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Abstract. Recent advances in artificial intelligence and its widespread adop-
tion have imposed the necessity of research targeting the inner mechanisms
of intelligent systems. We lack the exact mathematical tools needed to grasp
what led to a certain output. The term explainability has recently emerged
in the context of artificial intelligence (AI) as an area of development. An
efficient way to introduce a checkpoint into decision-making systems is to in-
corporate prototype units. These bridge the difference between input image
space and feature space, offering us a glimpse into an intermediary phase
of decision-making. We created a new model – WaveProtoSeg – from the
WaveProtoPNet classification model, combining image segmentation with the
wavelet transform as a feature extractor. Our experiments were conducted on
the Cityscapes dataset, which gathers real street scenes. Although we did not
achieve the accuracy of the original paper, we explored various configurations
of the system, and we managed to build a versatile system.

Keywords: image segmentation, wavelet, explainability, prototype

1. Introduction
Intelligent systems are experiencing significant advances at a rapid pace and are
being progressively integrated into safety-critical fields, including healthcare, de-
fense, and autonomous driving. Despite their accuracy, deep learning models often
function as black boxes, offering little insight into their decision-making processes,
posing risks when human lives or assets are at stake. This has led to growing
interest in explainable artificial intelligence (XAI), which aims to improve model
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transparency and trust [17, 19].
Prototype-based approaches have demonstrated significant potential in this

field. Prototypes may be conceptualised as instances in the feature space that
exemplify a certain class, encapsulating the core properties characteristic of that
class, analogous to learning vector quantization [10]. They capture key features
during training and serve as reference points for interpreting predictions from new
data. They can reveal model errors, biases, and decision rationale, making them
valuable tools for developers.

However, the implementation of prototypes poses a significant challenge, the
need to connect the initial raw input with the more abstract high-level feature
space. Many of the current methodologies to address this issue typically depend on
complex, computationally demanding black-box architectures. In contrast, wavelet
transforms [15] provide a lightweight alternative, effectively capturing spatial and
frequency information from images viewed as 2D signals.

This study presents WaveProtoSeg (see Figure 2), a segmentation model that
integrates wavelet-based feature extraction with interpretable prototype learning,
starting from our previous work, WaveProtoPNet [12, 13]. Similarly to the Proto-
Seg [18] framework, this approach focuses on achieving pixel-wise image segmenta-
tion, with the main difference in using wavelets as feature extractors. Its accuracy
is assessed using the realistic Cityscapes dataset [3], which provides a rich and
complex urban environment for evaluation, relevant to the needs of autonomous
driving. WaveProtoSeg aims to deliver transparent and interpretable output.

The article is structured as follows. In Section 2 a review of the literature
is conducted, after which the model is presented in Section 3, followed by the
experiments and discussion in Section 4, ending with the conclusion in Section 5.

2. Literature review

2.1. Image segmentation and explainability
Image segmentation is a fundamental task in computer vision that assigns a class
label to each pixel of an image, dividing it into semantically coherent regions.
Unlike image classification, which outputs a single label per image, segmentation
operates at a finer granularity, making it essential for applications like medical
imaging, autonomous driving, and remote sensing [4, 22].

Although classification has historically been the entry point for XAI in re-
search and industry, segmentation has received increasing attention since the late
2010s [25]. Early successful segmentation models include U-Net [16], designed for
biomedical image analysis, and SegNet [1], which uses an encoder-decoder struc-
ture to map input images to prediction in pixels. More recently, transformer-based
models such as Segmenter [21] have been introduced to capture long-range depen-
dencies in segmentation tasks.

Segmentation poses unique challenges for interpretability. Decisions at the pixel
level must account for local context and global consistency, often leading to com-
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plex interactions between neighbouring pixels. This makes explanations harder to
interpret and evaluate, especially when no clear ground truth is available for what
constitutes a valid explanation.

Explainable image segmentation techniques can be broadly categorised into
post-hoc and architecture-based methods [8]. For post-hoc methods, the model
does not directly explain its predictions, and an independent model is employed to
obtain this information. Architecture-based methods are inherently explainable,
i.e. providing an explanation alongside the prediction. Among these inherently
interpretable models, prototype-based explanations offer an intuitive and inter-
pretable approach by associating predictions with representative examples from
the training data. Each class is linked to a set of learnt prototypes, which provide
visual justification for predictions based on similarity to prototypical regions [9].
Counterfactual explanations form another important branch, focusing on identify-
ing the minimal changes to input that would alter the model output, thus helping to
understand the decision boundaries and increase the robustness against adversarial
perturbations. Perturbation-based methods systematically occlude or modify parts
of the input image to analyse the resulting changes in output, offering insight into
which regions are the most influential. Gradient-based approaches, such as saliency
maps and Grad-CAM [20], utilise gradient information from subsequent network
layers to produce heat maps that highlight the regions most responsible for a par-
ticular prediction [7, 24]. Finally, architecture-based methods are interpretable by
design, embedding explainability directly into the model’s structure rather than
relying on post-hoc interpretation.

Our proposed model is similar to the previous ProtoSeg architecture introduced
in [18], which demonstrated interpretable semantic segmentation through the use
of prototypical image patches learnt from training data, a patch of an image being
a smaller region of it. This model expands on ProtoPNet [2], which served as the
basis for our earlier development of the WaveProtoPNet model. ProtoSeg incorpo-
rates a diversity loss to encourage the model to learn a broad and representative set
of prototypes, thereby enhancing interpretability. In our work, we retain the core
structure and interpretability framework of ProtoSeg, while extending its capabil-
ities by integrating a wavelet-based feature extractor. This modification results in
more transparent feature representations.

2.2. Wavelets in image segmentation
Wavelet transforms offer a powerful tool for analysing signals in both space and fre-
quency domains simultaneously. Unlike the Fourier transform, which only provides
frequency information and loses spatial localisation, wavelets allow multiresolution
analysis, capturing both coarse structures and fine details [15].

The Discrete Wavelet Transform (DWT) decomposes a signal into approxima-
tion and detail coefficients through a series of low-pass and high-pass filters. In the
context of image processing, this results in a set of sub-bands that highlight differ-
ent spatial features, such as edges and textures. Wavelets are localised, meaning
they are compact in both space and frequency, making them well suited for tasks
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like denoising, compression, and feature extraction.
The two-dimensional wavelet transform applies these low- and high-pass filters

to images by filtering along rows and columns, leading to four quarter-sized images
at each decomposition level, focusing on: approximation coefficients (low+low)
and detail coefficients in horizontal (low+high), vertical (high+low), and diagonal
(high+high) directions. This hierarchical decomposition can be recursively applied
to the approximation result for a finer scale analysis (i.e., higher decomposition
levels); see Figure 1.
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Figure 1. (left) Wavelet transform using low-pass and high-pass
filters (l, h). (right) The result of the decomposition on an image.
The average component (aj+1, upper-left corner) underwent an ad-

ditional decomposition (⇒ decomposition on 2 levels).

In wavelet segmentation methods, such as the Wavelet Segmentation Method
(WSM) demonstrated improved performance in capturing background and small-
scale features compared to classical threshold-based techniques [6]. In sonar imag-
ing applications, wavelet filters have been used to reduce noise while enhancing
feature localisation, showing the benefit of wavelet-based multiscale representa-
tions [23].

In deep learning, several models incorporate wavelet transforms into convolu-
tional neural networks (CNNs) to replace conventional downsampling layers (e.g.,
max-pooling, strided convolution). For example, Haar wavelets have been used to
decompose feature maps into low-frequency and high-frequency components during
encoding. Integrating Haar wavelet downsampling improves segmentation accu-
racy, particularly in boundary regions. [26]

A notable advancement is XNet [27], a deep learning architecture that integrates
DWT and Inverse Wavelet Transform into a U-Net-style encoder-decoder. XNet
captures both global context and local detail by separating and recombining fre-
quency information, leading to improved performance even under semi-supervised
conditions. However, its success is limited when high-frequency features are not
prominent in the input data.

In general, wavelets offer a lightweight and effective alternative for multiscale
feature extraction in segmentation tasks, particularly where interpretability and
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boundary precision are critical.

3. Methodology
To incorporate wavelets into the segmentation framework, we explore three distinct
architectural configurations (see Figure 2), each offering different trade-offs in terms
of the granularity of feature representation and output resolution.
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Figure 2. Different WaveProtoSeg builds: (a) patch extraction at
the beginning and patch-sized prototypes, (b) patch extraction via
wavelet decomposition; (c) pre-extracting patches and prototypes

smaller than patch-size.

In WaveProtoSeg, image feature extraction is performed using wavelet decom-
position – the different applications of it will be explained in detail in each three
setups. This operation produces a set of feature maps from the input image x –
denoted as ϕ(x) = z – which are then passed to the prototype layer. In case of
c.setup, this will be split into smaller patches: z̃ ∈ P(z) ≡ patches(z). The output
produced by the jth prototype unit (pj) can be written as:

gpj
(z) = max

z̃∈P(z)
log

((
||z̃ − pj ||22 + 1

)
/
(
||z̃ − pj ||22 + ϵ

))
.

Based on the similarity scores between the prototypes and the feature maps, the
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classification will take place. After the classification of each pixel, the results will
be gathered into one final result: the segmentation map of the original image. The
prototype units themselves are also learnt from the wavelet-extracted features. The
depth of wavelet decomposition, that is, the number of decomposition levels, is a
tunable hyper-parameter.

In the first configuration, shown in Figure 2.a, each pixel in the input image
is associated with a local patch. These patches are independently decomposed
with wavelet transform until the average (low-frequency) component is reduced to
a single pixel. The resulting feature map of each patch retains the same spatial
dimensions as the original patch. The result is a vector of dimension 1 × (Hp · Wp),
where Hp · Wp is the size of the patch. For an image x of size 32 × 32, this
process results in 32 × 32 distinct patches – one for each pixel – that capture the
local neighbourhood context. These feature vectors are then compared to the learnt
prototypes in the prototype layer. Since this setup generates a prediction per input
pixel, the output resolution matches the input. Conceptually, this is analogous to
PrototypeDL [11], which learns entire images as prototypes; here, the prototype
layer learns entire patches.

FeaturesWaveletsImage

Figure 3. (left) Highlighted patch from the original image. (mid)
Purple regions on the feature map indicate dispersed data of the

patch. (right) Vector-form rearrangement of the feature map.

In the second configuration (b.setup), the entire image is wavelet-decomposed
in one pass. Following decomposition, patches are extracted from the resulting fea-
ture map; see Figure 3. This significantly reduces the number of patches compared
to a.setup, resulting in a smaller output resolution. For example, decomposing a
128 × 128 image may produce a 32 × 32 feature map, leading to 32 × 32 patches.
Hence, the architecture in Figure 2.b provides fewer segmentation predictions, cor-
responding to the spatial dimensions of the decomposed map. This setup resembles
the WaveProtoPNet approach, where images are decomposed into feature maps,
and patches from these maps are used to learn and compare prototypes.

The third configuration (from Figure 2.c) shares structural similarities with
a.setup, in that the patches are extracted before wavelet decomposition. However,
the number and size of patches are user-defined hyper-parameters. Each patch is
decomposed only up to a certain level, stopping before the approximation compo-
nent reduces to a single pixel. This allows the average part to retain a spatial extent
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of multiple pixels. For example, decomposing a 256×256 input into 16×16 patches
and performing three levels of wavelet decomposition result in a 2 × 2 component
for each 8 × 8 patch. These are flattened into 1 × 1 × 64 feature vectors, which
also define the prototype dimensions. This setup enables fine-grained semantic
matching while maintaining computational efficiency. In this case, the prediction
granularity of the model remains aligned with the input image. The inner part of
this setup, after extracting patches is basically a WaveProtoPNet by structure –
and its pixel-wise results will be gathered into one segmentation mask.

Despite differences in feature map construction and output resolution, all three
configurations share the same prototype layer and fully connected classification
layer. The size of prototype vectors varies depending on the setup, but the com-
parison logic remains consistent. The primary hyper-parameters include patch size,
decomposition depth, and number of prototypes.

Loss functions
During training and evaluation, we adopted the loss formulation proposed in Pro-
toSeg [18], while also evaluating an alternative loss from our previous work, Wave-
ProtoPNet. The training comprises two distinct phases: initially, it concentrates
on prototype formation, and subsequently, it emphasizes classification accuracy
while mitigating negative reasoning.

Let D = {(xi, yi)} = [X, Y ] denote a data set of images and labels.
In the first phase, when the focus is on prototype learning, the weights of the

fully connected layer h are frozen, so that the edges that connect a prototype with
the class for which they are responsible are set to 1, otherwise to −0.01:

w
(k,j)
h =

{
1 if pj ∈ Pk

−0.01 otherwise,

where w
(k,j)
h denotes the weight of the edge connecting the jth prtotoype to the

class k, and Pk being the set of prototypes responsible for class k.
The loss responsible for prototype-formation from ProtoPNet includes:

Cluster Cost (LClst), which encourages each prototype to be close to at least one
patch of its corresponding class: LClst = 1

n

∑n
i=1 minpj∈Pyi

minz∈P(ϕ(xi)) ||z−pj ||22;
Separation Cost (Sep), that promotes distance between prototypes and patches of
different classes: LSep = − 1

n

∑n
i=1 minpj /∈Pyi

minz∈P(ϕ(xi)) ||z−pj ||22. The total loss,
focusing on prototype formation, includes both the cross-entropy classification loss
(LCE) and regularisation terms:

L1 = LCE + λ1LClst + λ2LSep

In contrast, the ProtoSeg loss function introduces a prototype diversity term
based on Jeffrey’s divergence. It will be written in a suitable form for a.setup
and b.setup. This term ensures that prototypes of the same class are activated in
different regions of the input image, promoting interpretability and coverage.
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Jeffrey’s divergence between the distributions U and V is defined as: DJ(U, V ) =
1
2 DKL(U ∥ V ) + 1

2 DKL(V ∥ U), being the symmetrised version of the Kullback-
Leibler divergence (DKL). For multiple distributions U1, U2, . . . , Un, their similar-
ity is computed as: SJ(U1, U2, . . . , Un) = 1

Cn
2

∑
exp(−DJ(Ui, Uj)).

Given a prototype corresponding to class c: p ∈ Pc and a feature map Z with
the corresponding ground truth labels YZ ∈ RHd×Wd , the prototype-class-image
activation vector is: v(Z, p) = softmax(∥ zij − p ∥2| zij ∈ Z, Yij = c). The diversity
loss for prototypes of class c is then: LJ(Z, Pc) = SJ(v(Z, p1), . . . , v(Z, pk)).

The overall prototype diversity loss, averaged over all classes, is:

LJ = 1
C

C∑
c=1

LJ(Z, Pc),

Finally, the total prototype-formation loss used during training combines the
cross-entropy loss with the diversity term:

L1J = LCE + λJ · LJ ,

where LCE is the pixel-wise classification loss, and λJ controls the weight of the
diversity regularization.

The second loss in both cases is to focus on avoiding negative reasoning. They
are mostly the same, with the difference that in the ProtoSeg loss, the prototype-
formation loss is also included. In case of ProtoPNet loss, it looks as follows:

L2 = LCE + λ

K∑
k=1

∑
j,pj /∈Pk

|w(k,j)
h |.

In the ProtoSeg type, instead of the LCE term, L1J occurs.

4. Results and discussion
To evaluate the performance of the WaveProtoSeg model, we used a preprocessed
version of the Cityscapes dataset [3], including 5000 images relevant to understand-
ing the urban scene [14]. This data set provides high-resolution RGB street view
images from various cities of size 128 × 256, annotated at the pixel level of the 20
classes. These fine annotations allow for a detailed analysis of semantic segmenta-
tion performance. The ProtoSeg model achieved 67% mIoU with this dataset.

We tested several variants of the model using different types of wavelets, de-
composition levels, prototype numbers, and loss functions. Across all setups, we
adopted the mean Intersection over Union (mIoU) metric to evaluate segmentation
performance. The training included two phases. The first phase (responsible for
prototype learning) has additional three learning components: first with a learning
rate of 0.01 for 8 epochs, then a learning rate of 0.005 for 4 epochs, and finally with
a learning rate of 0.001 for 4 epochs. The second phase (focusing on accuracy and
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avoiding of negative reasoning) has also three sub-phases, with the same learning
rates as in the first phase, just with different epoch numbers per each: it runs pri-
mary for 8 epochs, then for 6, then again for 8 epochs. As loss hyper-parameters
the following values were used: λ1 = 1.25, λ2 = 0.4, λ = 0.001, λj = 0.25.

In the following, we present a summary of the most successful configurations of
each, illustrated in Table 1. The best overall result was achieved with the c.setup,
where dilation of convolutional filters was employed at the initial patch extraction.
This led to a mIoU of 39.21% in the test set and 41.19% on the train set. Here,
the loss from WaveProtoPNet was used. The second most successful setup was the
a.setup, which is similar to the c.setup, with the difference that here the patches are
not decomposed into smaller patches. More prototypes were needed to achieve the
above 38% mIoU, using the loss of ProtoSeg, and as a consequence, training was
much more time consuming. The model with the worst performance was b.setup,
achieving the maximum test mIoU of 33.86%, applying the loss of ProtoPNet during
training.

Table 1. Summary of the best results for each setup.

Setup
Receptive
field
of a pixel

Decomp Wavelet Proto/
Class

Test
mIoU

a.setup 8 × 8 3 db2 20 38.2
b.setup 10 × 10 1 db4 20 33.86
c.setup 16 × 16 1 db4 5 39.21

Despite the architectural novelty, the WaveProtoSeg model underperformed
compared to state-of-the-art semantic segmentation models. Figure 4 shows a
visual comparison of input images, ground truth annotations, and predictions from
the WaveProtoSeg model. It is evident that some classes such as building, sky or
vegetation were learnt better, while others like traffic light or human suffered from
inconsistent predictions and object-level confusion.

There are several potential causes that could contribute to the observed lower
mIoU level. One potential explanation for this phenomenon is that certain classes
are significantly under-represented when compared to others. The majority of im-
ages are covered with road, building, sky and vegetation, while the rest of the classes
occur just occasionally, sometimes just in a really small part of the image. Another
reason should be the low quality of the prototypes. As shown in Figure 5, the
learnt prototypes lack semantic structure and often do not represent the meaning-
ful features of the training data. This can be the result of the previously mentioned
problem of class-imbalance. The features extracted by wavelet decomposition can
also be a problem. The wavelets may not be suitable for extracting the most rel-
evant information from this type of data. Finally, an essential drawback can be
the small receptive field that is used to classify a pixel. By expanding the area
considered around a single pixel, the amount of contextual semantic information
increases, which can significantly enhance the precision of its classification process.
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Figure 4. Top to bottom: original images, ground-truth annota-
tions, predicted segmentation.

20 prototype/class 5 proto/class

Figure 5. Visualization of learned prototypes: their low quality
and poor discriminative power directly affect the model’s accuracy.

5. Conclusion
In our previous research, we demonstrated that wavelets are as powerful in fea-
ture extraction as any classical backbone. Our experiments provided a thorough
basis for including wavelet decomposition into prototype-based explainable sys-
tems. However, after several trials and experiments, we arrived at the conclusion
that wavelet-based image segmentation remains backward compared to traditional
backbone systems in terms of accuracy and interpretability.

Although the WaveProtoSeg model offers an explainable approach to seman-
tic segmentation by combining prototype learning with wavelet-based feature ex-
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traction, its performance fell significantly short of expectations on the Cityscapes
dataset. The best test mIoU achieved was only 39.21%, suggesting that the cur-
rent architecture and training methodology require refinement before it can be
considered competitive.

The small receptive field of the model hinders its ability to make context-aware
decisions. Since a pixel is classified based on features extracted from a relatively
narrow patch, it lacks the broader contextual information that is often crucial in
distinguishing between semantically similar regions (e.g., distinguishing a car from
a bus, or a road from a sidewalk). Enlarging the receptive field may help mitigate
this problem; however, this could prove to be prohibitive with respect to the number
of prototypes that would be required, making the training process too expensive.

To thoroughly investigate if the model’s architectural constraints are influenced
by particular datasets, we intend to conduct experiments across various datasets.
This includes testing on a more balanced dataset with a smaller number of distinct
classes. Another direction would be to test it on a medical data set. The prior
model we developed, WaveProtoPNet, demonstrated strong performance in the
classification of human tissues. Inspired by these results, a worthwhile endeavour
would be to investigate whether good segmentation capabilities can be achieved
for medical data sets, such as the histology data set for nuclei segmentation [5].
We think that the “simpler” images – which can be converted to gray-scale with-
out information loss – from the medical domain of the cellular level can be more
convenient for prototype-based segmentation. Using these simpler data, one could
experiment with the possibility of making the prototypes rotation-invariant by
manually generating the rotated versions of the prototypes for every single learnt
prototype.

In conclusion, while the model promotes explainability and novelty, substantial
architectural and algorithmic improvements are necessary for it to be a viable tool
for semantic segmentation in the natural or medical imaging domains.
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