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Abstract. Software engineering is a complex discipline that requires engi-
neers to blend various skills to produce quality software adeptly. In this
paper, we propose a software engineering assignment that follows the lifecy-
cle of a feature of a real-world project, mimics real-world challenges, promotes
best practices, and shows the importance of verification techniques. We de-
ploy the assignment in a university course and discuss our findings regarding
functional correctness, code quality, and being on schedule. Finally, we pro-
pose an AI-assisted outcome estimation method to help identify struggling
students while the home assignment is ongoing.
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1. Introduction
Software engineering is a complex discipline that requires engineers to blend var-
ious skills to produce quality software adeptly. These capabilities [21, 23] include
proficiency in programming languages and version control, writing high-quality
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code using static analysis within continuous integration frameworks, conducting
code reviews, and numerous verification techniques in either a traditional [17] or
agile [3] development workflows [4]. However, university assignments are typically
oversimplified and do not mirror real-world challenges. Usually, they only focus on
a couple of selected aspects, while real-world tasks require engineers to apply the
best practices of numerous aspects simultaneously.

Recent research [16] highlights the importance of using problem-based learning,
gamification, and automated feedback to teach the basics of software engineering,
software quality, and testing. In this paper, we combine these insights with agile
methods to build a workflow that follows the lifecycle of a feature of a real-world
project, mimics real-world challenges, promotes best practices, and shows the im-
portance of verification techniques at different steps of the workflow, while enabling
continuous feedback using automation.

Section 2 describes our proposed assignment, while in Section 3, we evaluate
its deployment in a university course. Section 4 introduces an AI-assisted outcome
estimation approach that builds on our previous findings. In Section 5, we present
the relevant related work in the field of software engineering education. Finally, in
Section 6, we conclude our work.

2. Overview of assignment
Figure 1 depicts our proposed assignment workflow. Students are randomly di-
vided into two groups: Variant A or B. Initially, they complete an onboarding task
to set up their development environment, including the build and debugging en-
vironments, as well as Git configuration. Subsequently, students implement their
assigned variant according to a detailed specification, introducing a new feature
into a preexisting software. Post-implementation, based on this specification, they
create a test suite for the opposite variant. Finally, students are paired randomly
for peer code reviews using these tests, ensuring each student provides and receives
feedback.

Throughout this simplified development workflow, students engage with various
verification techniques. (1) During the implementation phase (Figure 2), they
are guided by quality assurance techniques, starting with the writing unit tests

Implementing A

Test Design A
Code Review A

Implementing B

Test Design B
Code Review B

Student 1

Student 2

Variant B

Variant A

Teacher Black box Testing Mutation Testing

Requirements A

Requirements B

Onboarding

Onboarding

Figure 1. The proposed assignment workflow.
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Code Quality Assurance
Coding Unit Testing

Static Analysis
Teacher Review

Figure 2. The implementation step in more detail.

guided by coverage metrics. Static analysis tools then provide continuous feedback
on coding standards and code smells. (2) In the test design phase, students use
specification-based test design methods to design a test suite. (3) Ultimately,
students perform code reviews, utilizing insights from quality assurance tools and
their test suites.

For educators, student submissions undergo constant automated evaluation.
Implementations are verified with a (private) hidden test suite derived from the
requirements using specification-based testing methods. Students’ test suites are
analyzed through mutation testing [8], comparing them against a perfect imple-
mentation to gauge correctness and against intentionally flawed implementations
to assess completeness.

We implemented the proposed approach in the open-source Feseip1 frame-
work. Students use Git for version control, GitHub for collaboration and reviews,
and SonarQube for quality management. Following GitHub flow, students submit
a pull request, request review with a GitHub comment when ready, and obtain
automated feedback via a GitHub Check. Architecturally, a separate database
maintains necessary information and project state, while teacher code for evalua-
tion never leaves the server of Feseip.

During the assignment, students are tasked to extend OpenMetroMaps23

with a new feature. This open-source 25k+ LOC Java application renders and
modifies schematic public transport maps. It also allows importing maps from
standardized and well-known formats such as GTFS4 [10] and OpenStreetMaps
data.

The assignment spanned about 7 weeks, with an additional week allowed for
late submissions. Students had designated periods: 1 week for onboarding, 2 weeks
for implementation, 2 weeks for test design, and 2 weeks for the review phase.
Meeting these suggested deadlines earned bonus points. Additional bonus points
were granted for achieving adequate code quality, verified by passing SonarQube’s
default quality gate, and for excellent functional correctness, measured by the per-
formance on our hidden test suite. During these 8 weeks, students received daily
feedback.

1https://github.com/ftsrg-edu/feseip
2https://github.com/ftsrg-softeng/openmetromaps
3https://www.openmetromaps.org/
4https://gtfs.org/
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Listing 1. An excerpt from one of the variants’ specifications.

A1 Merge Stops:

1. The user selects exactly two stops. The order of selection matters. The stop first
selected is called the primary stop, and the stop selected second is the secondary stop.

2. As a result of the merge, the primary stop is modified, and the secondary stop is
removed from the model.

3. All lines that have a stop at the secondary stop will stop at the primary stop after the
merge.

4. If a line stops at both the primary and secondary stops:
(a) If the two selected stops are adjacent (with no other stop in between), the seg-

ment defined by the two adjacent stops is removed from the line.
(b) If the two selected stops are not adjacent (with at least one stop in between),

the merge operation is not executed on any line.
(c) There must be at least two stops on each line. If this is not ensured as a result

of the merge operation, the operation will not be executed.

Example Assignment. Students receive a GitHub issue containing the require-
ments for their variant, with pre-itemized requirements for better clarity. Listing 1
provides an excerpt from such a specification. Typically, students are expected to
write 150-200 lines of code. Listing 1 contains one out of five operations from that
variant, requiring 40-60 lines of code. The students’ code must adhere to a specific
interface to enable automatic evaluation. The primary challenge is not coding per
se, but analyzing the 25, 000 lines of OpenMetroMaps code and comprehending
its underlying data structure, before being able to contribute the 200 lines this new
feature requires.

In the test design phase, students apply specification-based techniques to create
tests. They utilize the arrange, act, assert structure, where standard GTFS files
represent the arrange and assert components detailing a map’s state pre- and post-
operation, and a text file describes the operation. Utilizing GTFS files enables
students to practice with established standards unfamiliar to them.

3. Evaluation
In 2024, the assignment was launched within an undergraduate course, engaging
around 700 students in Hungarian, English, and German languages. The task
commenced on October 8th, with optional phase deadlines: onboarding by October
15th, implementation by October 29th, test design by November 12th, and review
by November 26th. The final submission deadline was November 28th, with late
submissions5 accepted until December 5th.

Initially, we posed two research questions:
5University policies govern the length of this period, and require a fee to be paid for late

submissions.
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• RQ1 : What is the connection between a student’s willingness to adhere to
the schedule, the quality, and the functional correctness of the code they
write?

• RQ2 : Is identifying students facing difficulties early on possible?

We built a dataset from each student’s activity during the semester to answer
our research questions. We collected:

• Whether the student passed the home assignment or not;
• Dates of completion for onboarding, implementing, test design, and review

phases;
• For onboarding commits: commit date;
• For implementing and review commits: commit date, performance on the

hidden test suite, SonarQube quality metrics (SQALE index, numbers/types
of bugs, code smells, written unit tests, and their coverage);

• For test design commits: commit date, test suite size, suite correctness (tests
passing on the reference implementation/total tests), and suite completeness
(mutants detected by suite/total mutants; incorrect tests excluded).

We utilized exploratory data analysis (EDA) methods to analyze patterns in the
data, enabling us to examine correlations between student activity timelines, code
quality metrics, and functional correctness. We also aimed to identify behavioral
indicators of potential challenges during the assignment.

Initially, we excluded all student records involving plagiarism during the home
assignment. This resulted in a dataset of 641 students for further analysis (refer
to Figure 3). Among these, 69% completed the onboarding phase on time, 29%
were late, and 2% gave up before completion. Conversely, just 29% completed
the implementing phase on time, with 60% late and 11% dropping out by this
point. A trend was observed where those on time in onboarding often fell behind
in implementing, whereas few who started late managed to catch up. In the test
design phase, 37% were on time, 49% late, and 14% gave up before reaching it.
Those delayed in implementation usually continued the pattern into the test design
phase, although a few students caught up with the deadlines here. Notably, by the

Started

Onboarding on time

Onboarding late

Onboarding gave up

Implementing on time

Implementing late

Implementing gave up

Test design
on time

Test design
late

Test design
gave up

Review
on time

Review late
Review
gave up

Passed
on time

Passed
late

Failed

Figure 3. Sankey diagram visualizing the proportion of students
completing the home assignment phases on time.
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review deadline, 67% were on time, split evenly between those on time and those
late in earlier phases, while 18% were late, and 15% gave up. In the two days from
the optional review deadline to the final cutoff, an additional 6% completed their
review phase and, consequently, the home assignment.

Investigating student progression in further depth (Figure 4), it becomes ev-
ident that although a single week sufficed for the onboarding phase, the imple-
mentation and test design phases demanded two weeks of student engagement.
However, the majority initiated the implementation phase a mere week before its
deadline (Figure 4a). Students who commenced the home assignment well ahead of
the optional onboarding phase deadline largely managed to avoid late submissions
(Figure 4a), whereas late submitters frequently did not commence the onboarding
and implementation phases on schedule (Figure 4b). Additionally, Figure 4c shows
that nearly all failing students only began the test design phase during the late
submission timeframe.
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Figure 4. Scatterplot where each point represents a commit of a
student’s repository...
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Figure 5. The mean test success percentage on each day, faceted
by the completion of the coding phase...
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Figure 6. The mean number of code smells introduced (red, above
zero) and fixed (green, below zero) on each day, faceted by the

completion of the coding phase...

Regarding functional correctness, Figure 5 illustrates students’ mean test suc-
cess rate. Those who completed the implementation by its deadline (Figure 5a)
attained an 86% success rate, ultimately rising to 93% after addressing issues re-
vealed by their peers’ test suites during the review phase. Conversely (Figure 5b),
students who completed the implementation only by the test design deadline, be-
ing at most 2 weeks late, achieved 80% by that time and improved to 90% by the
assignment’s conclusion. Thus, students with delayed completion demonstrated
worse functional correctness, requiring more revisions during review. Students
who missed even the test design deadline (Figure 5c) reached only 80% by the
assignment’s end.

Figure 6 depicts the average change in code quality among students. It reveals
that students who met the implementation deadline frequently generated issues
during this phase, which they subsequently addressed during the review stage (see
Figure 6a). Those completing the implementation by the test design deadline
(delayed by up to two weeks) introduced issues over a prolonged period but actively
resolved them (refer to Figure 6b) later. Students delayed by more than two weeks
not only prolonged issue introduction but also created more issues on average and
resolved fewer than the aforementioned groups (Figure 6c).

Analyzing the code quality further, Figure 7a illustrates the most common
code smells observed at the end of the project. Table 1 reveals that the second
most frequent issue was the high cognitive complexity of student code, indicating
poor structural organization. The primary issue among punctual students involved
throwing generic exceptions. Notably, students who started late threw fewer excep-
tions, suggesting a potential neglect in addressing edge cases. Further distinctions
include delayed students’ non-compliance with naming conventions and a tendency
to retain debugging logs in final submissions.

An examination of individual outcomes corroborates prior results. Figure 8
compares the students’ project code quality, assessed with SonarQube’s SQALE
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Table 1. The description, severity, and category of the most com-
mon code smells found in the student’s code.

Rule Description Severity Category
java:S112 Generic exceptions should never be thrown Medium Intentionality
java:S3776 Cognitive complexity too high High Adaptability
java:S117 Variable naming convention not complied with Low Consistency
java:S1172 Unused parameters Medium Intentionality
java:S106 Logging to standard output Medium Adaptability
java:S100 Method naming convention not complied with Low Consistency
java:S2293 Diamond operator not used Low Intentionality
java:S125 Commented out block of code High Intentionality
java:S107 Method has too many parameters High Adaptability
java:S1854 Unused assignments High Intentionality
java:S1125 Redundant boolean literals Low Consistency
java:S1066 Mergeable if statement High Intentionality

index, against other measures. Figure 8a illustrates a pattern where projects initi-
ated later show poorer final code quality, particularly those starting near deadlines,
implying students sacrificed quality for adherence to the timeline, and chose not
to address code quality later. Figure 8b reveals that a higher SQALE index at the
end of the implementation indicates a higher number of lines changed in the review
phase, suggesting higher challenges in resolving code issues post-implementation.
While the SQALE index goes from 0 to 200, the median line changes increase from
20 to 120. Insufficient amount of data exist for higher SQALE indices. Addition-
ally, Figure 8c correlates lower code quality with reduced test success percentage,
indicating a decline in functional correctness.

Finally, Figure 7b presents the two evaluation criteria for the student-designed
test suites. Although there is a noticeable relationship where increased correctness
suggests greater completeness and the reverse, the considerable variance indicates
that students probably focused on one metric at a time.
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Figure 8. The connection between the students’ work schedule,
code quality, and functional correctness.

Discussion. Prior results demonstrate a clear connection between students’ ad-
herence to the schedule, code quality, and functional correctness (RQ1 ). A delayed
start on the assignment often results in diminished code quality and increased
review workloads, which adversely affects functional correctness. However, late
starters may possess lower programming skills, contributing to these outcomes.
Evaluations would benefit from incorporating data from previous programming
courses to exclude this option. Conversely, no definitive early indicators of failure
are evident early on (RQ2 ). Although failing students frequently delay their start,
this is also true of several students who ultimately succeed, necessitating further
investigation.

4. AI-assisted outcome estimation

To deepen our analysis of RQ2, whether students facing difficulties can be identified
early, we applied an Explainable Boosting Machine (EBM) [14], a transparent, in-
terpretable model that balances predictive performance with explainability. Unlike
traditional decision tree-based approaches, EBM often achieves higher accuracy
while allowing detailed insight into how individual features influence predictions.
This makes it particularly valuable in educational settings, where understanding
the reasoning behind model decisions is essential. By examining feature contribu-
tions and interaction effects, we aim to uncover which early behaviors most indicate
eventual failure, enabling more informed, data-driven interventions.

Following data cleansing and preparation, we generated eight distinct datasets.
Weekly thresholds aligning with the phase deadlines and midpoints were established
(refer to Table 2), and all data beyond these thresholds were filtered out to finalize
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Figure 9. The importance of certain features of the explainable
boosting classifier (Importance). The contribution of features to a
failing and passing prediction for the sixth dataset (Contribution).

our datasets. Thus, each dataset contained everything known at that threshold.
The target variable was whether the student passed the home assignment.

Then, an EBM-based binary classifier was trained for each dataset. Figure 9
presents the training outcomes, whereas Table 2 displays the AUC, sensitivity, and
specificity metrics.

The specificity is around 0.5 for the initial two datasets aligned with the on-
boarding deadline and implementation phase midpoint. This indicates the model
failed to identify reasons for student failure, consistently predicting a passing out-
come. Referencing Figure 4, merely half of the failing students had commenced
work by these points. Those engaged predominantly had not begun the implemen-
tation phase. Furthermore, given that numerous students with analogous behavior
completed the home assignment successfully, the classifier lacked sufficient data for
differentiation.

From the third dataset onward, specificity steadily rises with the addition of
more information, while sensitivity slightly diminishes due to a substantial number
of new student entries at this stage. For the third and fourth datasets, as the
implementation phase concludes and the test design phase reaches its midpoint,
specificity surpasses 70%. Key predictors for these datasets include the completion
date of the implementation phase, functional correctness, the number of commits,
and lines of code authored by students in this phase. Notably, from the fourth
dataset, the number of commits in the test design phase and the accuracy and
completeness of the test suite become increasingly significant.
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Table 2. The AUC, sensitivity, and specificity of the models.

Threshold AUC Sens. Spec. Threshold AUC Sens. Spec.
October 15 0.740 0.829 0.533 November 12 0.949 0.876 1.000
October 22 0.825 0.924 0.567 November 19 0.967 0.914 1.000
October 29 0.876 0.810 0.700 November 26 0.985 0.971 1.000

November 05 0.929 0.876 0.833 December 03 0.994 0.962 1.000

The fifth (test design deadline) is the first dataset with a specificity of 1.0,
demonstrating the model’s capability to predict failing students accurately. From
this point, sensitivity and AUC rise and remain high, signifying strong predictive
performance. Previous trends persist: crucial elements include the commit count
during the test design phase and the test suite’s correctness and completeness.
Additionally, functional correctness, the implementation phase’s line count, and
the final test design phase commit date gain significance.

Datasets six and seven, corresponding to the review phase’s midpoint and dead-
line, emphasize test suite correctness, completeness, and commit count during test
design phase as critical. Notably, the implementation phase’s completion date and
review phase commit count become more significant than in other datasets. In the
seventh dataset, implementation phase features, like lines of code, initial commit
date, and SQALE index, become notable. This pattern, shown in Figure 4c, reflects
many students who postponed implementation and failed the course.

By the eighth dataset related to late submission, over 75% of students had
already completed the home assignment. Key characteristics align with the seventh
dataset, but the final commit date in the test design phase, the final SQALE
index, implementation phase code lines, and test success percentage (functional
correctness) gain more significance.

Using an EBM facilitates the explanation of each feature’s contribution to pre-
dictions. This is illustrated with a failing and a passing prediction for the sixth
dataset (Figure 9, bottom two rows). Negative contributions are linked with fail-
ures, while positive ones signify successes. These contributions are largely consis-
tent with the importances in the datasets. For students who fail, this insight aids in
giving customized advice aimed at passing the assignment. Conversely, for success-
ful students, it can be used to suggest improvements in features that contributed
against that prediction, improving the quality of their solution.

Discussion. Our findings demonstrate the potential for identifying students who
are encountering difficulties at an early stage (RQ2 ). However, there is a notable
amount of false negative outcomes during the initial month of observation. As
depicted in Figure 4, there is an implication that prioritization of support should be
directed towards students who show a lack of engagement with their assignments
within this initial timeframe. Nevertheless, EBMs continue to serve effectively
in the context of prediction interpretation, providing valuable insights into the
primary features that contribute to the outcomes. Analyzing these features, we
can provide automated recommendations tailored for students who are at risk of
failing.
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5. Related work
Multiple tools provide interactive and gamified learning experiences tailored for
different audiences and skill levels. LearnGitBranching [22] is an example that elu-
cidates the fundamentals of distributed version control. Codio and CodeAcademy
cater to professionals, students, and universities [5, 20], covering a wide range of
topics. While these platforms offer a simulated environment for learning, they are
typically restricted to specific domains, lacking real-world project complexities. CI-
based solutions [1, 2, 6, 15], utilizing GitHub Actions, GitLab CI/CD, and Jenkins,
are prevalent due to their capacity for continuous, automated feedback, urging stu-
dents to use industry-standard tools. However, these systems can be limited by
the CI platform, presenting challenges in database integration, meeting deadlines,
and concealing evaluative aspects from students. Our method aims to integrate the
interactive and gamified aspects of simulation tools with the technological stack of
CI-based systems.

Extensive research exists on teaching code quality within software engineer-
ing education [9, 11]. Gilson et al. [7] examine software quality assessment in a
year-long project, emphasizing long-term technical debt management by students.
Conversely, this paper assesses code quality in relation to other metrics, such as
functional correctness and deadline compliance, over a shorter 7-week timeframe.
Meanwhile, Senger et al. [19] investigate the links between assignment solution
time, final outcomes, and code quality in small tasks. A notable distinction is that
Senger et al. do not provide static analysis results to students and do not aim to
teach static analysis.

Most recent research investigating the use of static analysis tools in software
engineering education, such as [12, 13, 18], focuses on the security vulnerability
detection. In contrast, our paper exclusively focuses on maintainability (SQALE
index) and functional correctness.

6. Conclusion
In summary, our assignment framework demonstrates the feasibility and effective-
ness of incorporating real-world software engineering practices into educational
settings at scale. Utilizing industry-standard tools, best practices, and automated
feedback, we offer a learning experience that goes beyond traditional programming
tasks, enhancing student participation and readiness for professional software en-
gineering. Our evaluation indicates a correlation between students’ willingness to
meet optional deadlines and the quality and functionality of their code, and shows
that AI tools can identify struggling students during the assignment period. In the
future, we plan to use AI-assisted outcome predictions to provide tailored advice
for students who are falling behind.
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