
Proceedings of the International Conference on
Formal Methods and Foundations of Artificial Intelligence
Eszterházy Károly Catholic University
Eger, Hungary, June 5–7, 2025
pp. 140–147 DOI: 10.17048/fmfai.2025.140

Applying Tree-Based Convolutional
Neural Networks to classify design

patterns

Gábor Kusper, Erik Zoltán Hidi, Krisztián Kusper,
Zijian Győző Yang, Szabolcs Márien

Eszterházy Károly Catholic University
kusper.gabor@uni-eszterhazy.hu

University of Debrecen
kusper.gabor@inf.unideb.hu

InnovITech
hidieric@gmail.com, {krisztian.kusper,szabolcs.marien}@innovitech.hu

ELTE Research Center for Linguistics
yang.zijian.gyozo@nytud.elte.hu

Abstract. Automatic detection and classification of design patterns are an
increasingly relevant task in modern software engineering, as it directly con-
tributes to improving code quality, readability, and maintainability. In this
paper, we propose the application of a modified Tree-Based Convolutional
Neural Network (TBCNN) architecture for the recognition of GoF design
patterns in Java source code. The approach leverages Abstract Syntax Trees
(ASTs) as structural representations of programs, where nodes are encoded
by a pre-trained embedding model that captures semantic similarities be-
tween language keywords. The resulting vectorized ASTs are processed by the
TBCNN, enabling the model to learn both structural and semantic features
characteristic of design patterns. For training and evaluation, we collected a
dataset of Java implementations of design patterns from GitHub repositories,
resulting in approximately 500–600 samples per pattern. Experimental re-
sults demonstrate high classification accuracy, with average precision, recall,
and F1-scores exceeding 98% across eight design patterns. These findings
confirm the viability of tree-based deep learning methods for pattern recog-

This research was supported by the grant 2018-1.1.1-MKI-2018-00200 “Creating an automated
quality assurance service with refactoring solutions”.

140 Proceedings of the FMF-AI 2025140 Proceedings of the FMF-AI 2025140 Proceedings of the FMF-AI 2025

https://doi.org/10.17048/fmfai.2025.140
mailto:kusper.gabor@uni-eszterhazy.hu
mailto:kusper.gabor@inf.unideb.hu
mailto:hidieric@gmail.com
mailto:{krisztian.kusper,szabolcs.marien}@innovitech.hu
mailto:yang.zijian.gyozo@nytud.elte.hu


FMF-AI 2025 Applying Tree-Based Convolutional Neural Networks . . .

nition in source code. However, the model shows limitations when applied to
real-world production code, likely due to the restricted representativeness of
the training data, which consists mainly of educational implementations.
Keywords: design patterns, Tree-Based CNN, source code analysis

1. Introduction
Design patterns provide proven, reusable solutions to recurring design problems
and are widely used to improve code quality, readability, and maintainability [3].
Despite their importance, automatic recognition of design patterns in source code
remains challenging. Traditional approaches often rely on handcrafted rules or
classical machine learning over engineered features, which are costly to maintain
and tend to generalize poorly across projects and coding styles [9]. Recent advances
in learning on program structure suggest that models operating directly on Abstract
Syntax Trees (ASTs) can capture both syntactic and structural regularities of code
[8]. Building on these insights, we revisit design pattern classification through the
lens of tree-based deep learning.

Our study is motivated by the early work of Márien on the decision structures
underlying design patterns [4–7], which highlights that patterns exhibit distinc-
tive structural signatures. Tree-Based Convolutional Neural Networks (TBCNNs)
have shown promise in learning from ASTs without handcrafted features [8], but
their applicability to pattern-level classification in real-world codebases has not
been systematically assessed. This leaves a gap between rule-heavy detectors and
structure-aware neural models.

We address the following question:

RQ: Can a modified Tree-Based Convolutional Neural Network effec-
tively and robustly classify Gang-of-Four (GoF) design patterns in Java
source code from AST representations?

We focus on eight GoF patterns that are both prevalent in practice and struc-
turally discriminative: Adapter, Bridge, Builder, Decorator, Null Object, State,
Strategy, and Template Method. We target method- and class-level manifestations
as they appear in compilable Java files.

We propose a two-stage pipeline. First, we pre-train a keyword/token embed-
ding model on Java code to obtain semantically informed vector representations
for AST nodes. Second, we feed vectorized ASTs to a modified TBCNN, in which
we adjust the coefficient matrix computation within the tree-based convolution to
better reflect heterogeneous child-role contributions. This design aims to couple
semantic token proximity with structural pattern signals.

To study feasibility at scale, we curate a pattern-labeled corpus from public
GitHub repositories by querying files whose names and directory contexts indicate
any of the eight target patterns. While this yields substantial coverage per pattern,
many examples are educational implementations. We therefore explicitly evaluate
generalization and discuss limitations stemming from dataset representativeness.

https://uni-eszterhazy.hu/fmf 141https://uni-eszterhazy.hu/fmf 141https://uni-eszterhazy.hu/fmf 141

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


G. Kusper, E. Z. Hidi, K. Kusper, Z. Gy. Yang, Sz. Márien FMF-AI 2025

This paper makes the following contributions:

1. We formulate and evaluate a structure-aware deep learning approach for de-
sign pattern classification that operates directly on ASTs using a modified
TBCNN.

2. We construct a pattern-focused Java dataset covering eight GoF patterns and
report comprehensive per-pattern metrics.

3. We provide an empirical analysis highlighting strong performance on aca-
demic style implementations and outlining the generalization gap to produc-
tion code, thereby charting directions for hybrid and data-centric improve-
ments.

Our experiments indicate that the proposed model achieves high precision/recall
on the curated benchmark, supporting the viability of tree-based deep learning for
pattern recognition. At the same time, we observe reduced robustness on pro-
duction code, underscoring the need for richer, more diverse training data and for
combining learned structural features with lightweight, interpretable constraints.
These observations motivate future work on dataset expansion, transfer learning,
and hybrid rule+ML detectors.

Section 2 provides a concise overview of related work; Section 3 details the
models, the modified tree convolution, and describes the dataset; Section 4 presents
experiments and results; Section 5 concludes with limitations and future work.

2. Related work
The task of detecting and classifying design patterns has been studied from dif-
ferent perspectives, ranging from rule-based analysis to machine learning methods.
Several surveys and empirical studies have highlighted both the importance of the
problem and the challenges of building reliable detectors.

A systematic review by Yarahmadi and Hasheminejad [10] provides a compre-
hensive overview of design pattern detection approaches, categorizing them into
rule-based, metrics-based, graph-matching, and machine learning families. Their
study points out that most existing techniques rely heavily on handcrafted fea-
tures or structural rules, which limit generalization to diverse coding styles and
large-scale industrial systems.

Early work by Alhusain et al. [1] explored the feasibility of machine learning
for design pattern recognition by using feature extraction combined with neural
networks. Although pioneering, their approach was constrained by small datasets
and relatively simple features, which restricted robustness. Later, Chaturvedi et
al. [2] applied classical machine learning algorithms such as decision trees, support
vector machines, and artificial neural networks to detect design patterns. They
demonstrated that machine learning can achieve competitive accuracy, but also
confirmed that feature engineering is critical and often domain-specific.

142 Proceedings of the FMF-AI 2025142 Proceedings of the FMF-AI 2025142 Proceedings of the FMF-AI 2025



FMF-AI 2025 Applying Tree-Based Convolutional Neural Networks . . .

Zanoni et al. [11] investigated the integration of graph-based structural analysis
with machine learning. Their MARPLE-DPD framework models design pattern
instances as graphs and applies supervised learning for classification. This work
represents an important step toward combining structural representations with
learning techniques, yet it was mainly validated on relatively small systems.

Overall, the literature suggests that machine learning approaches to design
pattern detection are promising, but existing studies are often limited by hand-
crafted features, small datasets, and simplified implementations. This motivates
structure-aware deep learning methods, such as Tree-Based Convolutional Neural
Networks (TBCNNs), which can directly exploit Abstract Syntax Trees (ASTs)
without manual feature engineering. Our work builds on these insights by apply-
ing and modifying a TBCNN architecture for pattern-level classification, aiming
to better capture the structural and semantic signatures of GoF design patterns in
Java source code.

3. Models
As it was mentioned earlier, we use two separate models for our problem. The
architectures of these models are represented on Figure 1 and on Figure 2. The
first model is used only for learning the programming language. The architecture
is simple: embedding layer, fully connected layer and softmax layer.

Figure 1. The keyword encoder.

The classification model has two input layers: vectorized AST and an array of
node indexes. The inputs are concatenated, then the result is fed to the TBC layer,
which is followed by a fully connected and a softmax layer.

Figure 2. The design pattern classifier.

We modified the calculation of the coefficient matrix in the tree-based convolu-

https://uni-eszterhazy.hu/fmf 143https://uni-eszterhazy.hu/fmf 143https://uni-eszterhazy.hu/fmf 143

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


G. Kusper, E. Z. Hidi, K. Kusper, Z. Gy. Yang, Sz. Márien FMF-AI 2025

tion. The equations (3.1), (3.2), and (3.3) represent the original calculations. We
replaced equation (3.3) by equation (3.4).

ηt
i = di − 1

d − 1 (3.1)

ηr
i = (1 − ηt

i)
pi − 1
n − 1 (3.2)

ηl
i = (1 − ηt

i)(1 − ηr
i ) (3.3)

ηl
i = ci (3.4)

Where ci is a vector with length equal to the number of children of the node filled
with ones.

3.1. Training dataset
Source codes for the training dataset were gathered from GitHub, since the platform
keep records of several million Java files. To select the required files, we used queries
based on file names, thus downloaded Java files with names of design patterns.
Approximately 500-600 files were gathered for each design pattern. The training
dataset is built, but the quality may be questionable, since these files probably
contain implementations for educational purposes, which makes them very similar.

4. Results
The dataset was divided into three parts: training, validation and test datasets.
The proportion of files in the separate datasets is 70:15:15.

The model achieved high precision at the beginning already. After the 15th
epoch, the precision is over 90% on both the training and validation datasets.

We evaluated the model successfully, the result is visible on Figures 3, 4, 5 and
Table 1.

Table 1. Metrics.

DP Precision Recall F1

Adapter 0.9894 1.0000 0.9947
Bridge 0.9500 1.0000 0.9744
Builder 1.0000 1.0000 1.0000

Decorator 0.9806 1.0000 0.9902
Null Object 0.9873 1.0000 0.9936

State 0.9753 0.9518 0.9634
Strategy 0.9800 0.9515 0.9655

Template Method 1.0000 0.9759 0.9878

Average 0.9828 0.9849 0.9837

144 Proceedings of the FMF-AI 2025144 Proceedings of the FMF-AI 2025144 Proceedings of the FMF-AI 2025



FMF-AI 2025 Applying Tree-Based Convolutional Neural Networks . . .

Figure 3. Confusion matrix of design pattern predictions.

Figure 4. Training and validation accuracy across epochs.

https://uni-eszterhazy.hu/fmf 145https://uni-eszterhazy.hu/fmf 145https://uni-eszterhazy.hu/fmf 145

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


G. Kusper, E. Z. Hidi, K. Kusper, Z. Gy. Yang, Sz. Márien FMF-AI 2025

Figure 5. Training and validation loss across epochs.

5. Conclusion
In this paper, we applied a Tree-Based Convolution based machine learning model
on a design pattern classification and detection problem with partial success. The
model is very accurate in classifying the given design patterns, but as the experi-
ments show it has problems with detecting design patterns in real world production
code. We assume that the main problem behind this phenomenon is the lack of
real world production source code in the training dataset.

Future work will focus on expanding the dataset with real-world industrial code
bases and exploring hybrid approaches to improve generalization.

References
[1] S. Alhusain, S. Coupland, R. John, M. Kavanagh: Towards machine learning based design

pattern recognition, in: 2013 13th UK Workshop on Computational Intelligence (UKCI), 2013,
pp. 244–251.

[2] S. Chaturvedi, A. Chaturvedi, A. Tiwari, S. Agarwal: Design pattern detection using
machine learning techniques, in: 2018 7th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions)(ICRITO), 2018, pp. 1–6.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design patterns: elements of reusable
object-oriented software, USA: Addison-Wesley Longman Publishing Co., Inc., 1995, isbn:
0201633612.

[4] S. Márien: Decision based examination of object-oriented programming and Design Pat-
terns, Teaching Mathematics and Computer Science 6 (2008), pp. 83–109, doi: 10.5485
/TMCS.2008.0174.

[5] S. Márien: Decision based examination of object-oritented methodology using JML, in: An-
nales Mathematicae et Informaticae, vol. 35, Eszterházy Károly College, Institute of Math-
ematics and Computer Science Eger, 2008, pp. 95–121.

146 Proceedings of the FMF-AI 2025146 Proceedings of the FMF-AI 2025146 Proceedings of the FMF-AI 2025

https://doi.org/10.5485/TMCS.2008.0174
https://doi.org/10.5485/TMCS.2008.0174


FMF-AI 2025 Applying Tree-Based Convolutional Neural Networks . . .

[6] S. Márien: Decision structure based object-oriented design principles, in: Annales Mathe-
maticae et Informaticae, vol. 47, 2017, pp. 149–176.

[7] S. Márien, G. Kusper: Understanding Design Patterns as Constructive Proofs, Proceedings
of ICAI-2004 (2004), pp. 173–182.

[8] L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin: Convolutional neural networks over tree struc-
tures for programming language processing, in: Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, AAAI’16, Phoenix, Arizona: AAAI Press, 2016, pp. 1287–
1293.

[9] H. Thaller, L. Linsbauer, A. Egyed: Feature Maps: A Comprehensible Software Repre-
sentation for Design Pattern Detection, in: 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2019, pp. 207–217.

[10] H. Yarahmadi, S. M. H. Hasheminejad: Design pattern detection approaches: a systematic
review of the literature, Artificial Intelligence Review 53.8 (2020), pp. 5789–5846.

[11] M. Zanoni, F. A. Fontana, F. Stella: On applying machine learning techniques for design
pattern detection, Journal of Systems and Software 103 (2015), pp. 102–117.

https://uni-eszterhazy.hu/fmf 147https://uni-eszterhazy.hu/fmf 147https://uni-eszterhazy.hu/fmf 147

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf

