
Proceedings of the International Conference on
Formal Methods and Foundations of Artificial Intelligence
Eszterházy Károly Catholic University
Eger, Hungary, June 5–7, 2025
pp. 188–200 DOI: 10.17048/fmfai.2025.188

Benchmarking data logging strategies in
ROS-integrated multi-sensor robots under

network constraints

Nour Elhouda Ben Saadi, Zoltán Istenes

Eötvös Loránd University
nourelhoudabensaadi@gmail.com

istenes@inf.elte.hu

Abstract. This work benchmarks multiple logging strategies, including Java-
Script Object Notation (JSON) serialization, JSON Lines (JSONL), Web-
Socket based rosbridge, native Robot Operating System (ROS) Transmission
Control Protocol (TCP)/User Datagram Protocol (UDP) transports, and
NFS-based recording, on a multisensor robot over a 100 Mbps constrained
network. We evaluate dropped messages, resource usage, and storage foot-
print across high-throughput data streams, such as LiDAR, Red-Green-Blue
plus Depth (RGB-D) images, Inertial Measurement Unit (IMU), and Global
Navigation Satellite System (GNSS) data. Results show that TCPROS pro-
vides the highest reliability, while UDPROS, rosbridge, and JSON-based
methods incur significant losses when network capacity is saturated. Network
File System (NFS) recording performs well, provided that network stability is
maintained. Our findings reveal key trade-offs between transport guarantees,
network limitations, and message size fragmentation.

Keywords: ROS, data logging, benchmarking, TCPROS, UDPROS, JSON,
multisensor robots, network constraints

AMS Subject Classification: 68T40, 68M10, 68M20

1. Introduction
Accurate and timely data logging in robotic systems is crucial for tasks such as per-
formance evaluation, fault diagnosis, and developing machine learning pipelines. As
robots increasingly integrate high-throughput sensors – such as Light Detection and
Ranging (LiDAR), RGB-D cameras, inertial units, and GNSS modules – the abil-

188 Proceedings of the FMF-AI 2025188 Proceedings of the FMF-AI 2025188 Proceedings of the FMF-AI 2025

https://doi.org/10.17048/fmfai.2025.188
mailto:nourelhoudabensaadi@gmail.com
mailto:istenes@inf.elte.hu


FMF-AI 2025 Benchmarking data logging strategies . . .

ity to reliably record data is critical for both real-time decision-making and offline
analysis. Recent advancements in ROS-based architectures, including modular sen-
sor integration and networked communication protocols, have improved scalability
and flexibility in robotic software systems. However, in bandwidth-constrained or
infrastructure-limited environments – such as field robotics or industrial inspection
– data transport can become a significant bottleneck. Under such conditions, large
message sizes and unreliable links often cause dropped messages, increased Central
Processing Unit (CPU) overhead, and inconsistent logging performance. Efforts
like ROS Enhancement Proposal (REP)2014 propose benchmarking guidelines for
ROS 2 systems to standardize performance analysis under diverse computational
and network conditions [5]. The RobotPerf suite [4] further enables reproducible
benchmarking of computational workloads in ROS 2 pipelines. Additionally, recent
studies on ROS 2 real-time latency and transport performance [2, 12] demonstrate
the value of systematic evaluations across middleware configurations. However,
despite ROS 2 gaining popularity, ROS 1 remains widely deployed across academic
and industrial settings, especially in long-lived platforms and legacy deployments.
While most recent benchmarks focus on ROS 2, there is a lack of in-depth evalu-
ation of logging strategies in ROS 1, particularly under constrained network con-
ditions, where transport choice, message encoding, and system load directly affect
data reliability. To address this gap, we conduct a comprehensive benchmarking
study of ROS 1 data logging strategies in multi-sensor robotic systems, focusing
on real-world limitations caused by limited bandwidth.

Our key contributions are as follows:

• We benchmark six data logging strategies in ROS 1: TCPROS, UDPROS,
rosbridge (WebSocket), JSON serialization, JSONL, and NFS-based remote
logging.

• We evaluate each strategy in a real-world multi-sensor setup (LiDAR, RGB-
D, IMU, GNSS) across a 100 Mbps constrained network.

• We compare performance based on message loss, CPU and memory usage,
and storage efficiency.

• We analyze trade-offs related to transport guarantees, serialization overhead,
and system saturation under network stress.

In this paper, we provide a comprehensive evaluation of data logging strategies in
ROS 1 under constrained network conditions on a multi-sensor robotic platform.
Unlike prior studies, our benchmarks are performed in real time during active sensor
streaming, capturing the actual performance limitations encountered in deployment
scenarios. The remainder of this paper is structured as follows: Section 2 discusses
related work. Section 3 presents the system architecture and logging strategies.
Section 4 details the benchmarking methodology. Section 5 presents the results
and their analysis. Finally, Section 6 concludes and outlines future directions.

https://uni-eszterhazy.hu/fmf 189https://uni-eszterhazy.hu/fmf 189https://uni-eszterhazy.hu/fmf 189

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


N. E. B. Saadi, Z. Istenes FMF-AI 2025

2. Related work
Benchmarking in robotic systems has gained increased attention with the evolution
of modular and distributed architectures, particularly in ROS 2. The official bench-
marking guideline, REP-2014, provides recommendations for reproducible perfor-
mance analysis in ROS 2 systems, including tracing, latency measurement, and
profiling [5]. Building on this, the RobotPerf suite offers a vendor-neutral bench-
marking framework for computational performance in ROS 2, targeting CPU usage,
scheduling behavior, and system latency under sensor load [4]. However, both fo-
cus on ROS 2 middleware and compute pipelines rather than message transport
or data logging behavior. Several other works have examined ROS 2 communica-
tion performance. Kronauer et al. analyzed latency behavior in multi-node Data
Distribution Service (DDS) based systems and highlighted the trade-offs between
configuration settings and timing guarantees [2]. Yanlei et al. conducted a
comparative evaluation of ROS 1 and ROS 2 real-time performance under CPU
load, noting ROS 2’s architectural improvements in timing determinism [12]. Still,
these studies do not explore logging reliability or network-induced message loss. In
the ROS 1 ecosystem, tools like ROS-CBT focus on communication benchmarking
by measuring throughput and latency over emulated network links between virtual
nodes [3]. While ROS-CBT includes tests under constrained bandwidth, it does not
evaluate end-to-end logging mechanisms or analyze serialization overhead, system
load, or message loss during real-time recording. Furthermore, it is simulation-
based and does not reflect the challenges of logging live, high-throughput sensor
data on deployed robotic systems. Other works like ROSfs propose user-space file
systems for sharing ROS data across distributed robots, but they do not benchmark
performance or logging efficiency under network constraints [11]. To the best of our
knowledge, no prior work has systematically evaluated data logging strategies in
ROS 1 under constrained network conditions using a live, multi-sensor robotic plat-
form. Our study fills this gap by benchmarking six strategies – including TCPROS,
UDPROS, and NFS recording, as well as rosbridge-based logging of ROS messages
in raw ROS Bag file format for logging messages (rosbag) format, JSON, and
JSONL. We evaluate message loss, CPU and memory usage, and storage footprint
under real-time conditions with active sensor streaming.

3. System description
Our evaluation was conducted on a ROS 1-based robotic platform – we named
Pomona – designed for sensor-rich navigation and mapping tasks. The robot we
used is an Agile-X four-wheel-drive Scout Mini1 robot equipped with the Research
Pro sensor kit (see Figure 1).

The system integrates a mix of high- and low-throughput sensors, covering a
broad range of data rates including:

1https://global.agilex.ai/products/scout-mini

190 Proceedings of the FMF-AI 2025190 Proceedings of the FMF-AI 2025190 Proceedings of the FMF-AI 2025

https://global.agilex.ai/products/scout-mini


FMF-AI 2025 Benchmarking data logging strategies . . .

Figure 1. Pomona: a ROS 1-based multi-sensor robotic platform
used in our experiments. The system integrates a Velodyne VLP-16
LiDAR, an Intel RealSense D435 RGB-D camera, an Xsens IMU,

and a GNSS receiver.

• LiDAR: Velodyne VLP-16 (/velodyne_points, sensor_msgs/PointCloud2),
10 Hz, average bandwidth ~6.59 MB/s, average message size ~0.62 MB

• RGB-D camera: Intel RealSense D435

– Color image (/camera/color/image_raw, sensor_msgs/Image): 30
Hz, average size ~0.92 MB, bandwidth ~27–28 MB/s

– Depth image (/camera/depth/image_raw, sensor_msgs/Image): 30
Hz, average size ~0.81 MB, bandwidth ~25 MB/s

– Compressed color (/camera/color/image_compressed, sensor_ms-
gs/CompressedImage): 30 Hz, average size ~16.5 KB, bandwidth ~510
KB/s

– Compressed depth (/camera/depth/image_compressed, sensor_-
msgs/CompressedImage): 30 Hz, average size ~22 KB, bandwidth ~670
KB/s

• IMU: Xsens MTI 600 series (/imu/data, sensor_msgs/Imu), 25 Hz, message
size ~0.32 KB, bandwidth ~8 KB/s

• GNSS receiver2: (/gnss, sensor_msgs/NavSatFix), 4 Hz, message size
~124 bytes, bandwidth ~640 B/s

• Base controller: Scout Mini (/scout_status, scout_msgs/ScoutStatus [1]),
50 Hz, message size ~0.14 KB, bandwidth ~7.3 KB/s

2Incorporated into the Xsens IMU

https://uni-eszterhazy.hu/fmf 191https://uni-eszterhazy.hu/fmf 191https://uni-eszterhazy.hu/fmf 191

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


N. E. B. Saadi, Z. Istenes FMF-AI 2025

These sensors interface with an onboard NVIDIA Jetson AGX Xavier running
ROS Melodic (Ubuntu 18.04), streaming data over a 100 Mbps Ethernet link to an
external logging workstation (Ubuntu 22.04). This constrained bandwidth emulates
real-world field robotics and industrial inspection scenarios, where infrastructure or
power limitations restrict data transmission. Under these conditions, we evaluated
the following six logging strategies.

3.1. TCPROS (TCP)
TCPROS [6] is the default ROS 1 transport, using TCP for reliable, in-order de-
livery between publishers and subscribers. As illustrated in Figure 2b, Pomona’s
sensor nodes publish topics over the 100 Mbps Ethernet link to a Docker con-
tainer running on the logging workstation. The container uses a ROS 1 im-
age (e.g., ros:melodic-ros-base) to provide the correct environment for rosbag
record. This containerized setup is necessary because the logging workstation
runs Ubuntu 22.04, which is incompatible with ROS Melodic, and it avoids instal-
lation conflicts or dependency issues on the host system [9, 10]. Host networking
(–network host) and a bind mount to /data enable direct topic subscription and
efficient data storage. Each publisher–subscriber pair establishes a persistent TCP
channel. TCP handles retransmissions and enforces ordering, ensuring message in-
tegrity for high-bandwidth topics such as LiDAR scans, RGB-D images, and IMU
readings. Under high network utilization, TCP back-pressure increases ROS pub-
lish queues, and if these queues overflow, messages are dropped at the publisher
before transmission.

3.2. UDPROS (UDP)
UDPROS [7] is a connectionless ROS 1 transport that uses the User Datagram
Protocol (UDP) to transmit messages without delivery guarantees. As illustrated
in Figure 2c, Pomona’s sensor nodes publish topics over the 100 Mbps Ethernet link
to a Docker container on the logging workstation running a ROS 1 Melodic image.
Direct use of rosbag record could not successfully negotiate the UDP transport
layer with Pomona’s publishers, as ROS 1 defaults to TCPROS unless both end-
points explicitly advertise UDPROS support. To enable UDP-based recording,
we implemented an intermediate C++ relay node inside the container. This node
subscribed to Pomona’s topics via UDPROS, confirmed using rostopic info, and
re-published the messages locally within the container. rosbag record then sub-
scribed to these local topics, benefiting from intra-process communication while
preserving the UDP characteristics of the original inbound link.

3.3. rosbridge + rosbag
The rosbridge_server [8] exposes ROS topics over a JSON/WebSocket inter-
face. As illustrated in Figure 2a, Pomona runs rosbridge_server and streams
messages to the logging workstation over WebSocket. On the workstation, we

192 Proceedings of the FMF-AI 2025192 Proceedings of the FMF-AI 2025192 Proceedings of the FMF-AI 2025



FMF-AI 2025 Benchmarking data logging strategies . . .

(a) ROSBridge Architecture (b) TCP Architecture

(c) UDP Architecture (d) NFS Architecture

Figure 2. Comparison of architectures: ROSBridge, TCP, UDP,
and NFS.

run a Docker container with a ROS 1 Melodic image to provide the required en-
vironment for rospy, rosbag, genpy, and message definitions. Inside the con-
tainer, a Python bridge (via roslibpy) subscribes to the WebSocket topics, recon-
structs native ROS messages, and writes them to a .bag. For message types with
binary payloads (sensor_msgs/CompressedImage, sensor_msgs/PointCloud2),
rosbridge_server transmits the data field as base64 text; we therefore decode
to raw bytes prior to message construction. Without this step, the bag appears
valid in rosbag info but the payload bytes are incorrect, leading to corrupted
images and point clouds at playback.

3.4. rosbridge + JSON
In this configuration (Figure 2a), Pomona’s onboard ROS 1 Melodic system runs
rosbridge_server to serialize ROS messages into JSON and stream them over
a WebSocket connection. The logging workstation connects via roslibpy from a
Python script and saves incoming messages directly to a JSON file for each topic.
The subscriber script maintains an in-memory dictionary keyed by topic name and
appends each received message before periodically writing to disk. For topics con-
taining binary payloads (e.g., sensor_msgs/Image, sensor_msgs/CompressedIm-
age, sensor_msgs/PointCloud2), the raw JSON representation can produce very

https://uni-eszterhazy.hu/fmf 193https://uni-eszterhazy.hu/fmf 193https://uni-eszterhazy.hu/fmf 193

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


N. E. B. Saadi, Z. Istenes FMF-AI 2025

large files and, if not explicitly base64-encoded before transmission, may risk trun-
cation or corruption depending on client library handling. This approach bypasses
rosbag record entirely, allowing collection on systems without a full ROS envi-
ronment, but requires careful handling of binary fields to ensure data integrity.

3.5. rosbridge + JSONL
In this configuration (Figure 2a), Pomona runs rosbridge_server to serialize
ROS messages into JSON objects, which are transmitted over a WebSocket con-
nection to the logging workstation. Instead of aggregating messages into a single
file, each incoming message is written as an individual JSON object on its own line
(JSON Lines, or JSONL format). The subscriber script, implemented in Python
with roslibpy, appends each received message to a text file as soon as it arrives.
This streaming write pattern enables incremental storage without keeping the en-
tire dataset in memory and simplifies parsing for large-scale post-processing, since
each line is a self-contained JSON object. As with the pure JSON approach, top-
ics containing binary fields (e.g., Image, CompressedImage, PointCloud2) require
base64-encoding of their data fields to avoid payload corruption. Without decod-
ing these fields back into raw bytes during reconstruction, the resulting files will
appear structurally valid but contain unusable image or point cloud data.

3.6. NFS recording
In this configuration (Figure 2d), the logging workstation mounts a remote di-
rectory from Pomona via the Network File System (NFS) protocol. On Pomona,
rosbag record runs natively within the ROS 1 Melodic environment, writing di-
rectly to the mounted path, which physically resides on the workstation’s storage.
This arrangement keeps all ROS topic subscription, serialization, and bag creation
on the robot side, while the workstation receives the bag file writes in real time
through the NFS link. It avoids the need for a ROS environment on the workstation
for recording and guarantees full compatibility with Pomona’s Melodic setup. How-
ever, overall performance is bound by NFS throughput and the robot’s disk I/O;
high-rate or large-payload topics may still cause write delays or dropped messages
if the network or storage becomes saturated.

4. Benchmarking methodology
All strategies were tested in real time while the robot continuously published sensor
data. Logging scripts were implemented in Python and C++ where applicable.
Depending on the strategy, performance metrics were collected in the robot or in
the external logging machine. These metrics include CPU load, memory usage,
storage footprint, and message drop rate. While Linux tools such as htop, iftop
were consulted for runtime inspection, we primarily used time -v to obtain detailed
per-process performance metrics at critical evaluation points during logging.

194 Proceedings of the FMF-AI 2025194 Proceedings of the FMF-AI 2025194 Proceedings of the FMF-AI 2025



FMF-AI 2025 Benchmarking data logging strategies . . .

To evaluate the performance of each logging strategy under bandwidth- and
resource-constrained conditions, we conducted real-time experiments with the robot
Pomona while it actively streamed high-rate sensor data. Each strategy was
launched independently while keeping the sensor configuration constant to ensure
comparability. For each strategy, we performed at least three independent runs,
each lasting 120 seconds, to capture representative performance and account for
run-to-run variability. Performance data were recorded concurrently on either the
onboard or the external logger, depending on where the logging process was exe-
cuted. Metrics measured included:

• CPU usage: peak and average utilization of the logging process, using:
time -v

• Memory consumption: maximum Resident Set Size (RSS), from time -v .

• Bandwidth utilization: observed using iftop on the robot’s Ethernet in-
terface (note: not measured separately for each logging strategy).

• Storage footprint: file size of logged data.

• Message drop rate: estimated based on comparing the expected message
counts, computed as:

Expected Count = fnominal × Trecording (4.1)

where fnominal is the nominal topic frequency and Trecording is the logging
duration, with the actual received counts in the logs. The drop percentage
was then calculated as:

Drop Rate (%) = Expected Count − Actual Count
Expected Count × 100 (4.2)

This method allowed us to estimate the proportion of received messages rel-
ative to the expected volume, providing a quantitative basis for drop rate
analysis.

The time -v outputs were saved automatically for each run and processed using
a custom script to generate tabular data, which were then read into Pandas data
frames for plotting and further analysis. For fairness, background system load was
kept minimal during all runs. For both persistent-mode experiments and standard
runs that completed successfully without anomalies, all reported metrics are pre-
sented as the mean together with the standard deviation, computed across multiple
experimental repetitions.

5. Results and analysis

5.1. System performance and throughput
JSON vs JSONL. Figure 3 compares key performance metrics for all logging
strategies under raw and compressed configurations. CPU usage (Figure 3a) shows

https://uni-eszterhazy.hu/fmf 195https://uni-eszterhazy.hu/fmf 195https://uni-eszterhazy.hu/fmf 195

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


N. E. B. Saadi, Z. Istenes FMF-AI 2025

(a) Relative CPU usage. (b) Relative peak RAM.

(c) Relative output file size. (d) Relative message throughput.

Figure 3. Relative system load and throughput metrics for raw
and compressed configurations across all methods.

that JSONL, while still exhibiting high CPU load due to its intensive disk I/O,
maintains the low RAM usage (Figure 3b). This allows continuous recording with-
out memory saturation, in contrast to the JSON strategy where unsaved data accu-
mulates in RAM until a flush to disk is triggered. Under long runs, this progressive
growth (shown in Figure 6a) continues until the output file size exceeds host-level
limits, at which point logging halts with an Errno 27: File too large error
and incomplete data persistence (Figure 4a). To further investigate JSONL’s be-
havior, we experimented with tuning its buffering size (Figure 6c). While smaller
buffers kept message throughput relatively stable over extended runs, larger buffers
initially increased the sustained rate but eventually led to a sudden drop after pro-
longed operation. This effect is attributed to accumulated write delays and internal
queue growth, which cause bursts of backpressure when the disk subsystem is mo-
mentarily saturated. The behavior, although less severe than JSON’s abrupt halts,
still indicates a limit to how long JSONL can maintain peak throughput without
periodic flushing or additional I/O optimization.
Native ROS transports (TCPROS, UDPROS) and NFS-based logging
maintain low CPU and RAM usage, with minimal differences between raw and com-
pressed operation. File size results (Figure 3c) highlight the trade-off between stor-
age footprint and message throughput (Figure 3d). Compression reduces output
size across all methods, but throughput generally drops for more serialization-heavy
approaches. A notable exception is the ws_rosbridge_rosbag method, which per-
forms poorly on raw data but shows throughput in the compressed configuration
comparable to TCPROS and UDPROS. This counter-intuitive result – achieving

196 Proceedings of the FMF-AI 2025196 Proceedings of the FMF-AI 2025196 Proceedings of the FMF-AI 2025



FMF-AI 2025 Benchmarking data logging strategies . . .

(a) JSON method halting due to file-size
limitation (Errno 27).

(b) UDP logging failure during com-
pressed image streaming (Buffer

Overrun).

(c) Network instability affecting both TCP and UDP transports, causing simultaneous
camera and LiDAR dropouts until Wi-Fi reset.

Figure 4. Observed runtime failures and instability. Top: method-
specific logging errors (a: JSON, b: UDP). Bottom: link-level in-

stability affecting native ROS transports (c).

similar throughput while producing smaller files – suggests that compression mit-
igates bottlenecks in the WebSocket and rosbag pipeline, allowing data to be
processed and written at a higher sustained rate.
UDP instability and MTU sensitivity. Beyond the JSON limitations, UDP
exhibited run-time instability that forced a hybrid setup. When large payloads
(camera frames/LiDAR packets) approached or slightly exceeded the link MTU, the
UDPROS stream intermittently stalled. Lost fragments caused transport desyn-
chronization, manifesting as spurious size predictions and Buffer Overrun errors
in the camera node (Figure 4b). Increasing socket and ROS-level buffers reduced
drops for small and medium topics, but did not prevent stalls for large payloads
under link instability. During affected runs we restored operation by republish-
ing locally (UDP relay → local topics). As a practical mitigation, lowering image
resolution/quality or enabling camera-side compression reduces packetization pres-
sure; otherwise TCPROS is preferable for large messages on unstable links. Given
this fragility, the Reliability results in Section 5.2 correspond to a hybrid transport
configuration: UDPROS was retained for low-bandwidth, latency-sensitive topics
(IMU, GNSS, status), while large-payload topics (camera frames, LiDAR scans)

https://uni-eszterhazy.hu/fmf 197https://uni-eszterhazy.hu/fmf 197https://uni-eszterhazy.hu/fmf 197

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


N. E. B. Saadi, Z. Istenes FMF-AI 2025

were switched to TCPROS to prevent fragmentation stalls and ensure reliable de-
livery under variable link conditions. As shown in Figure 6b, this hybrid approach
preserved the high delivery rate for small topics while restoring near-complete re-
ception for large payloads.
General network instability. In addition to protocol-specific issues, several
experimental runs in both TCP and UDP experiments, intermittent Wi-Fi link
throttling impacted performance, where throughput dropped sharply even though
the link did not fully disconnect. This manifested as sudden throughput drops
and stalled topics certainly over heavy connections, and in some cases required
manually resetting the wireless interface to recover (Figure 4c). While rare, such
events highlight the importance of robust reconnection and buffering logic in real-
world field deployments.

5.2. Reliability: Message Delivery

(a) Raw data. Compressed topics omit-
ted.

(b) Compressed data. Raw image topics
omitted.

Figure 5. Percentage of messages dropped per topic and method
for raw vs. compressed data streams.

(a) RAM and CPU usage dur-
ing JSON logging.

(b) Fraction of received
messages for UDP raw

vs hybrid transport.

(c) Effect of buffering
size on JSONL (raw)

message rate.

Figure 6. Additional runtime observations: (a) CPU and RAM
growth in JSON logging; (b) improvement in message delivery using
hybrid UDP/TCP; (c) impact of buffer size on JSONL throughput.

Drop rates. Figures 5a–5b report message loss as Equation 4.2 indicates. On

198 Proceedings of the FMF-AI 2025198 Proceedings of the FMF-AI 2025198 Proceedings of the FMF-AI 2025



FMF-AI 2025 Benchmarking data logging strategies . . .

raw streams (Figure 5a), JSON/JSONL exhibit consistently high loss across top-
ics, while native transports (TCPROS, UDPROS) retain most control/metadata
messages (e.g., camera_info, imu/data) but still struggle with raw image top-
ics. The dedicated UDP status topic (/scout_status_udp) is correctly preserved
under UDPROS, matching the transport design. With compression enabled (Fig-
ure 5b), TCPROS, UDPROS, and ws_rosbag achieve near-zero loss across the
board, whereas JSON/JSONL still drop substantially on high-rate sensors. We
also observe occasional > 100% “received” artifacts (visible as negative drop in
the source percentage plots) on JSONL channel corresponding to the /gnss topic,
suggesting message duplication on the WebSocket path rather than true reliability
gains. Overall, compression shifts the balance strongly in favor of native ROS trans-
ports and the ws_rosbag pipeline for dependable delivery under the constrained
link.

6. Conclusion and future work
This study provided a systematic benchmarking of ROS 1 data logging strategies
under varying payload sizes, compression settings, and network conditions. By eval-
uating CPU usage, memory footprint, storage requirements, and message delivery
rates, we mapped the trade-offs that influence transport and storage performance
in real-world deployments. Throughput-oriented transports such as TCPROS, UD-
PROS, and ws_rosbag achieved the highest message rates, particularly with com-
pression enabled. However, UDP’s strong performance on small, latency-sensitive
topics was offset by its fragility under network stress, making hybrid strategies
– where large payloads fall back to TCP – more robust. NFS-based logging, es-
pecially asynchronous NFS, offered excellent CPU efficiency but struggled with
sustained high-frequency data streams. WebSocket-based JSON/JSONL methods
– while easy to set up and flexible – incurred heavy CPU load and high drop
rates on large data streams due to serialization overhead. Across all methods, raw
(uncompressed) configurations were more vulnerable to packet loss when network
capacity was saturated.

No single method proved universally optimal across all conditions tested: the
best choice depends on application constraints such as CPU availability, network
stability, required throughput, and tolerance for packet loss. Our results provide
empirically grounded guidance for selecting or combining transports to meet specific
operational requirements in ROS 1-based robotic systems.

Future work will integrate precise time synchronization (e.g., NTP/chrony or
hardware timestamping) to enable accurate end-to-end latency analysis. We also
plan to extend this benchmarking framework into a more automated, deployment-
agnostic tool that can isolate bottlenecks, profile shared resources, and adapt trans-
port selection in real time based on topic characteristics and network state. Ad-
ditional research will address challenging domains such as real-time LiDAR com-
pression, power and thermal budgeting for edge deployments, validation in mobile,
unstable wireless environments, and a hybrid migration strategy in which the work-

https://uni-eszterhazy.hu/fmf 199https://uni-eszterhazy.hu/fmf 199https://uni-eszterhazy.hu/fmf 199

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


N. E. B. Saadi, Z. Istenes FMF-AI 2025

station transitions to DDS-based ROS 2 for improved resilience, while the robot
remains on ROS 1 and communicates via rosbridge for interoperability. These steps
will move toward adaptive logging systems that dynamically balance throughput,
resource usage, and reliability in diverse field robotics applications.

References
[1] AgileX Robotics: Scout_msgs ROS Package, Accessed: 2025-08-10, 2025, url: https://g

ithub.com/agilexrobotics/scout_ros/tree/master/scout_msgs/msg.
[2] T. Kronauer, J. Pohlmann, M. Matthe, T. Smejkal, G. Fettweis: Latency Analysis of

ROS2 Multi-Node Systems, arXiv preprint arXiv:2101.02074 (2021), https://arxiv.org/a
bs/2101.02074.

[3] K. Masaba, A. Quattrini Li: ROS-CBT: Communication Benchmarking Tool for the Robot
Operating System: Extended Abstract, in: Aug. 2019, pp. 1–3, doi: 10.1109/MRS.2019.8901
094.

[4] V. Mayoral-Vilches, J. J. Jabbour, Y.-S. Hsiao, et al.: RobotPerf: An Open-Source,
Vendor-Agnostic Benchmarking Suite for Evaluating Robotics Computing System Perfor-
mance, arXiv preprint arXiv:2309.09212 (2023), https://arxiv.org/abs/2309.09212.

[5] V. Mayoral-Vilches, I. Lütkebohle, C. Bédard, R. Araújo: REP-2014: Benchmarking
performance in ROS 2, ROS Enhancement Proposal, https://ros.org/reps/rep-2014.ht
ml, 2022.

[6] Open Robotics: ROS TCPROS Transport, Accessed: 2025-08-10, 2025, url: http://wiki
.ros.org/ROS/TCPROS.

[7] Open Robotics: ROS UDPROS Transport, Accessed: 2025-08-10, 2025, url: http://wiki
.ros.org/ROS/UDPROS.

[8] Open Robotics: rosbridge Suite, Accessed: 2025-08-10, 2025, url: http://wiki.ros.org/r
osbridge_suite.

[9] O. Robotics: ROS Distributions and Ubuntu Compatibility, Accessed: 9 August 2025, 2025,
url: https://wiki.ros.org/Distributions.

[10] O. Robotics: ROS Melodic Morenia, Accessed: 9 August 2025, 2023, url: https://wiki.r
os.org/melodic.

[11] S. Schneegass, P. Weiss: ROSfs: A File System for Robot Operating System Based Data
Exchange, arXiv preprint arXiv:2406.10635 (2024), https://arxiv.org/abs/2406.10635.

[12] Y. Yanlei, Z. Nie, X. Liu, F. Xie, Z. Li, P. Li: ROS2 Real-time Performance Optimization
and Evaluation, Chinese Journal of Mechanical Engineering 36.1 (2023), p. 144, doi: 10.11
86/s10033-023-00976-5.

200 Proceedings of the FMF-AI 2025200 Proceedings of the FMF-AI 2025200 Proceedings of the FMF-AI 2025

https://github.com/agilexrobotics/scout_ros/tree/master/scout_msgs/msg
https://github.com/agilexrobotics/scout_ros/tree/master/scout_msgs/msg
https://arxiv.org/abs/2101.02074
https://arxiv.org/abs/2101.02074
https://doi.org/10.1109/MRS.2019.8901094
https://doi.org/10.1109/MRS.2019.8901094
https://arxiv.org/abs/2309.09212
https://ros.org/reps/rep-2014.html
https://ros.org/reps/rep-2014.html
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/UDPROS
http://wiki.ros.org/ROS/UDPROS
http://wiki.ros.org/rosbridge_suite
http://wiki.ros.org/rosbridge_suite
https://wiki.ros.org/Distributions
https://wiki.ros.org/melodic
https://wiki.ros.org/melodic
https://arxiv.org/abs/2406.10635
https://doi.org/10.1186/s10033-023-00976-5
https://doi.org/10.1186/s10033-023-00976-5

