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Abstract. Modern cyber-physical systems (CPS) are distributed reactive
real-time systems used in many critical application domains, such as auto-
motive or railway systems, so ensuring their correctness is essential. Formal
verification can exhaustively explore the behavior of the formal representa-
tion of CPS to ensure its reliability. Engineering modeling tools provide
separate modeling constructs for the different aspects of the systems, e.g.,
behavior, architecture, and scheduling, but lack formal composition, making
system-level verification difficult. Formal modeling tools, e.g., Lingua Franca
or the Gamma Statechart Composition Framework, are efficient in describing
component behavior, and they provide formal composition semantics of the
subsystems. However, the provided composition patterns in these languages
are not general, so incorporating the precise coordination, scheduling, and
interaction aspects requires the modification of the component models by en-
coding the coordination into the components. In this paper, we present a
configurable formal description approach for the coordination of distributed
critical systems. We extend the well-known timed automata formalism to
coordinate the execution of the components by directly reusing the formal
models of the components, making the coordination of the system compo-
nents a first-class citizen.
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1. Introduction

The modeling and verification of modern cyber-physical systems (CPS) present sev-
eral unique challenges that arise due to the integration of distributed heterogeneous
components. These systems integrate physical systems with HW/SW components
across varying platforms and locations. One challenge is to account for the timing
of distributed components, which can be influenced by the communication network
between the distributed components (messages can be delayed or lost). CPS are
often used in critical application domains, e.g., the railway or the automotive indus-
try. One way to ensure the reliability and correctness of these systems is to apply
formal verification techniques like model checking, which systematically explores
the state space of the system.

Various modeling and formal languages are developed to help engineers use for-
mal verification: engineering modeling tools, such as AUTOSAR, aim for efficient
engineering and provide separate modeling constructs for the different aspects of
the systems, e.g., behavior, architecture, and scheduling. However, no formal com-
position is defined, so it is hard to target the system-level behavior with formal
verification. On the other hand, formal modeling tools, e.g., Lingua Franca or
the Gamma Statechart Composition Framework, are efficient in describing compo-
nent behavior and they provide formal composition semantics of the subsystems.
However, the provided composition patterns in these languages are not general, so
incorporating the precise coordination, scheduling, and interaction aspects in these
tools requires the modification of the component models and the encoding of the
coordination into the components. Additionally, in distributed CPS, the underly-
ing formal models of the communication and the subsystems often vary based on
the application domain, network architecture, and system requirements, thus, a
configurable solution is needed to model the coordination of the system.

In this paper, we present a configurable formal description approach for the
coordination of distributed critical systems. We extend the well-known timed au-
tomata formalism to coordinate the execution of the components by directly reusing
the formal models of the components, making the coordination of the system com-
ponents a first-class citizen.

1.1. Motivating example: Steer-by-Wire
In our previous works, we presented an approach to model time-dependent behav-
iors in complex distributed systems and showed its applicability with a Steer-by-
Wire (SbW) system inspired by our industrial partner [5], and we investigated how
the coordination of the SbW system can be modeled [10].

In a SbW system to provide steering functionality, the road wheels are actuated
via a control loop. Unlike classic Electric Power Assisted Steering (EPAS) systems,
in the case of an SbW system, there are no direct mechanical connections between
the steering wheel and the road wheels. The angle of the steering wheel is measured
by multiple sensors, and the road wheels are actuated by the Road Wheel Actuator
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(RWA) subsystems based on the measurements. Since actuating the road wheel
is a critical function, a Master Selection Protocol (MSP) was developed to control
the actuation of the road wheels. The MSP assigns which of the redundant RWAs
must be used to control the road wheels based on the availability and correctness
of their sensor measurements. In the presented case study, there are two RWAs
and four sensors, as depicted in Figure 1.

 PrimaryRWA

Sensor1 Sensor2

 SecondaryRWA

Sensor3 Sensor4

Figure 1. Architecture of the SbW
system.

The components of the SbW system are dis-
tributed: the components are deployed on sep-
arate electrical/electronic (E/E) subsystems,
and the components communicate over redun-
dant Controller Area Network (CAN) buses and
private communication buses. The execution of
the E/E subsystems is triggered by their clocks,
and the clocks can deviate from each other.
Furthermore, the CAN buses are used by other
components of the system. The combination of
these properties can cause delayed messages; in
extreme cases, this can lead to comparing sensor measurements originating from
different execution cycles, possibly deeming correct measurements as faulty. Se-
lecting both RWAs as master or selecting a failed RWA as the master can lead
to accidents. To verify that the deviations of the E/E subsystem clocks cannot
cause erroneous master selection, a sufficient formal representation of the coordi-
nation of the subsystems is needed. In order to formally model and verify such a
complex system, we need a configurable modeling language that allows us to de-
scribe the possible execution scenarios, and while the previous works presented in
Subsection 2.1 all have their strength, they lack the option to model the possible
execution scenarios as first-class citizens.

2. Background and related work

2.1. Modeling complex distributed systems
There are several widely used modeling languages for defining the architecture and
behavior of a system. These languages have varying levels of precision in their
semantics. To use mathematical tools for the systematic examination of a system’s
design, a formal model of the system with mathematically precise semantics is
needed [3].

Lingua Franca [7] is a coordination language to model concurrent reactive com-
ponents (reactors). Lingua Franca works with both logical time (discrete ordering
of events) and physical time (timestamps). The goal of Lingua Franca is to provide
a deterministic model of the system by utilizing the priorities of the reactors, the
dependencies between the reactors, and the logical and physical timing of events.
Even though the goal of the authors of Lingua Franca is to model deterministic
systems, nondeterminism is allowed if explicitly required by the engineer.
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The Gamma Statechart Composition Framework [8] focuses on bridging the
gap between higher-level (engineering) models and lower-level (formal) models and
facilitates the modeling and verification of component-based reactive systems. The
framework provides semantic-preserving model transformations between higher-
level and lower-level modeling languages. The framework supports the hierarchical
composition of components, which enables the engineers (1) to break down the
system into smaller, reusable subsystems or (2) connect distributed components to
provide higher-level system functionalities.

Similarly to the coordination automata formalism presented in Subsection 3.1,
Norström et al. [9] present an extension of the timed automata. Their formalism,
the task automata, enables the schedulability analysis of tasks by performing reach-
ability analysis. In [1], the authors present a timed labeled transition system with
invariants to define controlling and priorities of applications. The requirements of
the system are mapped to specific transitions, thus requiring a white-box model
of the system. Our proposed formalism considers the coordinated subsystems as
black-box components since the transitions of the subsystems are not modified.

2.2. The TXSTS modeling formalism
The timed extended symbolic transition system (TXSTS) formalism (proposed in
[4] as an extension of [6]) is an intermediate modeling formalism with high-level
language constructs suitable for representing complex engineering models. Never-
theless, it is compatible with model checking algorithms that are usually based on
low-level formal models.

TXSTS models contain data variables to represent data-dependent behavior,
while timed behavior is modeled by clock variables.

Clock variables are continuous, non-negative variables. They are initialized to
zero and incremented equally. Most timed analysis techniques allow the comparison
of clocks with other clocks or integer constants, and resetting them to integer
constants. If there are rational constants in the model, all constants should be
multiplied by the least common multiple of denominators [2]. For a set of clocks
C, let G(C) denote the set of clock constraints in the form of ci ∼ n or ci − cj ∼ n,
where ci, cj ∈ C, ∼ ∈ {<, ≤, ==, ≥, >}, and n ∈ N0. Furthermore, let A(C) denote
the set of clock assignments in the form of ci := n, where ci ∈ C, and n ∈ N0.

A timed extended symbolic transition system is a tuple TXSTS = ⟨VD, VC ,
Vctrl, val0, init, env, tran⟩ where

• VD and VC are finite sets of data variables and clock variables, Vctrl ⊆ VD is
a set of control variables that may be handled differently by the algorithms;

• val0 is the initial valuation over VD that maps each variable x ∈ VD to the
initial value of the variable, or ⊤ if unknown;

• init, env, tran ⊆ O are sets of operations representing the initialization, en-
vironment and internal operation sets.
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The operation sets consist of one or more operations taken from a set of opera-
tions O. When executing an operation set, the operation to be executed is selected
from the operation set in a nondeterministic manner. The set of operations O
contains the following types of operations:

• Assumptions have the form [φ], where φ is a Boolean combination of predi-
cates over VD and clock constraints of G(VC);

• Data assignments have the form x := φ, where x ∈ VD, and φ is an expression
of the same type as x, that may contain variables of VD and clock constraints
of G(VC);

• Clock resets are clock assignments of A(VC);

• Havoc operations are denoted by havoc(x), which is a nondeterministic as-
signment to a data variable x ∈ VD;

• Delays are denoted simply by delay, it is a nondeterministic but equal incre-
mentation of all clocks in VC ;

• A no-op is denoted by skip;

• A sequence is a composite operation op1, op2, . . . , opn, where opi ∈ O for all
1 ≤ i ≤ n, the operations are executed one after the other;

• Nondeterministic choices have the form {op1} or {op2} or . . . or {opn}, they
are composite operations, where opi ∈ O for all 1 ≤ i ≤ n, from which exactly
one operation is executed, chosen in a nondeterministic manner;

• Conditional operations of the form if (φ) then {op1} else {op2} are composite
operations, where φ is a Boolean combination of predicates over VD and clock
constraints of G(VC), if φ holds then op1 ∈ O is executed, otherwise op2 ∈ O;

• A loop is a composite operation of the form for i from φa to φb do {op},
where i is an integer variable, φa, φb are expressions that evaluate to integers,
serving as the lower and upper bound for the loop variable i, and op ∈ O.

A state of a TXSTS model is a tuple ⟨valD, valC , τ⟩, where valD is a valuation
over VD, valC is a valuation over VC and τ ∈ {init, env, tran} is an operation set,
which is the only operation set that can be executed in this state.

The order of execution of the operation sets is fixed in TXSTS models. The
operation set init is executed only once, in the initial state. Sets env and tran are
executed in an alternating manner, but only after init, starting with env.

The semantics of TXSTS operations is straightforward, however, one can refer
to [4] for the detailed semantics.

When components of the same system are modeled as separate TXSTS models,
we consider them as a network of TXSTS models, where time advances equally, as
introduced in [10]. We will denote the state of a network N = ⟨TXSTS1, TXSTS2,
. . . , TXSTSn⟩ by SN = ⟨S1, S2, . . . , Sn⟩, where Si is a state of TXSTS i for each
1 ≤ i ≤ n.
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3. Formal modeling of coordination
In this section, we propose a new formalism, the coordination automata, to ease
the challenges of modeling the possible execution orders of the system. We present
the semantics of the coordination automata using the TXSTS modeling formalism,
which is an extension of the inner modeling formalism used by the Gamma Frame-
work. Finally, we present the coordination automaton of the motivating example.

3.1. Coordination automata
We propose the new coordination automata formalism, which extends timed au-
tomata [2] with notations referencing other formal models, e.g., TXSTS models.
These models can be referenced on the edges of the coordination automaton, de-
noting that the given component is scheduled for execution.

A coordination automaton over the set of clocks C disjoint from the sets of
clock variables of the referenced formal models and a set of TXSTS models M =
{TXSTS1, TXSTS2, . . . , TXSTSn} is a tuple CA = ⟨L, l0, E⟩, where

• L is a finite set of locations, with initial location l0 ∈ L;

• E ⊆ L × M × 2G(C) × 2A(C) × L is a set of directed edges.

The semantics of coordination automata is similar to that of timed automata.
With the set of TXSTS models M forming a network N , the semantics of the
corresponding coordination automaton is defined by a transition system with a set
of states SCA ⊆ L × ValC × SN where ValC is the set of clock valuations over C,
and SN is the set of states of N .

The initial states of the transition system form a set {⟨l0, val
∆(SN )
C , SN ⟩ | SN ∈

Sinit
N , ∀c ∈ C : val

∆(SN )
C (c) = ∆(SN )} where Sinit

N is the set of possible states of
N after executing the init operation set of all TXSTS models of N in the order
given by the definition of the network, during which ∆(SN ) delay takes place if the
resulting state of the network is SN .

In the transition system there are two kinds of transitions:

• An action transition ⟨l, valC , SN ⟩ m,G,A−−−−→ ⟨l′, val′
C , S′

N ⟩, where m ∈ M, G ⊂
G(C) and A ⊂ A(C), is enabled iff the following conditions are satisfied:

– ⟨l, m, G, A, l′⟩ ∈ E;
– valC satisfies all clock constraints in G;
– ∀ c ∈ C : val′

C(c) = z if (c := z) ∈ A, otherwise val′
C(c) = valC(c) + ∆,

where ∆ ∈ R≥0 would be the value of a non-resettable clock in S′
N that

was set to 0 in SN ;
– S′

N is a result of executing the env and tran operation sets of m on SN .

• A delay transition ⟨l, valC , SN ⟩
∆ ∈R≥0−−−−−→ ⟨l′, val′

C , S′
N ⟩ is enabled iff:
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– l′ = l;
– ∀ c ∈ C : val′

C(c) = valC(c) + ∆; and
– ∀ m ∈ M, c ∈ V m

C : val′
m(c) = valm(c) + ∆, where V m

C is the set of
clock variables of m, and valm, val′

m are the clock valuations of m in SN

and S′
N , respectively.

3.2. Sequential and unordered execution
To allow for more compact representation of the desired coordination of a dis-
tributed system, we provide two syntactic constructs for expressing the sequential
and unordered execution of multiple components on a single edge of the coordina-
tion automaton.

The sequential execution, denoted as seq{m1, m2, . . . , mn} on an edge from li
to lj , is equivalent to a path from li to lj of length n, where the edges are anno-
tated with components m1, m2, . . . , mn, respectively, with guards of the original
sequential edge repeated on all edges along the path, and the last edge of the path
containing the clock assignments of the original edge. I.e., the clock assignments
are executed after the sequential execution of all referenced components, while the
guards hold invariably until the scheduling of the last component.

Unordered execution is denoted as unord{m1, m2, . . . , mn}. Such an unordered
execution on an edge from li to lj is equivalent to having sequential paths from li to
lj for all permutations of m1, m2, . . . , mn. As with sequential paths, guards of the
original unordered edge are repeated on all edges, and the last edges of the paths
contain the clock assignments of the original edge. One should note that unordered
execution results in n! possible orderings of components, therefore advanced tech-
niques are required for a systematic analysis of the system. Nonetheless, it provides
a compact and easy-to-understand way for engineers to represent and communicate
the coordination of a complex system.

4. Formal modeling of a distributed reactive system
with coordinated components

The systematic examination of a system requires a formal representation. In this
section, we describe a transformation of coordination automata and its referenced
TXSTS models to a single TXSTS model, which results in a suitable input for
model checking algorithms.

The idea of the transformation is mapping the coordination automaton to the
environment operation set of an “integrated” TXSTS. The initialization (init),
environment (env) and internal (tran) operation sets of the individual components
referenced by the coordination automaton are then embedded in the corresponding
operation sets of the integrated TXSTS. In a step of this TXSTS, only one of
the components is selected for execution, based on a variable that is set by the
transformed coordination automaton.
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The mapping of the coordination automaton to the TXSTS formalism intro-
duces at least two new control variables. The new variable scheduled represents the
component that should be executed next by the env and tran operation sets. The
second new variable, coordState, represents the current location of the coordina-
tion automaton, with initial value l0. It may also stand for intermediate locations
that are introduced by the transformation and represent the ongoing execution of
a sequential or unordered edge.

4.1. Operation sets of the integrated TXSTS model
Let initm, envm and tranm denote the initialization, environment and internal
operation sets of the TXSTS model m ∈ M. We will also write initm, envm and
tranm to denote a nondeterministic choice operation (see Subsection 2.2) of all
operations in the given operation set. This will be used to represent an operation
set as a single (nondeterministic) operation.

The init operation set of the integrated TXSTS model is a sequence of the init
operation sets of all components: initm1 , initm2 , . . . , initm|M| .

The environment operation set is a sequence of two operations: a step of the
coordination automaton and a step of one of the components.

The step of the coordination automaton is a sequence of a delay operation
and a nondeterministic choice. In this nondeterministic choice, there is a branch
for each location (both intermediate locations and locations of the coordination
automaton). Each branch starts with the assumption [coordState == l] (thus
only one branch can be executed, determined by the value of coordState), which
is followed by another nondeterministic choice. In this embedded nondeterministic
choice, each branch represents an outgoing edge from location l.

I.e., if the outgoing edges of a location li are ei,1, ei,2, . . . , ei,ni
and LeM means the

representation of an edge e in the TXSTS formalism, then the mapping of a step
of the coordination automaton with locations li (1 ≤ i ≤ k, including intermediate
locations) is the following:

delay, { [coordState == l0], Le0,1M or Le0,2M or . . . or Le0,n0M }
or { [coordState == l1], Le1,1M or Le1,2M or . . . or Le1,n1M } or . . .

. . . or { [coordState == lk], Lek,1M or Lek,2M or . . . or Lek,nk
M }.

The mapping of an edge e from l to l′ with clock constraints G ⊂ G(C) and
clock assignments A ⊂ A(C) depends on the kind of execution it represents.

If e is annotated by a single component m ∈ M, then it is mapped to

[ ∧
g∈G

g], A, scheduled := m, coordState := l′,

i.e., the clock constraints of G become an assumption, the clock assignments of
A are executed, m is marked for scheduling, and coordState is set to the target
location of e.

208 Proceedings of the FMF-AI 2025208 Proceedings of the FMF-AI 2025208 Proceedings of the FMF-AI 2025



FMF-AI 2025 Automata-based representation of coordination for . . .

If e ∈ E is a sequential or unordered edge, then the domain of coordState is
extended by a new intermediate location le, representing the ongoing execution
of e. The location le is considered to have only one outgoing edge, to the target
location of e, with the same guards, clock assignments and component notations
(including seq and unord notations) as e. The intermediate locations ensure that
the execution of sequential and unordered edges cannot be interrupted.

If e is a sequential edge annotated by seq{ms1, ms2, . . . , msn}, then a new con-
trol variable seqe is created, representing the number of executed components, and
e is mapped to

[ ∧
g∈G

g], coordState := le, seqe := seqe + 1,

if (seqe == 1) then {scheduled := ms1},

if (seqe == 2) then {scheduled := ms2},

. . . , if (seqe == n) then {A, scheduled := msn, coordState := l′, seqe := 0}

where the else branches of conditional operations were omitted for simplification.
The variable seqe determines the component that should be executed next in the
given sequence. When the last component is scheduled, the clock assignments are
executed and coordState is set to the target location.

If e is an unordered edge annotated by unord{mu1, mu2, . . . , mun}, then a
new control variable unorde is created (representing the component that should
be scheduled next), as well as n Boolean control variables unorde1, unorde2, . . . ,
unorden (representing whether mu1, mu2, . . . , mun has already been executed). The
unordered edge e is then mapped to

[ ∧
g∈G

g], coordState := le, havoc(unorde), {choose1} or . . . or {choosen},

if ( ∧
1≤i≤n

unordei) then

{A, coordState := l′, unorde1 := false, . . . , unorden := false},

where choosei schedules the not yet executed mui for each 1 ≤ i ≤ n:

[unorde == mui ∧ ¬unordei], unordei := true, scheduled := mui.

Since some branch of the nondeterministic {choose1} or . . . or {choosen} op-
eration must be executed and all branches are constrained by assumptions of the
form ¬unordei, the only feasible assignments at havoc(unorde) are those that rep-
resent a component that has not yet been executed. So, the component chosen
for scheduling is certainly one of the eligible components. Lastly, if all compo-
nents have already been scheduled, then the clock assignments are executed, and
coordState is set to the target location.

The second part of the env operation set is the execution of the env set of one
of the components, determined by scheduled. More precisely, it is a sequence
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of a delay operation and conditional operations of the form if (scheduled ==
m) then {envm} for each m ∈ M.

The internal transition set tran is constructed similarly. It starts with a
delay operation, followed by conditional operations of the form if (scheduled ==
m) then {tranm} for each m ∈ M. Therefore, the variable scheduled determines
both the next environment step and the next internal step of the system.

4.2. Coordination of the SbW system
The coordination automaton of the motivating example is presented in Figure 2.
The q0 → q3 edge represents that, at first, the sensor components run and process
their inputs. The sensor components must be executed in a one second long execu-
tion window, representing the possible deviation between their clocks. Since they
are deployed separately and cannot influence each other’s outputs, this behavior
is modeled with the unordered execution. After all the sensors produced outputs,
either the PrimaryRWA runs first and the SecondaryRWA runs second (q3 → q1
and q1 → q0 edges), or vice versa (q3 → q2 and q2 → q0 edges). This ordering can
influence the cross-checking between the RWAs and possibly the MSP.

q0

q1

q2

q3

c1 > 1
c1 <= 2
unord{Sensor1 , Sensor2 , Sensor3 , Sensor4}
c1 := 0

c1 > 1
c1 <= 4
SecondaryRWA
c1 := 0

c1 > 1
c1 <= 4
PrimaryRWA
c1 := 0

c1 > 1
c1 <= 4
PrimaryRWA
c1 := 0

c1 > 1
c1 <= 4
SecondaryRWA
c1 := 0

Figure 2. Coordination Automaton of the SbW System.

The TXSTS models representing the components of the system are connected
in a single TXSTS model that already implements the coordination described by
the given coordination automaton.

In locations q1 and q2 of the coordination automaton, there is only one possible
execution order; in these cases, the mapping to TXSTS is straightforward, as shown
in Listing 1 for location q1.

In location q3 of the coordination automaton there are multiple edges to other
locations, referencing single TXSTS models. The mapping of this case to TXSTS
is done using a nondeterministic choice for the possible outcomes, as shown in
Listing 2.
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� �
1 assume coordState == q1;
2 assume c1 > 1 && c1 <= 4;
3 c1 := 0;
4 scheduled := SecondaryRWA;
5 coordState := q0;� �

Listing 1. TXSTS representation of
deterministic scheduling of components
in location q1 of the coordination

automaton

� �
1 assume coordState == q3;
2 choice {
3 assume c1 > 1 && c1 <= 4;
4 c1 := 0;
5 scheduled := PrimaryRWA;
6 coordState := q1;
7 } or {
8 assume c1 > 1 && c1 <= 4;
9 c1 := 0;

10 scheduled := SecondaryRWA;
11 coordState := q2;
12 }� �

Listing 2. TXSTS representation
of nondeterministically choosing the

scheduled component in location q3

� �
1 assume coordState == q0; // q0q3 in case of line 18 in Listing 4.
2 assume c1 > 1 && c1 <= 2;
3 coordState := q0q3;
4 havoc unord_q0q3;
5 choice {
6 assume unord_q0q3 == Sensor1 && !unord_q0q3_Sensor1;
7 unord_q0q3_Sensor1 := true;
8 scheduled := Sensor1;
9 } or {

10 assume unord_q0q3 == Sensor2 && !unord_q0q3_Sensor2;
11 unord_q0q3_Sensor2 := true;
12 scheduled := Sensor2;
13 } or {
14 ... // Sensor3
15 } or {
16 ... // Sensor4
17 }
18 if (unord_q0q3_Sensor1 && unord_q0q3_Sensor2 && unord_q0q3_Sensor3 && unord_q0q3_Sensor4) {
19 c1 := 0;
20 coordState := q3;
21 unord_q0q3_Sensor1 := false;
22 unord_q0q3_Sensor2 := false;
23 ... // Sensor3, Sensor4
24 }� �

Listing 3. TXSTS representation of unordered scheduling of
sensors in location q0 of the coordination automaton

For the unordered execution starting from location q0 of the coordination au-
tomaton we introduce the variable unord_q0q3 to represent the next scheduled
component, which can take Sensor1, Sensor2, Sensor3 or Sensor4 as its value.
We also introduce Boolean variables unord_q0q3_Sensor1, unord_q0q3_Sensor2,
unord_q0q3_Sensor3 and unord_q0q3_Sensor4 that represent whether the given
component was already scheduled. The scheduled component is chosen by a nonde-
terministic assignment to unord_q0q3, but considering only the components that
were not yet scheduled, based on the newly introduced Boolean variables. The
coordination automaton completes the transition to q3 only when all referenced
components were already scheduled. The TXSTS mapping of this unordered exe-
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cution can be seen in Listing 3. The mapping of the intermediate location q0q3 is
the same, except for the first line, where q0 should change to q0q3.

The main structure of the resulting TXSTS model can be seen in Listing 4.
The above-described mapping of the coordination automaton to the TXSTS for-
malism is embedded at the beginning of the single operation contained by the env
operation set, followed by the operations of the individual components. If the
env operation set of some component contains multiple operations (i.e., envcomp =
{env1, env2, . . . , envn}), then these operations are wrapped in a nondeterministic
choice {env1} or {env2} or . . . or {envn}, to represent them as a single operation
without changing the possible behaviours of the model. The tran operation set is
constructed analogously to the second part of the env operation set.� �

1 ctrl var coordState : enum{q0, q1, q2, q3, q0q3} = q0
2 ctrl var scheduled : enum{Sensor1, Sensor2, Sensor3, Sensor4, PrimaryRWA, SecondaryRWA}
3 ctrl var unord_q0q3 : enum{Sensor1, Sensor2, Sensor3, Sensor4}
4 ctrl var unord_q0q3_Sensor1, unord_q0q3_Sensor2, unord_q0q3_Sensor3,
5 unord_q0q3_Sensor4 : boolean = false
6 ...
7 init {
8 <init of Sensor1>
9 <init of Sensor2>

10 ... // Sensor3, Sensor4, PrimaryRWA, SecondaryRWA
11 }
12 env {
13 delay;
14 choice { assume coordState == q0; ... } // see Listing 3.
15 or { assume coordState == q1; ... } // see Listing 1.
16 or { assume coordState == q2; ... } // analogous with q1
17 or { assume coordState == q3; ... } // see Listing 2.
18 or { assume coordState == q0q3; ... } // see Listing 3.
19 delay;
20 if (scheduled == Sensor1) { <env of Sensor1> }
21 if (scheduled == Sensor2) { <env of Sensor2> }
22 ... // Sensor3, Sensor4, PrimaryRWA, SecondaryRWA
23 }
24 tran {
25 delay;
26 if (scheduled == Sensor1) { <tran of Sensor1> }
27 if (scheduled == Sensor2) { <tran of Sensor2> }
28 ... // Sensor3, Sensor4, PrimaryRWA, SecondaryRWA
29 }� �

Listing 4. Structure of a TXSTS model that schedules multiple
TXSTS components based on a coordination automaton

5. Conclusion and future work
In this paper, we presented the coordination automata formalism as an extension of
the timed automata formalism to model the possible interactions of the distributed
subsystems. The presented coordination automata formalism is flexible and con-
figurable: the coordinated subsystems can be modeled using arbitrary formal or
engineering modeling languages.

212 Proceedings of the FMF-AI 2025212 Proceedings of the FMF-AI 2025212 Proceedings of the FMF-AI 2025



FMF-AI 2025 Automata-based representation of coordination for . . .

As a continuation of our work, we investigate the possibilities of extending the
coordination automata with more complex parallelism, to define coordination with
overlapping component executions.
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