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Abstract. The use of large language models (LLMs) in software develop-
ment is becoming increasingly widespread, despite well-known concerns re-
garding their reliability. A significant risk arises from relying on poorly un-
derstood approximate solutions that may subtly introduce errors into the
final system. A key barrier to the adoption of formal modeling – beyond
the steep learning curve of formal specification languages – is the additional
abstraction layer, which can be as difficult to maintain as the source code it-
self. This complexity persists even when the formal specification can generate
code directly. Another challenge is that, while tools for verifying properties of
formal models are well-established, the initial translation of a mental model
into a formal one often results in invalid or imprecise representations.

We propose a tool which facilitates the validation of formal models gen-
erated by LLMs from natural language specifications. The validation process
involves two steps: first, the formal model is translated back into natural lan-
guage using a deterministic, easily verifiable rule-based method; second, the
author of the original specification validates this reformulated version. This
human-in-the-loop method mitigates the risks associated with LLM black-box
generation by enabling explicit semantic verification of the model.
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1. Introduction

Recent advances in large language models (LLMs) have democratized access to
code and specification generation. Their natural language interfaces make them
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immediately useful to developers, designers, and even non-technical stakeholders.
However, their logical consistency and reliability remain problematic, especially
when applied in a business-critical environment.

Formal specification and modeling techniques, such as UML, TLA+, and Alloy,
provide solid foundations for correctness, verification, and maintainability, but still
have very limited adaptation. This is probably due to various challenges like:

• adoption is hindered by steep learning curves for language syntax and seman-
tics;

• maintaining a separate formal abstraction layer alongside code can be costly
and error prone;

• LLM-generated formal models can be both syntactically and semantically
wrong; and

• current verification tools can prove properties of given formal models, but the
critical failure point is in the translation of the mental model to the formal
model, where subtle intent mismatches are introduced.

It would be straightforward to attempt to solve these challenges with LLM. This
can be done by supporting the translation from natural language representation to
formal notation and helping the examination of the generated models.

1.1. Motivational example
We start by writing a natural language specification for a simple web-shop ap-
plication. This application development task adequately represents the typical
real-world challenges of implementing a software product. There are many similar
software products, and it offers a relatively simple domain model with several de-
cision points. Then we have used this specification to test our tool and its ability
to construct formal specifications and back-translation to natural language repre-
sentation.

The specification is formulated according to the IEEE 830 standard. It contains
32 functional and 15 nonfunctional requirements.

Listing 1. Example requirement markdown.
### 3.2 Cart Management
**FR -5** Add item to cart with quantity
**FR -6** Update quantity / remove items
**FR -7** Recalculate totals including tax / shipping
**FR -8** Validate stock on each cart update

1.2. Objective
Our aim is to build a tool prototype to enable easy creation and maintenance of
formal models from a natural language specification. Additionally, the tool must
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help the users to gain understanding of the specified models’ properties on how the
ambiguity of their original natural language specification is interpreted.

The tool also must support the exploration of the challenges of a real-world
system (not only support an over-simplified example). Under that we mean that
user experience matters and supports the usual industrial software development
practices.

2. Related work
In this section, we review the related developments and focus on the most recent
literature. We focus on four main areas: whether similar approaches taken or not
and with what result; how formal semantics of UML models looks like; how LLM-
s used for diagramming (this is basically the extension of the first topic from a
different direction); finally what is the state-of-the-art on validating LLM results
by human.

2.1. LLMs in formal specification
Recent studies [2, 6, 10] have shown that LLMs can produce formal artifacts such
as pre / post conditions or Alloy / TLA + models directly from natural language,
but suffer from

• hallucinations and incomplete constraints;

• lack of traceability to original intent.

Approaches like nl2spec and SpecGen introduce prompt engineering and struc-
tured intermediate formats to improve correctness.

2.2. Formal semantics of UML diagrams
Multiple formalisms exist for interpreting UML class diagrams. Mathematical and
denotational semantics [14] for associations, generalization, and constraints. De-
scription Logic mappings [3] that enable formal reasoning. Another popular UML
diagram type that is formalized is the sequence diagram [12].

2.3. Diagramming with the help of LLMs
LLMs can generate UML diagrams directly from plain English descriptions or even
interpret images to create formal models, dramatically reducing manual effort in
model-driven engineering. Recent frameworks and tools, like UMLAI and Diagram-
merGPT< [8], leverage LLMs to automate diagram synthesis, support various types
of UML, and allow fast iteration from specification to visualization. Meanwhile,
empirical studies and surveys highlight both the capabilities and limitations of
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LLMs in diagram generation, highlighting their growing role in requirements engi-
neering and software design tasks [5, 9]. Generating a meaningful natural language
description of UML diagrams is also not a trivial task [4].

2.4. Human-in-the-loop (HITL) validation

Recent work by Qi et al. (2025) explores the use of ChatGPT for conducting
System-Theoretic Process Analysis (STPA) in safety-critical domains, benchmark-
ing its effectiveness against human experts and highlighting the necessity of human
validation for trustworthy analysis. Their findings demonstrate both the promise
and the current limitations of LLM-based safety assurance, underscoring the chal-
lenges related to reliability, prompt engineering, and the need for future standard-
ization and regulation in this field. [13].

2.5. Low-code, no-code and AI-coding approaches

Low-code and no-code approaches have a long tradition [1]. Some notations and
tool-chains have been highly successful in domain-specific contexts, such as Lab-
View [15] and its derivatives for measurement automation or BPMN tools for
enterprise workflow automation [11]. In general, such tools often require either
custom-developed extensions or embedded scripts written in standard program-
ming languages. More recently, these tools have been extended with AI-based
automatic code-generation capabilities, as seen in platforms like Claude [7]. These
systems can be viewed as modern successors to the earlier practice of copying and
pasting code from online development forums (e.g., Stack Overflow). While the
graphical representations of no-code/low-code tools often limit the expressiveness
and generality of the tool-chain, AI-coding approaches, in turn, suffer from the
“almost-works” problem of partially understood code fragments.

3. Our solution

In software development practice, formal or semi-formal modeling notation can
be used additionally to support development. We are prototyping a tool that is
capable of managing informal natural language specification and formal UML spec-
ifications jointly. UML is chosen as the formal specification notation widely used
in industrial practice, and various groups described its unofficial formal semantics.
In this paper, we start with informal natural language specification structured into
requirement items and this turned into UML various types and abstraction level of
UML models. UML models are translated back to natural language and displayed
along the original specification item to allow the user to check whether the diagram
reflects the original intention. The workflow is described in Section 4.
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4. Our approach
We present a two-step LLM-assisted process with human-in-the-loop validation
that ensures semantic correctness when converting informal requirements into for-
malized models. The idea is that we use a generic LLM with prompt-based con-
figuration to derive the specification. In the next step, the models are converted
back to the representation of natural language 1.

Figure 1. The main workflow of the system.

The tool is also designed to store the specifications, keep the traceability infor-
mation, and a change history.

Use case diagrams can describe the high-level structure of the specification; class
diagrams can be used to describe the static structure of the concepts of the speci-
fication; and finally, sequence diagrams can describe the dynamic behavior. These
three types of diagrams provide a rich set of examples for translating specifications
into high-level models. Additionally, they provide cross-checking between use-case
diagram, class diagrams, and sequence diagrams (e.g., whether an existing method
is called or not). The relation between the models is shown in Figure 2. These
diagram types can be extended further in the future with additional diagram types
and additional notation such as deployment diagrams or wireframes, respectively.
Detailed class diagrams and sequence diagrams can be used to generate source code
without human intervention. During the prototyping it became evident that the
tool must maintain relationships between the models and must be able to update
source models when the generated models changed, or to modify related models to
provide plasticity.
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Figure 2. Hierarchy of the models.

In addition to high-level functional requirements, we must emphasize the im-
portance of usability aspects of the tool. The primary goal of our approach is to
make formal modeling easier to use. This implies that the tool must also have an
easy-to-use interface. In addition, it must be implemented with the latest tech-
nologies/libraries as this also eases a deployment and installation of the tool, i.e.
the user does not have to hunt for exotic compilers or libraries.

4.1. Implementation
Python programming language was chosen for implementation and LangChain was
chosen as the core library to implement our system. The system uses PlantUML
format to store UML diagrams and its tools to generate visual representation. Cur-
rently, we used Streamlit as the web application framework. To demonstrate what
model validation looks like, we show a fragment of the generated UML diagram
and its description displayed along the original requirements. The fragment of the
PlantUML representation of the class diagram can be seen in Listing 2. The JSON
data structure fragment demonstrates how the UML diagram template-based de-
scription is mapped back to the original requirements for validation, can be seen
in Listing 3.

Listing 2. Example PlantUML class diagram.
@startuml
’ Diagram type: class
left to right direction
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package " Catalog package " {
class Item {

+id: UUID
+sku: String
+name: String
+ description : Text
+price: Money
+ taxClass : String
+ stockQty : int
+ isActive : boolean
+ createdAt : DateTime
+ updatedAt : DateTime
--
’ FR -1,FR -2,FR -4,FR -5,FR -20,FR -21,FR -23,NFR -9

}
}

package "Cart package " {
class Cart {

+id: UUID
+ sessionId : String
+ customerId : UUID
+ currency : String
+ subtotal : Money
+ taxTotal : Money
+ shippingTotal : Money
+ grandTotal : Money
+ updatedAt : DateTime
+ recalculateTotals (): void
+ validateStock (): boolean
--
’ FR -7,FR -8,NFR -4

}

class CartItem {
+id: UUID
+ itemId : UUID
+ nameSnapshot : String
+ unitPrice : Money
+ taxClassSnapshot : String
+qty: int
--
’ FR -5,FR -6,FR -8

}
}

Cart "1" o-- "0..*" CartItem
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CartItem "*" --> "1" Item

@enduml

Listing 3. Example mapping of the UML natural language repre-
senation to the original requirements.

[
...
{

"id ": "FR -5",
" original_specification ": "Add item to cart with

quantity ",
" specification_to_compare ": "Item carries 10 fields -

id (UUID), sku ( String ), name ( String ),
description (Text), price (Money), taxClass
( String ) and 4 more. Operationally , it offers a
minimal API surface : no public operations . In
terms of relationships , Item the model sets clear
expectations about connected entities Item
references zero or more CartItem .

CartItem carries a concise set of fields - id (UUID),
itemId (UUID), nameSnapshot ( String ), unitPrice
(Money), taxClassSnapshot ( String ) and qty (int).
Operationally , it offers a minimal API surface : no
public operations . In terms of relationships ,
CartItem the model sets clear expectations about
connected entities CartItem references exactly one
Item. CartItem has exactly one Cart. Overall , the
object stays cohesive : the fields align with its
intended role and the relations define its
lifecycle within the shopping flow ."

},
{

"id": "FR -6",
" original_specification ": " Update quantity / remove

items",
" specification_to_compare ": " CartItem carries a

concise set of fields - id (UUID), itemId (UUID),
nameSnapshot ( String ), unitPrice (Money),
taxClassSnapshot ( String ) and qty (int).
Operationally , it offers a minimal API surface : no
public operations . In terms of relationships ,
CartItem the model sets clear expectations about
connected entities CartItem references exactly one
Item. CartItem has exactly one Cart ."

},
{
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"id": "FR -7",
" original_specification ": " Recalculate totals

including tax / shipping ",
" specification_to_compare ": "Cart carries 9 fields -

id (UUID), sessionId ( String ), customerId (UUID),
currency ( String ), subtotal (Money), taxTotal
(Money) and and 3 more. Operationally , it offers a
minimal API surface : recalculateTotals returning
void and validateStock returning boolean . In terms
of relationships , Cart the model sets clear
expectations about connected entities Cart has
zero or more CartItem . Cart has exactly one
Customer ."

},
{

"id": "FR -8",
" original_specification ": " Validate stock on each cart

update ",
" specification_to_compare ": "Cart carries 9 fields -

id (UUID), sessionId ( String ), customerId (UUID),
currency ( String ), subtotal (Money), taxTotal
(Money) and and 3 more. Operationally , it offers a
minimal API surface : recalculateTotals returning
void and validateStock returning boolean . In terms
of relationships , Cart the model sets clear
expectations about connected entities Cart has
zero or more CartItem . Cart has exactly one
Customer ."

},
...

]

5. Discussion
Although the key parts of our idea are straightforward, its implementation reveals
fundamental challenges which are not widely addressed by the research community.
To demonstrate these challenges, we performed three experiments with the example
problem described in Section 1.1.

5.1. Testing existing tools
The first is to use available LLM tools to test their capabilities to generate specifi-
cation and applications from our requirement. This is a relatively well-researched
area (as mentioned in Subsection 2.1) and although the tools are very capable of
generating formal artifacts. The quality of these artifacts is often questionable:
typically fragments of learning samples are recognizable in these artifacts, and the
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internal structure is not consistent. Most of these problems can be addressed with
extensive prompting.

5.2. Formal to NL representation
The second key experiment was developing a rewriting-based algorithm to translate
the diagrams back into natural language. This problem is typically solved by using
LLM as they have the capability to incorporate domain knowledge. This is a no-
go option for us due to our explainability requirement. In this experiment our
key finding was that just mechanistically translating back the models to natural
language is not sufficient even if the textual representation is nicely formulated.

5.3. Testing our tool
Managing requirements and generating models (UML diagrams) from natural-
language specifications integrated into a tool-chain operate in a manner similar
to boxed chat products. The chat-based model and the requirement management
functionality also perform well. The challenge lies in whether the relevant part of
the natural-language representation operates at the same level of abstraction as
the original specification. If this is not the case, it can be confusing for users for
two reasons: first, compact concepts are described as mechanical enumerations,
and second, only a single model-specific aspect is presented. To improve this,
our tool needs further fine-tuning in model extraction and model-to-NL template
generation. We must invest further effort in refining LLM prompts to generate for-
mal models and extract additional information (e.g., identifying which models can
best represent the content of a given requirement) that is needed for more accu-
rate mapping. The natural-language requirements also demand more sophisticated
templates and potentially conceptual definitions from formal reference ontologies
(e.g., those defined by the OMG). Currently, we support only the validation of
the forward-engineering approach - i.e., the tool is not yet capable of propagating
model changes back to the requirements. Managing such bidirectional consistency
would require significant additional development of the underlying system.

6. Conclusion and future work
Based on our initial experiments described in the previous section, it is evident
that our approach works, but we have identified two main areas of functionality
that require further research. The first area is model-to-natural-language (model-
to-NL) translation, which requires a more deterministic mapping between low-level
structural patterns and high-level conceptual constructs to make it easier to align
the original requirements with the resulting model. For model-to-NL translation,
we are eager to experiment with traditional description-logic-based knowledge-
engineering methods and ontologies to ensure that the model translated back into
natural-language representation remains at a comparable level of abstraction. The
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second area concerns the management and visualization of updates to interrelated
model elements, for which we plan to explore and adapt state-of-the-art model-
matching approaches.

We introduced a framework combining LLM power and human validation to
enable the usage of formal models derived from natural language requirements.
Although building such a tool was a promising experiment, it currently lacks the
capability to be used in practice.
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