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Abstract. Acoustic wave propagation plays a fundamental role in various
scientific and engineering disciplines, including medical imaging, seismology,
and acoustics. Traditional numerical methods such as the Finite Element
Method (FEM) and Finite Difference Method (FDM) are widely used to
model these waves [5, 24], but they often suffer from computational inef-
ficiencies, especially for high-dimensional problems or complex geometries.
This work explores the application of Physics-Informed Neural Networks
(PINNSs) as an alternative approach, leveraging deep learning to solve wave
equations efficiently [14]. PINNs integrate physical laws directly into the
neural network’s loss function, enabling solutions that adhere to the gov-
erning differential equations. We present a comparative analysis of PINNs
with traditional numerical solvers, highlighting advantages, limitations, and
potential improvements. Our experiments demonstrate that PINNs can ef-
fectively model wave propagation with comparable accuracy while reducing
computational cost in certain scenarios.

1. Introduction and related work

Acoustic waves play a crucial role in various fields, including engineering, medicine,
geology, and many others [2]. Predicting their propagation is an important task
that aids in solving diverse practical problems. However, this task is challenging
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due to the large number of factors influencing acoustic wave propagation.

PINNSs [14] represent a recent direction in artificial intelligence that combines
physics principles with machine learning to tackle complex problems. While tra-
ditional neural networks excel at uncovering complex data relationships, they of-
ten require extensive empirical data and may disregard the inherent physical con-
straints of the systems being studied. This can lead to inaccuracies or even incorrect
predictions, especially where physical adherence is critical. PINNs address this by
integrating physical laws as constraints directly into the network architecture and
loss function, allowing the model to learn from data while respecting fundamental
physics. They are particularly effective for problems described by partial differen-
tial equations (PDEs) or ordinary differential equations (ODEs).

Key benefits of PINNs include the integration of physical laws, such as con-
servation of mass, energy, or momentum, ensuring the correctness and reliability
of predictions in physical tasks. They possess the ability to model physical pro-
cesses with limited data by leveraging built-in physical principles, compensating
for information scarcity. Furthermore, PINNs can be used for solving both forward
and inverse problems, where unknown system parameters can be determined based
on observed data. PINNs merge the statistical power of neural networks with the
credibility of physical principles, providing results that are accurate and physically
consistent, which is exceptionally important for scientific and engineering tasks,
including the modeling of acoustic processes [11].

Acoustic wave propagation is characterized by parameters such as speed, fre-
quency, and amplitude [28]. Key phenomena include non-linear distortion, which
generates harmonics (e.g., in ultrasound), and dispersion, where wave speed varies
with frequency. Dispersion is minor in gases and liquids but significant in solids
due to frequency and directional dependencies. Wave interactions with obstacles
involve diffraction and scattering, which are critical for modeling wave behavior in
complex environments.

The use of PINNs for acoustic wave propagation prediction is still an insuffi-
ciently explored area. This work aims to investigate the possibilities of utilizing
PINNSs for this task. The objective is to first understand the domain of acoustic
waves and analyze the current state of PINNs. Subsequently, a suitable neural net-
work architecture and geometry will be implemented using the NVIDIA Modulus
Sym environment for one-, two-, and three-dimensional problems. Experimental
comparisons of various neural networks and differential operators will be conducted
to identify the most effective configurations. Finally, the results will be evaluated
and compared with classical numerical methods and analytical solutions. Research
utilizing methods like FEM for acoustic processes, such as solving the Helmholtz
equation using PINNs, has shown effectiveness in reproducing complex wave behav-
ior in heterogeneous media and enclosed spaces with obstacles, even with minimal
data and complex geometries. It has been already shown that the PINNs can
improve simulation efficiency and accuracy, reducing reliance on extensive mesh
generation and computational resources for wave propagation [15]. Our research
specifically analyzes acoustic waves.
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Recent work has begun to apply PINNs specifically to acoustic wave propaga-
tion and related audio or vibration-field problems. Yokota et al. [27] developed a
PINN framework for acoustic resonance analysis in one-dimensional acoustic tubes,
handling both forward and inverse cases to estimate energy loss terms. Schoder
and Kraxberger [16] demonstrated the feasibility of solving the 3D Helmholtz equa-
tion using PINNs and benchmarked against FEM and analytic solutions, showing
promise for forward acoustic modeling in spatially complex domains. Wang et al.
[21] addressed scattered acoustic fields around complex structures via PINNs, which
relates closely to modeling diffraction and obstacle interactions. Other applications
include acoustic field reconstruction from limited or noisy measurements, such as
in ducts or tube geometries [10], and ultrasound-based inverse problems to detect
defects in media using PINNs informed by the acoustic wave equation [18]. These
works illustrate both the potential and current limitations of PINNs: handling
high-frequency components, enforcing absorbing or reflecting boundary conditions,
computational cost in 3D, and robustness under noisy or partial observation.

2. Definition of PINN

PINNSs are deep learning models that integrate known physical laws, typically ex-
pressed as PDEs or ODEs, into the training process to ensure that the model’s
predictions adhere to the underlying physics [14]. PINNs cousist of three primary
components: a neural network that approximates the solution of a physical system,
a set of differential equations representing the physical laws governing the system,
and a loss function that penalizes deviations from both observed data and physical
consistency. The neural network, commonly implemented as a multilayer percep-
tron (MLP), approximates a target function u(z) with ug(x), where 6 denotes the
model parameters such as weights and biases [4]. These networks typically employ
activation functions like tanh or ReL U, with a preference for differentiable functions
to facilitate effective gradient-based optimization.

To embed physical principles into the model, PINNs include the governing equa-
tions directly into the loss function. Instead of relying on numerical solvers, the
network learns to satisfy physical constraints by minimizing the error induced by
these equations [14]. This approach enables PINNs to generalize from limited data
while maintaining physical plausibility.

Physical constraints can be introduced in two main ways. First, physical pa-
rameters, such as wave speed, pressure, or medium density, can be included as
additional features in the input. This helps the network better model spatial or
temporal dependencies, particularly in dynamic systems like acoustic waves [7].
Second, the physical equations themselves can be encoded into the loss function,
ensuring that the learned solution remains consistent with the physics throughout
the domain. The total loss function L(#) used to train a PINN is composed of
two parts: a data loss term Lgata(6) that measures the discrepancy between model
predictions and available measurements, and a physics loss term Lphysics(6) that
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penalizes violations of the governing physical laws [14]:

L(e) = Ldata(e) + Lphysics (0)

3. Theorem

Let N(u) represent a differential operator derived from the physical law such that
the governing equation is N(u) = 0. The physics loss term can then be defined as
the mean squared error of the residual evaluated at M collocation points {xj}jM:l
[14]:

1 M
Lphysics (9) = M Z|N(’LL9 (xj))|2

This term ensures that the network’s outputs not only fit the data but also
satisfy the physical constraints within the problem domain [3, 6]. The relative
weight between the data and physics losses can be adjusted adaptively to improve
training stability and accuracy.

Training involves minimizing the total loss function using optimization algo-
rithms such as gradient descent, Adam, or L-BFGS. Additionally, techniques such
as adaptive sampling, weighting strategies, and residual-based refinement can im-
prove convergence, especially when solving stiff or ill-posed problems [11].

Beyond forward modeling, PINNs can also solve inverse problems, such as
identifying unknown parameters or reconstructing missing input data from lim-
ited measurements [14]. Regularization strategies, including activation function
tuning and weighted residuals, can enhance accuracy. The spatial distribution
of training points, whether uniform, random, or adaptive, also influences model
performance [23].

To evaluate a PINN’s accuracy and physical validity, standard metrics such as
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and the Ly norm are commonly used [14, 22]. Adherence to con-
servation laws, like mass or energy conservation, further confirms the reliability of
the model [6, 20, 23].

While traditional PINNs rely on fully connected MLPs, alternative architectures
such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) have been employed to better handle spatial and temporal dependencies [3,
4, 17]. Recently, Bayesian extensions of PINNs (B-PINNs) have emerged as a
promising approach for uncertainty quantification in scenarios where prediction
reliability is critical [25].

4. Application of PINNs to wave problems

The wave equation is a fundamental equation in mathematical physics, describing a
wide range of wave processes from 1D string vibrations to 2D membrane oscillations
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and 3D acoustic waves. The core idea remains the same regardless of dimension:
examining the dynamics of a wave propagating through a medium, reflecting from
boundaries, or interacting with them. PINNs were applied to wave problems of
different dimensions within the NVIDIA Modulus Sym environment.

The NVIDIA Modulus Sym framework is a specialized tool designed for mod-
eling physical processes using PINNs. It supports GPU optimization for high com-
putational efficiency, crucial for large-scale simulations [12]. Modulus offers built-in
support for physical equations like the Helmholtz equation for acoustics and pro-
vides tools for creating and training PINNs by including physical constraints in
the loss functions. While general frameworks like TensorFlow and PyTorch can
implement PINNs, Modulus provides specialized tools for handling physical equa-
tions, which might require manual configuration in the others [1, 13]. Modulus
allows control over simulations via configuration files, specifying training parame-
ters, network architecture, equations, domains, and constraints.

Key advantages of NVIDIA Modulus include its optimization for NVIDIA
GPUs, enabling significantly faster model training for large-scale physical simula-
tions [12]. Tt features integrated tools for working with physical laws and equations,
simplifying the creation of complex models with physical constraints, including the
Helmholtz equation for acoustics. Modulus also provides ready-made templates
and examples for various physical tasks. Disadvantages include its dependence on
NVIDIA GPU hardware and the requirement for prior experience with GPUs and
physical process modeling for setup and use.

We have applied PINNs to three wave problems. 1D Wave Equation with Fixed
Boundaries is defined as:

Pu  ,0%u
9z~ a2

The PINN was trained to simultaneously satisfy the initial conditions u(z,0)
and Ju/0t at t = 0, boundary conditions u = 0 at = 0 and = = L, and the
differential equation itself via a residual term [14]. ¢ represents the wave speed.
A fully connected MLP was used, taking (z,t) as input and outputting u(z,t).
Parameters like layer count and size were configurable. An example comparison
with an analytical solution is shown in Figure 1.

2D equation extends to two spatial dimensions (x,y):

Pu_ (0 o
oz~ “ \ 9z2 oy?

This equation can describe, for example, membrane oscillations or other 2D
wave processes. The same overall PINN scheme was used as in the 1D case, but
network parameters were adjusted for increased complexity. A fully connected
architecture was retained, with an increased layer size (256 neurons) to accommo-
date the 2D task’s complexity. Optimizer details (Adam, learning rate, exponential
decay) were specified.
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PINN output Analytical solution
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Figure 1. Comparison of PINN prediction with analytical solution.

Finally, 3D equation includes a third spatial dimension (z):

Pu (0P DPu  Ou
o = (5 5+ 53)

The simulation area was a cube. Initial conditions defined a harmonic function
dependent on all three spatial coordinates, starting from rest. Zero displacement
boundary conditions were applied on all six faces, simulating a fixed membrane.
This configuration creates a complex interference pattern [12]. The same network
architecture and hyperparameters as the 2D case were used for direct comparison
of convergence and solution accuracy. A static cross-section visualizing the dis-
placement field at a specific time slice showed solution symmetry and reflections
from fixed walls, as seen in Figure 2.

30 00

Figure 2. Visualization the three-dimensional wave equation.
Additionally, 2D wave equation with Perfectly Matched Layers (PML) and Ob-

stacle was implemented. This complex case involved a 2D area with a circular
obstacle and surrounding PML [28]. PML is a numerical technique to absorb
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waves and simulate open boundaries, preventing unwanted reflections in wave pro-
cess simulations like acoustic, electromagnetic, or elastic waves. It absorbs wave
energy before it reaches the outer edge, simulating open space. The governing
equations become a system involving the acoustic pressure and auxiliary fields to
ensure absorption. A Neumann boundary condition du/On = 0 was applied on
the obstacle’s surface, simulating a perfectly rigid body reflecting waves [8]. Nu-
merically, this condition is evaluated using components of the normal vector. The
PINN formulation uses symbolic description of geometry, allowing precise appli-
cation of boundary conditions on the curved surface by computing the normal
using symbolic expressions [12]. An initial Gaussian pulse was defined. The net-
work predicted the primary field (u), auxiliary PML fields (14,1, ), and additional
quantities for normal derivatives. Due to the high complexity (multiple unknown
functions, geometry, PML), optimizing the training process was necessary. An ini-
tial issue with GPU memory exceeding limits was resolved by halving the batch
size, allowing training to complete with sufficient accuracy. Figure 3 shows the
time evolution of the wave in this scenario.

t=0.00 t=1.26 t=253

Amplitude u(x,y,t)

Figure 3. Time evolution of the acoustic wave in an area with an
obstacle and absorbing PML.

Implementing these models in Modulus Sym involves defining the physics equa-
tions, specifying the geometry and boundary/initial conditions, configuring the
neural network architecture and training parameters using YAML files, and setting
up constraints and inferencers.

To model the underlying physical system, we employed a fully connected neural
network using the Modulus Sym framework. The network architecture is designed
to approximate the solution to a spatiotemporal problem by taking spatial co-
ordinates (z,y) and time ¢ as input variables, and producing a scalar output p,
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representing the target physical quantity (e.g., pressure).

The network consists of five hidden layers, each containing 128 neurons. The
activation function used across all layers is the hyperbolic tangent (tanh), which
is commonly chosen for its smooth differentiability and favorable gradient proper-
ties when solving differential equations. The architecture is implemented using the
FullyConnected Arch module in Modulus Sym, and is parameterized with appropri-
ately defined symbolic input and output keys to facilitate automatic differentiation
and integration with physics-informed loss functions.

To evaluate the predictive performance of the trained model, several error met-
rics were computed by comparing the predicted values ppreq With the reference data
Dret [22]. The element-wise difference between predicted and true values was first
computed as Ap = Dpred — Pret- Based on this difference, the following statistical
indicators were calculated:

MSE: Computed as the average of the squared differences, it quantifies the
mean magnitude of the prediction errors,

N
MSE = Z Ap;)?

RMSE: Defined as the square root of the MSE, providing an interpretable error
magnitude in the same units as the output variable,

RMSE = vMSE.

Mean Error: The average of the raw differences between predicted and reference
values,

N
Z pApl

These metrics provide a comprehensive evaluation of model accuracy, consis-
tency, and the nature of deviations from the true solution.

The quality of the obtained solutions was evaluated for all analyzed cases, from
the basic 1D model to the most complex task with an obstacle and absorbing PML.
The main objective was to verify the physical correctness of PINN predictions, com-
pare results with reference solutions (analytical or numerical), and assess PINNs’
ability to solve problems with complicated geometries and absorbing boundaries.

5. Results

Comparisons with analytical and FDM solutions for the 1D case showed very good
agreement. Heat maps and wave profiles demonstrated minimal deviations. Quan-
titative metrics (MSE, L2-norm) were low (e.g., MSE of 1 x 107¢ vs. analytical,
6.7x107° vs. FDM for 1D; MSE of 5.437x 1077 vs. analytical, 5.347x 107 vs. FDM
for 2D; MSE of 6.256 x 1075 vs. analytical, 6.253 x 107% vs. FDM for 3D). PINNs
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successfully captured the dynamics of wave propagation with fixed boundaries in
all dimensions. This confirmed PINNs’ suitability for these academic examples
and their ability to provide accurate solutions comparable to traditional methods
like FDM. A key advantage highlighted was that PINNs do not require explicit
mesh discretization [14]. In practical terms, the reported errors correspond to sub-
percent deviations in wave amplitude, which are sufficient for engineering analysis
where qualitative propagation patterns dominate. The accuracy achieved in 3D
was sufficient for practical applications in complex configurations. As can be seen
in the visualization in Figure 4, in the 3D wave case, the difference between the
prediction and the analytical solution is minimal. In 1D and 2D cases, the error is
so low that it can’t be spotted visually. These results illustrate the robustness of
PINNSs for lower-dimensional problems and their potential as mesh-free solvers for
higher dimensions, although the computational effort increases significantly com-
pared to FDM. From the theoretical standpoint, the small residuals confirm that
the physics loss term effectively constrained the solution across collocation points.

PINN Prediction
06
os
04
03
02
01
(Y] os 10 15 20 25 10

00

Comparison at t = 3.16 and z = 1.60

Analytical Solution FDM Solution

o o
03 03
04 04
o3 03
02 02
o1 01
00
00 os 10 s 20 25 10

o0

o0 os 10 15 20 25 10

Figure 4. Comparison of FDM, PINN output and analytical solu-
tion for 3D wave at z = 0.

2D Acoustic Wave with Object and PML case was analyzed in parts: initial
Gaussian pulse propagation, interaction with an obstacle, and absorption by PML.

Comparison of Gaussian Pulse in 2D without obstacle/PML with FDM showed
acceptable accuracy. Visual differences were observed, particularly on the wave
front. Quantitative metrics like relative L2 error were higher (8.2712 x 10~!) com-
pared to the simpler 1D/2D/3D cases. The relatively high error indicates that while
PINNSs can capture the main wave structure, sharp gradients and high-frequency
components remain challenging, especially in higher-dimensional problems. In-
creasing network parameters improved accuracy but also slightly increased wave
amplitude, indicating sensitivity to hyperparameters. Such behavior highlights a
limitation of PINNs: their performance is strongly tied to architecture choices and
may require extensive tuning, unlike FDM which has more predictable convergence
behavior. Finding a closed-form analytical solution for a Gaussian pulse in 2D is
challenging due to non-linearity and the need for complex functions like Bessel
functions. The difficulty in this case reflects the challenge of minimizing N (ug(z;))
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near steep gradients, where the residual term dominates the loss.

PINNs utilize a precise symbolic description of the circular obstacle geometry
and boundary condition application [26]. Differences observed when comparing
PINN results with FDM/FEM solutions are attributed primarily to the PINN’s
precise handling of the curved boundary condition via symbolic computation of the
normal, contrasting with the approximate nature of this condition in FDM/FEM
[3]. Such accuracy is particularly relevant in scenarios where faithful represen-
tation of curved or irregular boundaries is critical, such as biomedical or seismic
wave simulations. Other sources of difference include numerical approximations in
classical methods and potential discrepancies in initial impulse definition or time
parameters. Aligning results requires more accurate boundary condition methods
in classical techniques (e.g., immersed boundary, body-fitted mesh) and careful
matching of initial and boundary conditions and discretization. A fundamental
difference remains in how the solution is obtained: PINN optimizes a functional
with analytical geometry, while FDM/FEM solve a discretized equation with preci-
sion limited by the discrete mesh [14]. The functional approach also enables PINNs
to generalize solutions at arbitrary collocation points, whereas traditional methods
are tied to predefined meshes. This observation directly illustrates the theoretical
advantage of embedding the operator N(u) in the loss: boundary conditions are
enforced analytically rather than approximated numerically.

Comparison of PINN and FDM solutions of absorption in PML showed good
overall approximation by PINN, but minor artifacts appeared in the upper region.
These artifacts could potentially be due to imprecise PML boundary conditions
in the PINN model. FDM showed clearer wave propagation. Quantitative errors;
MSE=0.00321, RMSE=0.00545, with maximum error for a single collocation point
0.0213; indicated a small average deviation but significant local deviations on the
wave front, suggesting PINNs’ sensitivity to steep gradients. Such sensitivity lim-
its their use in problems where sharp wavefront accuracy is critical (e.g., shock
waves), unless specialized loss functions or adaptive sampling strategies are em-
ployed. The PML implementation in PINN showed artifacts, indicating it did not
perfectly absorb waves, possibly due to suboptimal boundary condition setup in
the loss function or architecture limitations. Further optimization was limited by
computational resources. The growing training cost with domain complexity rep-
resents another limitation, which may offset the benefits of mesh-free formulation
in large-scale 3D applications. From the perspective of the theorem, these arti-
facts indicate incomplete minimization of the residual at collocation points near
the absorbing boundary, pointing to a need for refined loss weighting.

Three different neural network architectures were implemented for the 2D wave
equation with PML and an object: Fully Connected, Fourier Neural Operator
(FNO), and SIREN [3, 4, 9, 19]. Hyperparameters were kept the same across
all cases for comparison, thus 5 layer network, 128 neurons per layer and tanh
activation function for fully connected neural net and default Modulus values for
FNO and SIREN.

The Fully Connected architecture yielded the best and most stable results
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among those tested with the given configuration. It demonstrated smoother conver-
gence and physically more correct wave behavior in the impulse problem. Classical
dense architectures therefore remain a competitive baseline for wave problems, es-
pecially when training resources are constrained.

The FNO architecture showed a high initial loss that decreased rapidly in the
first thousands of iterations, then settled at a lower level. This suggests FNO
finds the main frequency components relatively quickly, but the solution was not
completely ideal regarding reflection and absorption. Parameter tuning (normal-
ization, number of harmonics) improved FNO results, reducing noise and yielding
a recognizable impulse, but still not fully physically correct propagation, reflec-
tion, or absorption, see Figure 5. The gray circle represents an obstacle and the
green square represents PML. These observations highlight both the promise of
operator learning approaches for capturing global patterns, and their current lim-
itations in faithfully reproducing fine-scale boundary interactions without tailored
architectures.

4 3 2 1 0 -1 -1 0 1 2 3 4

Figure 5. Result of the FNO model (left) after parameter opti-
mization and Fully Connected (right) at the same time.

The SIREN architecture started with a very high loss and decreased slowly,
remaining at a significantly higher value than the other architectures. The model
struggled to find a sufficiently good representation of the wave field. For impulse
disturbances with a wide frequency spectrum, SIREN typically requires special
initialization techniques and frequency scaling. While SIRENs are powerful for
high-frequency representations, their application to broadband wave propagation
remains limited without problem-specific adaptations.

In summary, the results demonstrate that PINNs can achieve accuracy com-
parable to FDM and FEM in structured wave problems, with clear benefits in
handling curved geometries and mesh-free generalization. However, their practical
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deployment is limited by high computational cost, sensitivity to hyperparameters,
and challenges with absorbing boundaries or sharp gradients. PINNs are there-
fore most promising for problems where geometric flexibility and smooth solutions
are more critical than computational efficiency, such as biomedical or geophysical
applications. Overall, the experiments confirm the theoretical formulation: mini-
mizing the total loss L(6) = Lgata + Lphysics produces solutions that not only fit
data but also satisfy the governing PDE residuals within the domain.

6. Conclusion

This study investigated the application of PINNs for acoustic wave propagation
prediction. A theoretical overview of acoustic waves and the PINN approach was
provided, followed by simulations in NVIDIA Modulus Sym for one-, two-, and
three-dimensional cases, including absorbing boundaries and rigid obstacles.

PINNs modeled wave phenomena in open boundaries and complex geometries
without explicit space—time discretization, a key advantage over classical numerical
methods. However, the models were sensitive to training parameters, especially in
complex configurations (e.g., with impulse disturbances and PML), where artifacts,
amplitude reduction, or wavefront deformation appeared. These issues arose from
loss-function setup, excessive weighting of boundaries, uneven collocation points,
or low weights in the interior domain.

Comparison with analytical, FDM, and FEM solutions confirmed the advan-
tage of PINNs in applying boundary conditions to curved geometries via symbolic
description. While accuracy was not uniform across the entire domain, PINNs
generally preserved the physical structure of the solution and reproduced key wave
properties.

Among Fully Connected, FNO, and SIREN architectures, the classical fully
connected network yielded the most stable and physically correct results, empha-
sizing that architecture choice should reflect the disturbance type and expected
solution form.

Although training is computationally intensive, PINNs’ flexibility, mesh-free
formulation, and incorporation of physical laws make them a promising tool for
modeling complex physical processes. Future work should expand to more architec-
tures, improve sampling strategies, and apply regularization to enhance accuracy,
particularly for impulse waves and absorbing layers.
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