Turret Defense Game [15], but we form the steps to our problem
statement. We use the cost function (2.4) and the terminal constraint (2.6) during
the derivation. The analysis is carried out according to a classical differential game
approach [1, 5]. The solution of Attacker wins scenario (WoA) based upon showing
satisfaction of the sufficient condition. The proposed equilibrium strategies of the
Defender wins scenario and Value function substituting into the Hamilton-Jacobi-
Isaacs equation [5].

3.1. Solution of Defender wins scenario
The steps of the following analytic solution follow the steps of the solution of
zero-capture radius case [15] with subtituting the cost function (2.4) and terminal
constraint (2.6).

The analysis is carried out according to a classical differential game approach
[1, 5]. The Hamiltonian of the Defender wins scenario is

Hd = −σRν cosψ + σθ

(
ν

1
R

sinψ − uD

)
+ σβuD (3.1)

where σ ≡ [σR σθ σβ ]T is the adjoint vector. The Hamiltonian is a separable
function of the controls uD and ψ, and thus Isaacs’ s condition [5] holds:

min
uD(·)

max
ψ(·)

Hd = max
ψ(·)

min
uD(·)

Hd ∀x (3.2)

The Defender minimalize and the Attacker maximalize the Hamiltonian. The De-
fender control range is uD ∈ [−1, 1] and the Attacker control range is ψ ∈
[−π, π]. The equilibrium adjoint dynamics are given by

σ̇R = −∂Hd

∂R
= σθν

1
R2 sinψ (3.3)

σ̇θ = −∂Hd

∂θ
= 0 (3.4)
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σ̇β = −∂Hd

∂β
= 0 (3.5)

The terminal adjoint values are obtained from the transversality condition [2]

σ(tf ) = ∂Φd
∂xf

+ η
∂ϕd
∂xf

(3.6)

⇒
σRf

= −1 + η
r (Rf − cos θf )

σθf
= η

rRf sin θf
σβf

= 0
(3.7)

where η is an additional adjoint variable. Therefore, with (3.3), (3.7), the following
hold

σθ(t) = η

r
Rf sin θf ∀t ∈ [t0 , tf ] (3.8)

σβ(t) = 0 ∀t ∈ [t0 , tf ] (3.9)

Since σβ(t) = 0 for all t ∈ [t0 , tf ], the state component β has no effect on the equi-
librium trajectory or the equilibrium control strategies. The terminal Hamiltonian
satisfies [2]

Hd(tf ) = −∂Φd
∂tf

− η
∂ϕd
∂tf

= 0 (3.10)

Since Φd and ϕd independent on time and dHd

dt = 0 so Hd(t) = 0, t ∈ [t0, tf ].
The equilibrium control actions of the Attacker and Defender maximize and

minimize (3.2), respectively:

H∗
d = max

ψ
min
uD

Hd. (3.11)

In order to maximize (3.2), the vector [cosψ sinψ] must be parallel to the vector
[−σR σθ

R ]. Therefore the optimal control of the Attacker can be expressed as:

cosψ∗ = −σR√
σ2
R +

(
σθ

R

)2
sinψ∗ =

σθ

R√
σ2
R +

(
σθ

R

)2
. (3.12)

If σθ < 0, this implies sinψ∗ < 0 due to (3.12). However, this would mean the
Attacker has a component of its motion that points towards the Defender due to
Assumption 2.4. Thus, it must be the case that σθ > 0 In order to minimize (3.1),
the Defender’s control must satisfy

u∗
D = signσθ = 1, (3.13)

since σθ > 0.
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To express the adjoint variable η must be substituting the equilibrium controls,
(3.12) and (3.13), into the Hamiltonian (3.1) and evaluating at final time with (3.7)
and (3.10) gives

H∗
d(tf ) = −σRf

ν cosψ∗ + σθ

(
ν

Rf
sinψ∗ − u∗

D

)
(3.14)

−→ ν

√
σ2
Rf

+
(
σθ
Rf

)2
− σθ = 0 (3.15)

An expression for σR is obtained by considering the Hamiltonian at a general time
and substituting the equilibrium controls (3.12) (3.13) into the Hamiltonian (3.1):

H∗
d(t) = 0 = −σRν cosψ∗ + σθ

(
ν

1
R

sinψ∗ − u∗
D

)
(3.16)

−→ ν

√
σ2
R +

(σθ
R

)2
− σθ = 0 (3.17)

−→ σR =

√
σ2
θ

ν2

(
1 − ν2

R2

)
(3.18)

The ψ∗ optimal heading angle can be determined by substituting the adjoint vari-
ables to the equilibrium the attackers controls (3.12)

cosψ∗ = −σR√
σ2
R +

(
σθ

R

)2
=

−σθ

ν

√
1 − ν2

R2√
σ2

θ

ν2

(
1 − ν2

R2

)
+ σ2

θ

R2

=
√

1 − ν2

R2 (3.19)

sinψ∗ =
σθ

R√
σ2
R +

(
σθ

R

)2
= ν

R
(3.20)

The equilibrium kinematics can be obtained by substituting the equilibrium
controls (3.19) and (3.13) into (2.3) which yields

Ṙ∗ = −ν cosψ∗ = −ν
√

1 − ν2

R2 (3.21)

θ̇∗ = ν
1
R

sinψ∗ − u∗
D = ν2

R2 − 1 (3.22)

with the following boundary conditions Rf > 1, r2 = R2
f + 1 − 2Rf cos θf .

Considering the differential equation obtained by dividing the equations in
(3.21)

dR

dθ
= ν√

1 − ν2

R2

(3.23)
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⇒ν

[√
R2

ν2 − 1 + arcsin
( ν
R

)]R
Rf

= ν(θ − θf ) (3.24)

Define

g(R) =
√
R2

ν2 − 1 + arcsin
( ν
R

)
(3.25)

⇒ν(g(R) − g(Rf )) = ν(θ − θf ) (3.26)
⇒θ(R;Rf , θf ) = g(R) − g(Rf ) + θf , r2 = R2

f + 1 − 2Rf cos θf (3.27)

Setting different θf , 0 ≤ θf ≤ θr = arccos
(

2−r2

2

)
in (3.26) describes equilibrium

flow field for the Defender wins scenario. The equilibrium flow field gives the
equilibrium trajectory from given terminal states. The optimal attacker path is
the involute of a circle with radius ν.

The symmetric solution if θ < 0, t ∈ [0, tf ] can be solved in a same way. If
θ0 = π called dispersal surface, and in this case the positive and negative solution
results the same value of the game. If θ0 = 0 called afferent surface and in this
case the defender optimal trajectory is keep the zero angular separation.

The equilibrium state feedback control strategies for the Defender wins scenario
are given by

ψ∗ = sign(θ) arcsin
( ν
R

)
u∗
D = sign(θ) (3.28)

The expression for ψ∗ is obtained by (3.19) taking into account the sign of θ.
Similarly, the Defender strategy is given by (3.13) taking into the sign of θ.

The Value of the game is

Vd(R, θ) = −Rf (3.29)
g(Rf ) = g(R) + θf − |θ| (3.30)
⇒ Vd(R, θ) = −g−1(g(R) + θf − |θ|) (3.31)

where g is defined in (3.25). Because Vd is defined using the inverse of the function
g, it is necessary to show that g(R) is monotic. Taking the derivate of (3.25) w.r.t.
R gives

dg

dR
=

√
R2 − ν2

νR
, (3.32)

It must be that 0 < ν < 1 from Assumption 2.2 and from Assumption 2.6 it must
be that R > 1 throughout the game. So we have R > ν and R, ν > 0 which implies
that g(R) is monotonic.

The Value function does not have a closed form analytic expression since g−1

cannot be expressed in closed form.
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The limiting case for the Defender wins scenario is one in which Rf −→ 1,
θf = θr; thus the surface

θGoK(R) = g(R) − g(1) + θr (3.33)

partitions the state space into regions of win for the Defender and Attacker, re-
spectively,

RD = {x| |θ| ≤ θGoK(R)} (3.34)
RA = {x| |θ| > θGoK(R)}. (3.35)

3.2. Solution of Attacker wins scenario
The solution of Attacker wins scenario based upon showing satisfaction of the
sufficient condition for equilibrium via substitution of the proposed equilibrium
strategies and Value function into the Hamilton-Jacobi-Isaacs equation [5]. The
equilibrium state feedback strategies for the Attacker wins scenario is match those
of the Defender wins scenario. The Value function is given by

V (R, θ) = θf − θr = θ − g(R) + g(1) − θr (3.36)

The Hamilton-Jacobi-Isaacs equation can be written as [5]

min
uD

max
ψ

{
l(x, uD, ψ, t) + ∂V

∂t
+ Vxf(x, uD, ψ, t)

}
= 0 (3.37)

where Vx is the vector
[
∂V
∂R

∂V
∂θ

∂V
∂β

]T
and l represents an integral cost compo-

nent. First, note that the cost, has no integral component, and thus l = 0. Also,
the proposed Value function (3.36) is not an explicit function of time and thus
∂V
∂t = 0. The vector Vx is obtained by differentiating (3.36) w. r. t. each state

Vx =
[

−
√
R2 − ν2

Rν
1 0

]
. (3.38)

The equilibrium dynamics f are given by (3.21). Substituting (3.38) , ∂V∂t = 0 and
l = 0 into (3.37) gives

∂V

∂R
Ṙ+ ∂V

∂θ
θ̇ = 0. (3.39)

So the given Value function satisfies the Hamilton-Jacobi-Isaacs equation and this
reason the equilibrium state feedback strategies are same of the cases Attacker and
the Defender wins scenario The trajectories 3.26 are also same at the two cases,
but in the Attacker wins scenario r2 < R2

f + 1 − 2Rf cos θf holds.
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4. Results
In a Defender wins and Attacker wins scenario the agents have the same equilibrium
strategies: the Attacker moves the tangent of the ν radius circle and the defender
moves along the perimeter of the target towards the Attacker. The equilibrium flow
field shows the trajectories in the (R, θ) plane for the Defender and Attacker wins
scenario, also gives the terminal states and this way the winning regions. Figure 4

1 1.5 2 2.5 3 3.5
0

π
4

π
2

3π
4

π

RD

RA

R

θ(
R
)

GoA Trajectories
GoD Trajectories
Terminal surface
GoK Surface
Dispersal Surface

Figure 4. Full equilibrium flow field with ν = 0.8 and r = 0.4.

shows the full equilibrium flow field in case ν = 0.8, r = 0.4. The Attacker winning
region and the trajectories denoted by red, the Defender winning region and the
trajectories denoted by orange, the trajectory of limiting case denoted by black and
the terminal surface of Defender wins scenario denoted by olive. The white region
represents the C capture circle.

5. Conclusion and future works
In this paper we presented and solved the perimeter defense game with one Attacker
and one Defender with r capture radius in a circular target. We created some
assumptions and then showed the Defender and the Attacker win scenario and its
solutions applying the Hamiltonian and the Hamilton-Jacobi-Isaacs equation ie.
the first order necessary conditions for optimality and the sufficient condition for
the equilibrium. The equilibrium state feedback strategies, the winning regions and
the full equilibrium flow field are also presented. The equilibrium state feedback
strategies are the same as the case of the point capture, but the winning regions
and the equilibrium flow field depend on the r capture radius.
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In future work we aim to solve the perimeter defense game with r capture
radius applying more attackers and defenders. Perimeter defense game with general
convex shape target, or general convex shape capture region is also a possible future
work. It is also a possible generalization if ν > 1, so the defenders have larger speed
as the attackers, but there are more defenders than attackers. It is also possible
future work when the Attacker(s) have penetration radius and this way they can
reach the target earlier.
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