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Abstract. This paper present a hybrid ResNet+FPN+Transformer archi-
tecture for facial expression recognition, achieving 80.90% accuracy on FER-
2013 with a browser-based implementation using TensorFlow.js for client-side
inference.

We compare four model configurations: ResNet50 baseline, ResNet+FPN,
ResNet+Transformer, and our full ResNet+FPN+Transformer model. Our
hybrid architecture combines ResNet backbone features with Feature Pyra-
mid Networks and transformer components to process facial features at mul-
tiple scales simultaneously. Our ResNet+FPN+Transformer model achieves
80.90% mean accuracy on FER-2013 (averaged over 5 independent training
runs with different random initializations). Ablation studies confirm both
FPN (+2.35%) and Transformer (+2.77%) components improve performance
over the ResNet50 baseline (77.69%).

Our web application features interactive visualization tools revealing the
network’s decision-making process, including feature map animations and
3D neural network visualization. This browser-based implementation uses
TensorFlow.js for client-side inference.

Keywords: facial expression recognition, deep learning, ResNet, transformer,
feature pyramid networks, web application

AMS Subject Classification: 68T45, 68T10

1. Introduction

Facial expression recognition (FER) is crucial in human-computer interaction, emo-
tion analysis, and various other fields. Despite advances in deep learning for facial
expression recognition, challenges persist in model interpretability, accessible de-
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ployment, and real-world variability.
Our main contributions include: (1) a hybrid ResNet+FPN+Transformer ar-

chitecture achieving 80.90% accuracy on FER-2013 with ablation studies validating
component contributions, (2) a comprehensive web application with real-time anal-
ysis and 3D network visualization, and (3) advanced training techniques addressing
class imbalance challenges.

2. Related work
Facial expression recognition has evolved from traditional computer vision ap-
proaches to deep learning-based methods.

The introduction of CNNs has dramatically improved FER performance. ResNet
[2] addressed the vanishing gradient problem through residual connections, while
Feature Pyramid Networks [3] enhanced multi-scale feature representation. Vision
Transformers [1], originally designed for NLP, have been adapted for computer
vision tasks, excelling in capturing long-range dependencies.

Recent hybrid architectures combine CNNs with transformers, leveraging the
strengths of both approaches. Most CNN-Transformer hybrids lack component-
level ablation studies and interactive visualization tools for deployment.

3. Methodology

3.1. Hybrid architecture design
Our ResNet+FPN+Transformer model (Figure 1) integrates three complementary
components to address key challenges in facial expression recognition:

ResNet Feature Extractor: A modified ResNet50 backbone extracts multi-scale
features from layers C2-C5, providing robust local feature extraction with
gradient flow preservation. This creates a feature pyramid capturing patterns
from fine-grained details (wrinkles, texture) to high-level facial structures.

Feature Pyramid Network: FPN enables multi-scale information fusion by com-
bining high-resolution, spatially precise features with low-resolution, seman-
tically rich features through lateral connections. This addresses the challenge
that facial expressions manifest at different spatial scales.

Transformer Encoder: A transformer encoder [6] with learnable CLS tokens
captures global spatial relationships through self-attention mechanisms, mod-
eling long-range dependencies between facial regions (e.g., eye-mouth coordi-
nation in surprise expressions).

Integration Strategy. The three components operate hierarchically: ResNet
extracts local features across multiple scales, FPN fuses these multi-scale represen-
tations, and the Transformer processes the C5-level features to incorporate global
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context. Specifically, C5 outputs (7×7×2048) are projected to 256 channels via
1×1 convolutions, then processed by the transformer encoder before final classifi-
cation. This design leverages CNNs’ locality strength, FPN’s multi-scale fusion,
and Transformers’ global modeling in a unified framework.

Figure 1. Architecture of the proposed ResNet-FPN-Transformer
model for facial expression recognition.

3.2. Design rationale
Facial expressions manifest at multiple spatial scales and require modeling long-
range dependencies between facial regions. FPN addresses the multi-scale chal-
lenge through lateral connections combining high-resolution spatial details with
low-resolution semantic features. The transformer encoder captures global depen-
dencies through self-attention, enabling the model to jointly consider coordinated
facial movements (e.g., eye-mouth relationships in surprise) rather than treating
regions independently.

3.3. Training techniques
To train our model, we apply the following techniques.

Focal Loss: To address severe class imbalance in FER-2013 (disgust: 1.8% vs
happy: 29.3%), we implement focal loss [4] which dynamically adjusts the
contribution of examples based on classification difficulty.

Mixup Training: We apply mixup data augmentation [7] to synthesize new train-
ing samples through linear interpolation, creating smooth decision boundaries
and improving generalization.

Advanced Augmentation: Our pipeline includes random noise injection, occlu-
sion simulation, and motion blur to enhance model robustness.
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4. Implementation details

4.1. ResNet feature extraction pipeline
The ResNet feature extractor builds upon a pre-trained ResNet50 backbone, ex-
tracting multi-scale representations from intermediate layers. The implementation
creates a multi-output model accessing specific layer outputs:

• C2 output: conv2_block3_out (56×56 resolution)

• C3 output: conv3_block4_out (28×28 resolution)

• C4 output: conv4_block6_out (14×14 resolution)

• C5 output: conv5_block3_out (7×7 resolution)

To ensure compatibility with the transformer encoder, a projection layer stan-
dardizes the C5 feature dimensions to 256 channels using 1×1 convolutions. The
grayscale input images are replicated across three channels to match the pre-trained
ResNet50 input requirements.

4.2. Transformer encoder configuration
The transformer encoder processes the projected C5 features with the following
architecture:

• Model dimension: 256 channels

• Attention heads: 8 multi-head attention mechanisms

• Encoder layers: 3 stacked transformer layers

• Feedforward dimension: 1024 neurons

• Dropout rate: 0.1 for regularization

The implementation includes learnable CLS tokens initialized with random nor-
mal distribution (stddev=0.02). Positional encoding preserves spatial relationships
that would otherwise be lost in the self-attention mechanism.

4.3. Training configuration
The hybrid model employs several advanced training techniques to address dataset
challenges:

• Optimizer and Learning Rate: We use AdamW optimizer with initial
learning rate of 1 × 10−4 and weight decay of 1 × 10−4. The learning rate
follows a cosine annealing schedule with warm restarts. All models train for
100 epochs with batch size 128.
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• Focal Loss Implementation: To handle the severe class imbalance, focal
loss with α=0.25 and γ=2.0 dynamically adjusts example contributions based
on classification difficulty.

• Mixup Data Augmentation: Linear interpolation between training pairs
creates synthetic examples using Beta distribution sampling (α=0.2, applica-
tion probability=0.5), improving generalization and creating smoother deci-
sion boundaries.

• Multi-Head Training: The primary classification head receives a weight
of 0.7, with auxiliary heads sharing the remaining 0.3 to enable multi-scale
supervision.

5. Experiments and results

5.1. Experimental setup
We evaluate our approach on the FER-2013 dataset containing 35,887 grayscale
images across seven emotion categories. To assess result stability, each model con-
figuration was trained five times with different random initializations (no fixed
seeds). Training was conducted on NVIDIA Tesla V100 with 32GB VRAM, re-
quiring approximately 42 minutes per run for the hybrid model.

5.2. Performance comparison and ablation study
Figure 2 presents the performance comparison across four model configurations.
Each model was trained five times with different random initializations to assess
stability.

As shown in Figure 2, the proposed ResNet+FPN+Transformer architecture
achieves 80.90% accuracy, demonstrating substantial improvements over the base-
line ResNet50 (77.69%). Both the FPN and Transformer components provide sig-
nificant contributions: FPN adds 2.35 percentage points through multi-scale fea-
ture fusion, while the Transformer contributes 2.77 points through global context
modeling.

Component Comparison. Direct comparison between ResNet+FPN
(80.04%) and ResNet+Transformer (80.46%) reveals that the Transformer pro-
vides a slightly higher individual improvement (+0.42%). This suggests that while
both components are valuable, global context modeling has a marginally stronger
impact than multi-scale features for overall accuracy. However, the similar mag-
nitude of improvements (2.35% vs 2.77%) indicates that both components address
important but complementary aspects of the problem.

Synergistic Effect. Our full hybrid architecture achieves 3.21 percentage
points improvement over the baseline. While the combined improvement is less
than the theoretical sum of individual components (2.35% + 2.77% = 5.12%),
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Figure 2. Ablation study results on FER-2013 dataset. Mean
accuracy over 5 independent runs with error bars showing standard

deviation (±1σ).

this reflects the natural interaction between components where some features over-
lap. The integration successfully leverages the complementary strengths of both
FPN and Transformer, as demonstrated by the superior per-class performance
across all emotion categories. The low standard deviations across all configura-
tions (0.29%–0.50%) indicate stable training across different initializations.

5.3. Per-class performance analysis
To understand how different architectural components affect recognition across
emotion categories, we analyze per-class performance for all model variants in Fig-
ure 3.

Figure 3 reveals distinct performance patterns across emotion categories, demon-
strating how different architectural components contribute to recognition of specific
expressions.

ResNet+FPN Performance. The FPN component demonstrates balanced
improvements across most categories, particularly excelling at fear (47.31%), sur-
prise (86.04%), and neutral (90.89%). This suggests that multi-scale feature ex-
traction effectively captures subtle facial details crucial for these expressions, such
as the fine-grained texture patterns around the eyes in fear and the overall facial
relaxation characteristic of neutral expressions.

ResNet+Transformer Performance. The Transformer component shows
exceptional performance on angry expressions (78.15%), achieving an 8.61% im-
provement over the FPN-based model. This indicates that global context modeling
is particularly beneficial for expressions characterized by complex spatial relation-
ships, where the coordination between multiple facial regions (furrowed brows,
tightened lips, and tensed jaw) must be jointly considered. However, the Trans-
former shows reduced performance on fear (38.71%, -8.60% vs FPN), suggesting
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Figure 3. Per-class accuracy comparison across different architec-
tures on FER-2013 dataset. Results averaged over 5 independent

runs.

that purely global features may miss fine-grained local details critical for this emo-
tion.

Complementary Strengths. Direct per-class comparison reveals that FPN
and Transformer excel at different emotion categories. FPN outperforms Trans-
former on fear (+8.60%), surprise (+2.93%), and neutral (+1.27%), while Trans-
former excels on angry (+8.61%) and sad (+2.03%).

Full Model Advantages. Our complete ResNet+FPN+Transformer architec-
ture successfully integrates these complementary strengths. The full model achieves
best overall performance on neutral (92.00%) and fear (50.54%), demonstrates
improved robustness on underrepresented classes like disgust (52.17% vs 47.83%
baseline), and maintains more balanced performance across all emotion categories.
Notably, while neither FPN nor Transformer alone improves disgust recognition,
their combination yields a 4.34 percentage point improvement, suggesting that the
integration enables the model to better handle challenging minority classes.

The confusion matrix in Figure 4 reveals the classification patterns of our model.
Fear and surprise expressions show some confusion due to similar visual character-
istics such as widened eyes. Sad and neutral expressions also demonstrate moderate
confusion, while happy expressions show the least confusion with other categories.
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Figure 4. Confusion matrix for ResNet-FPN-Transformer model
showing classification patterns.

5.4. Discussion

Dataset limitations

The FER-2013 dataset, while widely used as a benchmark, presents several inherent
limitations that constrain the interpretation of our results:

Low Resolution and Grayscale: The 48×48 grayscale images limit the model’s
ability to capture fine-grained facial details and color-based cues that may be
relevant for expression recognition in higher-quality images.

Cultural Bias: FER-2013 predominantly contains Western facial expressions, po-
tentially limiting generalization to cross-cultural contexts where expression
interpretation may differ.

Label Noise: The crowdsourced annotation process introduces label inconsisten-
cies, as subjective interpretation of subtle expressions varies across annota-
tors.

Performance positioning

While some recent approaches report higher accuracies on FER-2013 through spe-
cialized techniques such as ensemble methods, extensive data augmentation, or
larger model architectures, our work prioritizes practical deployment considera-
tions. Our 80.90% accuracy demonstrates effective integration of multi-scale fea-
tures and global context modeling, while maintaining advantages in privacy (client-
side inference), interpretability (3D visualization), and accessibility (browser-based
deployment without specialized hardware).
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6. Web application
We developed a web application that provides an integrated platform for facial
expression recognition with interactive visualization capabilities.

6.1. Client-side architecture
Our web application implements a fully client-side architecture using TensorFlow.js,
ensuring privacy by processing facial data entirely in the browser. The system
comprises three main modes:

Image Analysis: Users upload images for static expression prediction with con-
fidence visualization and feature map analysis.

Real-Time Recognition: WebRTC-based camera access enables continuous fa-
cial expression analysis with frame processing control for responsive perfor-
mance.

3D Network Visualization: An interactive Three.js-based visualization allows
users to explore the neural network architecture, with nodes representing
different layer types and connections showing data flow.

6.2. Web deployment architecture

6.2.1. TensorFlow.js model conversion

The trained model undergoes conversion to TensorFlow.js format [5] for browser
deployment. The conversion process includes weight quantization, layer optimiza-
tion, and format adaptation to web-compatible tensor operations.

6.2.2. Client-side inference pipeline

The browser-based inference implements efficient preprocessing and prediction.
The preprocessing pipeline includes image resizing to 48×48 pixels using bilinear
interpolation, RGB to BGR channel conversion for ResNet compatibility, ResNet
mean normalization ([103.939, 116.779, 123.68]), and batch dimension expansion
for model input.

Memory Management: The system implements tensor disposal and parallel
execution for efficient real-time processing.

Performance Optimization: Real-time processing uses parallel execution for
prediction and feature map extraction through Promise.all(), maintaining re-
sponsive user interaction while processing facial expressions.
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6.2.3. WebRTC integration

Camera access utilizes WebRTC APIs for cross-browser compatibility. The im-
plementation includes frame rate control to balance processing load with visual
responsiveness. Error handling manages camera access permissions and device
compatibility issues.

6.3. Interactive visualization features
6.3.1. 3D neural network rendering

Figure 5 demonstrates the 3D network visualization interface. Users can rotate,
zoom, and interact with the network structure to understand the data flow and
component relationships. Different geometric shapes represent various layer types,
with color coding indicating layer functions and activation levels.

The Three.js-based visualization1 creates interactive representations of the neu-
ral network architecture:
Geometric Layer Mapping: Different layer types receive distinct visual repre-

sentations:

• Convolutional layers: Cube geometries with dimensions reflecting kernel
sizes

• Pooling layers: Pyramid shapes indicating dimensionality reduction
• Dense layers: Sphere geometries scaled by neuron count
• Transformer layers: Octahedron shapes distinguishing attention mecha-

nisms

Spatial Layout Algorithm: Node positioning implements hierarchical arrange-
ments based on network depth. The algorithm calculates appropriate spacing
to maintain visual clarity while preserving logical data flow relationships.

Interactive Controls: User interaction includes mouse/touch rotation and zoom-
ing controls, click events revealing detailed layer information, and animation
controls demonstrating forward pass data flow.

6.3.2. Feature map visualization system

The feature map visualization in Figure 6 provides insights into model decision-
making by displaying activation patterns across network layers. The system shows
how early layers capture edges and textures, while deeper layers focus on emotion-
specific abstractions. The animated progression helps users understand the hierar-
chical feature learning process.

The feature map extraction system processes intermediate network activations.
The system extracts activations from multiple network layers during inference and
selects representative channels (4 channels per layer) for visualization.

1R. Cabello: Three.js – JavaScript 3D library, https://threejs.org/
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Figure 5. Interactive 3D visualization. Figure 6. Feature maps.

Visualization Rendering. The system displays feature maps as animated heat-
maps, showing the progression from edge detection in early layers to emotion-
specific abstractions in deeper networks. Color-coded intensity maps reveal which
facial regions activate different network components.

Real-time Animation. Feature map updates synchronize with inference oper-
ations, providing immediate visual feedback about network decision-making pro-
cesses. The animation sequence demonstrates how facial features propagate through
the network hierarchy.

6.4. Performance optimization
The complete system implements several optimization techniques:

Adaptive Rendering: Visualization quality adjusts based on device capabilities,
maintaining smooth interaction across different hardware configurations.

Lazy Loading: Components initialize only when needed, reducing initial applica-
tion load times and memory usage.

Efficient Resource Management: WebGL contexts and Three.js objects un-
dergo proper cleanup to prevent resource leaks during extended usage ses-
sions.

6.5. Ethical considerations
Privacy Protection. Our fully client-side architecture processes all facial data
locally in the user’s browser without server transmission, providing inherent privacy
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advantages over cloud-based systems. No facial images or extracted features leave
the user’s device.

Fairness and Bias. Facial analysis systems may exhibit performance dispari-
ties across demographic groups. Future work should evaluate our model’s fairness
across age, gender, and ethnicity to ensure equitable performance.

Appropriate Use. We emphasize that emotion recognition technology should
complement rather than replace human judgment, particularly in sensitive appli-
cations such as mental health assessment or surveillance contexts.

7. Conclusion
We presented a hybrid architecture combining multi-scale features and global con-
text modeling for facial expression recognition, with client-side deployment and
interactive visualizations. Future work should address cross-cultural validation
and temporal modeling for video analysis.

While our system demonstrates several innovations, we acknowledge key limi-
tations: (1) evaluation on a single, imbalanced dataset with inherent quality con-
straints, (2) performance gap (approximately 4-5 percentage points) compared to
state-of-the-art methods, and (3) the need for further validation on diverse, real-
world data to assess practical robustness across demographic groups and environ-
mental conditions.

Key innovations include the hybrid architecture design, comprehensive training
methodology addressing class imbalance, and interactive visualizations bridging
the gap between technical AI implementations and human understanding. The
3D network visualization and feature map animations provide valuable educational
insights into neural network behavior.

Future work includes extending to cross-cultural expression analysis, incorpo-
rating temporal information for video sequences, and developing mobile-optimized
versions through model compression techniques.
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