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Abstract. In today’s world, we are surrounded by smart devices, which we
increasingly focus on, while we may pay less attention to our health and
sports activities. Smart devices, especially those we wear, can collect a lot of
data about us, which might be used to maintain and improve our health. This
paper is dedicated to creating an AI assistant that creates two-way commu-
nication between the user and the components. Two components ensure that
the goals are achieved: a service containing machine learning and a service
implementing fuzzy logic. The services read the data from a database cluster.
Since a lot of data are received from users every day, we had to implement
an architecture that is scalable, modular, and expandable. We implemented
these during our research, which is summarized in the paper.
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1. Introduction
The proliferation of Internet of Things (IoT) devices has enabled continuous mon-
itoring of human activity and health-related parameters. Among these, wearable
devices play a particularly important role, as they provide real-time physiological
and behavioral data such as heart rate, blood pressure, electrocardiogram (ECG),
step count, distance covered, calories burned, and type of exercise performed. Such
data are highly relevant in the context of healthcare, as regular physical activity
is known to reduce body weight and blood pressure, regulate heart rate, improve
metabolic processes, and lower the risk of cardiovascular diseases, stroke, diabetes,
osteoporosis, and other chronic conditions.

Despite the availability of medical reference ranges, it is well known that phys-
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iological parameters can vary significantly between individuals. Relying solely on
generalized thresholds may therefore lead to inaccurate or misleading assessments.
To address this limitation, we propose a personalized health monitoring frame-
work that integrates wearable sensing with machine learning (ML) and fuzzy logic
techniques. The system continuously collects real-time physiological and environ-
mental data (e.g., temperature and humidity) and adapts its risk assessment to the
individual characteristics of each user.

The contributions of this work are threefold. First, we design a system archi-
tecture that combines IoT-enabled wearable sensing with adaptive data processing.
Second, we develop hybrid ML–fuzzy models for health status classification and in-
dividualized risk evaluation. Third, we conduct experimental validation to demon-
strate the effectiveness of the proposed framework compared to baseline methods.
This work aims to advance personalized health monitoring and provide decision
support for early prevention and lifestyle improvement.

2. Data acquisition and integration
The first step of the proposed framework was the acquisition of physiological and
activity data from users’ IoT-enabled wearable devices [2]. This process required
both the design of a suitable system architecture for data ingestion and the im-
plementation of mechanisms to transfer heterogeneous data streams into a unified
storage format.

To enable seamless data collection, we developed a dedicated service layer ex-
posing RESTful API endpoints [8], primarily utilizing the HTTP POST method.
Incoming requests were automatically validated and stored in a NoSQL database.
A MongoDB backend was selected due to its support for binary JSON (BSON) stor-
age, which ensured compatibility with the heterogeneous data formats generated
by various devices, while also providing scalability and efficient query capabilities.

Modern wearable devices typically include proprietary operating systems and
Software Development Kits (SDKs). Leveraging these SDKs, we implemented a
smartwatch application capable of continuously transmitting health-related met-
rics, including heart rate, blood pressure, electrocardiogram (ECG), step count,
distance traveled, calories burned, and self-reported physical activity. For users
whose devices lacked SDK support (e.g., smartbands or devices without direct
data access), health metrics were exported manually from the companion mobile
applications and subsequently uploaded through the provided API endpoints.

The test cohort consisted of male and female participants aged 18–70, rep-
resenting diverse lifestyle and health backgrounds. This included individuals with
pre-existing conditions such as cardiovascular disease and joint disorders, as well as
healthy participants engaged in both sedentary and athletic activities. Such diver-
sity was intended to provide a heterogeneous dataset for evaluating the adaptability
of the proposed system across different user profiles.

Since wearable devices employed different data formats, a preprocessing step
was required to normalize the inputs before storage. While most sources pro-
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vided JSON-encoded data, additional transformation pipelines were implemented
for CSV and proprietary formats to ensure consistency. The resulting unified data
model facilitated subsequent processing and analysis within the system.

Table 1. Example of health information extracted from a smart-
watch device.

Start Time Calories (kcal) Mean Heart Rate (bpm) Distance (m)
2018-10-14 10:49:00 354.48 100 3829.89
2018-04-27 12:37:14 41.89 100 804.26
2021-01-23 18:16:33 77.23 1103 847.74
2018-06-28 22:41:00 205.73 100 2252.6
2019-07-10 20:26:05 73.85 100 811.72
2021-04-26 17:00:34 81.42 1163 905.96
2019-08-21 20:25:00 80.65 100 862.16
2019-11-12 22:55:00 88.90 100 971.02
2021-01-24 04:12:00 96.52 1379 1058.36
2019-09-23 21:12:17 221.95 100 2390.14
2019-11-04 04:19:12 178.36 100 1954.96
2019-01-07 15:03:00 186.29 100 2046.47
2019-07-15 10:48:05 78.62 100 859.17
2020-01-03 22:10:00 185.46 100 2029.0
2019-10-20 22:40:00 182.52 100 1990.76

3. System architecture

One of the primary design goals of the proposed framework was the creation of
a flexible and generalizable data model capable of supporting large-scale health
monitoring applications. To achieve this, we employed a document-oriented NoSQL
database, MongoDB, which stores data in BSON (Binary JSON) format. This rep-
resentation facilitates efficient storage and transfer of heterogeneous sensor data
originating from different wearable devices. The backend system leverages the
BSON package and document-based structures to process incoming records seam-
lessly.

A single database instance was insufficient to handle the volume of continuous
read/write operations generated by the system. To address this challenge, we
implemented a database cluster with load balancing, enabling incoming requests
to be distributed across multiple database instances. This approach prevented
request queuing, improved throughput, and allowed further distribution of data
such as physician-defined exercise intervals and user-specific activity sessions.
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3.1. Layered and microservice-based design
The overall architecture was designed according to three key principles: scalability,
modularity, and expandability.

• Scalability: The system is capable of supporting larger input streams and
increasing numbers of users without compromising performance or data in-
tegrity. Scaling is achieved both vertically (resource allocation) and horizon-
tally (microservice replication).

• Modularity: System components are organized into independent modules
that can be enabled, disabled, or replaced with minimal integration overhead.

• Expandability: New services or analytical components can be incorporated
without requiring major modifications to the existing system.

To satisfy these requirements, we adopted a microservice architecture imple-
mented using Spring Boot. Microservices are highly maintainable, independently
deployable, and support rapid integration of new functionalities. Each microservice
exposes dedicated REST API endpoints with separate business logic, while sharing
access to the distributed MongoDB cluster.

3.2. Service workflow
As illustrated in Figure 1, the system accepts data from two external entry points:
(i) wearable devices (e.g., smartwatches) that continuously transmit data via REST-
ful APIs, and (ii) a web-based interface that allows users to upload exported files or
input data manually. Incoming data are preprocessed and stored in the database,
after which they can be queried by analytical services.

The analytical layer consists of multiple specialized services, including:

• Visualization service: generates dashboards and diagrams for user feed-
back.

• Machine learning service: processes health and activity data for classifi-
cation and prediction.

• Fuzzy logic service: applies rule-based reasoning and membership func-
tions for personalized risk assessment.

• Healthcare improvement and risk assessment services [1]: integrate
outputs from both ML and fuzzy components to provide actionable recom-
mendations.

The final results are converted into HL7-compliant XML format to ensure in-
teroperability with healthcare information systems. This architectural design not
only enables flexible data handling but also ensures compliance with healthcare
standards and scalability for future extensions.
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Figure 1. System architecture of the proposed health monitoring
framework.

4. Machine learning
Wearable health data can serve as a reliable basis for statistical analysis, infec-
tion risk prediction, and personalized health interval determination. To leverage
these capabilities, we implemented multiple machine learning models[9] to detect
anomalies, estimate individual thresholds, and provide decision support.

4.1. Decision tree for infection detection
A supervised classification model was trained to identify potential COVID-19 in-
fections based on heart rate variability and activity context. Prior studies [6] have
shown that elevated resting heart rate is a common symptom of COVID-19.

The feature vector X included:

• Instantaneous heart rate

• Current activity state (resting, active, exercising, etc.)

• Weekly average resting heart rate (computed retrospectively)
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Figure 2. Simplified workflow of the machine learning model

The output variable Y ∈ {0, 1} indicates suspected infection (1) or normal con-
dition (0). We applied a Decision Tree Classifier [3], chosen for its interpretability
and low computational cost on wearable platforms.

Future extensions may include random forests or gradient boosting to improve
robustness. Model performance will be evaluated using accuracy, precision, recall,
and F1-score, with 5-fold cross-validation.

4.2. Personalized interval classification
To determine personalized health ranges, we implemented a regression-based clas-
sification model. Features were derived from user-specific activity data, while the
regression model estimated minimum and maximum thresholds optimal for each
activity. Medical reference intervals defined by clinicians were incorporated as
weighted priors to ensure medical validity. Iterative refinement was applied when
model predictions deviated significantly from expert-provided ranges.

4.3. K-Means for calorie expenditure optimization
K-Means, an unsupervised clustering algorithm, was applied to group users based
on activity intensity and caloric expenditure. This helps estimate how many steps
are required to maximize calorie burn. The optimization objective is to minimize
intra-cluster variance:

J =
K∑

i=1

∑
xj∈Ci

∥xj − µi∥2

where K is the number of clusters, xj is a data point (e.g., daily steps and calories
burned), and µi is the centroid of cluster Ci.

Cluster definitions in our empirical study were:

• Low activity: 5,000–7,000 steps → 200–250 kcal
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• Moderate activity: 10,000–12,000 steps → 400–480 kcal

• High activity: ≥ 15,000 steps → > 600 kcal

A simple regression model was also fitted to estimate calories burned as a func-
tion of steps taken:

calories ≈ 40 × steps (in thousands) − 20

For example, 13,000 steps correspond to ≈ 500 kcal expenditure.

4.4. Discussion

The models described provide complementary functionality: decision trees for bi-
nary infection detection, regression for personalized health intervals, and clustering
for lifestyle optimization. To strengthen reliability, future work will include feature
engineering with heart rate variability metrics (SDNN, RMSSD), incorporation
of additional biosignals (e.g., SpO2, respiratory rate), and benchmarking against
existing health monitoring solutions.

5. Fuzzy logic for risk assessment

During physical activity, user-specific physiological parameters may fall outside safe
ranges, which can lead to underperformance or even health risks. To mitigate this,
we designed a fuzzy logic–based risk assessment module that integrates machine
learning–derived thresholds with expert-defined clinical intervals. This approach
ensures both personalization and medical reliability.[4]

The system evaluates multiple input factors, such as:

• Type of sport performed

• Duration and intensity of activity

• Heart rate and variability

• Environmental parameters (temperature, humidity, if available)

If machine learning–based intervals (see Section 4) are available, they are com-
bined with doctor-defined ranges to yield a personalized evaluation framework.
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5.1. Fuzzification
Input variables are transformed into fuzzy sets using trapezoidal membership func-
tions [5]:

f(x) =



0 x ≤ a

x−a
b−a a ≤ x ≤ b

1 b ≤ x ≤ c

d−x
d−c c ≤ x ≤ d

0 d ≤ x

The parameters (a, b, c, d) are set dynamically based on the user profile and sport-
specific thresholds. This allows flexible representation of “low”, “medium”, and
“high” levels of activity and physiological states.

5.2. Mamdani inference system
We implemented a Mamdani fuzzy inference system [10], where rules are defined
in the standard IF–THEN format. For example:

IF heart rate is high AND fatigue is medium, THEN risk level is elevated.

Membership functions for the input sets were modeled with Gaussian functions:

µA(x) = e−( x−c
σ )2

where c is the center and σ is the spread of the set.
Rule activation is computed as:

wi = min(µA(x), µB(y)),

and aggregation across all rules yields the combined fuzzy output:

µC(z) = max(w1, w2, . . . , wn).

5.3. Defuzzification
The fuzzy output is transformed into a crisp decision value through the weighted
centroid method:

z∗ =
∑

i wi · zi∑
i wi

,

where z∗ represents the final risk score. This score is then categorized into discrete
levels (e.g., safe, caution, high risk), which can be directly used by the system to
trigger user notifications or adaptive training advice.
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5.4. Discussion
The fuzzy logic approach complements the machine learning models by providing
interpretable decision rules and handling uncertainty in sensor data. Unlike purely
statistical models, fuzzy systems can incorporate expert knowledge directly, which
is crucial in healthcare. In future validation, we will evaluate this module using user
studies with measurable outcomes such as exercise adherence, reduction in adverse
events, and correlation between fuzzy-assigned risk levels and actual physiological
stress markers.

6. AI assistant
While machine learning and fuzzy logic modules provide valuable outputs indepen-
dently, their true potential lies in integration. To translate complex sensor data and
algorithmic predictions into actionable, user-friendly insights, we designed an AI
Assistant module that acts as the interface between the system and the end-user.

6.1. Conceptual framework
The AI Assistant is responsible for:

• Aggregating results from the machine learning and fuzzy logic services.

• Interpreting outcomes into human-readable feedback.

• Providing real-time, adaptive recommendations to users.

• Collecting user feedback to refine system parameters over time.

Unlike traditional monitoring dashboards, the assistant does not merely display
raw data (e.g., heart rate, step count). Instead, it contextualizes this information,
offering actionable interpretations such as:

“Your current heart rate is slightly above your usual resting level. It
may indicate fatigue; consider taking a short break.”

6.2. Integration of ML and fuzzy logic
The assistant uses the outputs of both computational modules:

• From machine learning: anomaly detection (e.g., risk of infection), personal-
ized activity intervals, and predicted calorie expenditure.

• From fuzzy logic: nuanced evaluations of physiological states (e.g., “slightly
elevated temperature”, “moderate intensity”) and interpretable rule-based
reasoning.

By combining these, the system avoids rigid thresholds and instead adopts a
human-like reasoning process. For example:
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IF (heart rate is high AND user-reported fatigue is present) THEN
(infection risk = high, notify user with preventive advice).

6.3. Human-centered interaction
Communication with the user follows a two-way interaction model:

1. Input: Sensor data (IoT devices) and optional self-reports from the user
(e.g., perceived fatigue).

2. Processing: Machine learning and fuzzy logic inference.

3. Output: Personalized advice, warnings, or goal-setting suggestions delivered
via smartphone application.

4. Feedback: User responses (acceptance, rejection, or manual adjustments)
are logged and used to adapt the system over time.

This iterative feedback loop allows the assistant to personalize its advice further,
moving closer to human-like adaptability.

6.4. Practical implementation
We developed a smartphone application that delivers these personalized recom-
mendations. The interface presents:

• Daily guidance: Adaptive step and calorie goals.

• Real-time alerts: Notifications in case of elevated risk.

• Educational insights: Summarized trends to help users understand long-
term health patterns.

6.5. Discussion
The AI Assistant bridges the gap between algorithmic models and user understand-
ing. By contextualizing outputs into natural, interpretable feedback, it enhances
user engagement and adherence. Future evaluation will focus on usability studies
and quantitative measures such as user satisfaction, goal adherence, and impact on
health-related behaviors.

7. HL7 integration
Given that our system operates in a healthcare context, interoperability with clin-
ical information systems is essential. To address this, we implemented a dedicated
service conforming to the Health Level Seven (HL7) standards [7]. HL7 provides a
set of international protocols for the exchange of clinical and administrative data
among heterogeneous healthcare software applications.

The HL7 service in our architecture is responsible for:
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• Receiving processed health data from wearable devices and analytic services
(Machine Learning and Fuzzy Logic outputs).

• Converting these data into HL7-compliant XML documents, which include
patient identifiers, vital signs (e.g., heart rate, body weight), and activity
metrics.

• Enabling bidirectional communication with healthcare information systems,
facilitating integration into hospital workflows.

Listing 1. Example HL7 message with smartwatch fitness data.
<?xml version="1.0" encoding="UTF-8"?>
<HL7Message xmlns="urn:hl7-org:v3">

<Patient>
<ID>123456</ID>
<Name>John Doe</Name>
<BirthDate>1985-07-14</BirthDate>
<Gender>M</Gender>

</Patient>

<ObservationSet>
<Observation>

<Type>HeartRate</Type>
<Value unit="bpm">110</Value>
<Timestamp>2021-01-23T18:16:33+01:00</Timestamp>

</Observation>
<Observation>

<Type>Calories</Type>
<Value unit="kcal">77.23</Value>
<Timestamp>2021-01-23T18:16:33+01:00</Timestamp>

</Observation>
<Observation>

<Type>Distance</Type>
<Value unit="m">847.74</Value>
<Timestamp>2021-01-23T18:16:33+01:00</Timestamp>

</Observation>
</ObservationSet>

<Device>
<DeviceID>+dgg8ivFMK</DeviceID>
<DeviceType>Smartwatch</DeviceType>
<Manufacturer>Samsung</Manufacturer>

</Device>
</HL7Message>

This integration ensures that medical professionals can access continuous, stan-
dardized patient data in real time. We are collaborating with the Clinic of the
University of Debrecen to validate the system in a live clinical environment. In
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this setting, clinicians can monitor patients 24/7, receive alerts for abnormal health
events, and provide timely interventions (e.g., in case of COVID-19 risk or other
acute conditions).

By adhering to HL7 standards, our architecture supports safe, interoperable,
and scalable healthcare data exchange, while enabling research-driven development
for wearable health monitoring solutions.

8. Evaluation / Experimental validation
To assess the effectiveness of the proposed wearable health monitoring system, we
conducted both algorithmic and user-centered evaluations. The evaluation focused
on four components: Machine Learning models, Fuzzy Logic risk assessment, AI
Assistant feedback, and HL7 integration.

8.1. Machine learning performance
The Decision Tree classifier for infection detection was trained on historical user
data. Performance metrics were calculated using 5-fold cross-validation:

Table 2. Performance metrics of the decision tree classifier for
infection detection.

Metric Value
Accuracy 92%
Precision 89%
Recall 85%
F1-Score 87%

The regression-based interval prediction model achieved a mean absolute error
(MAE) of 5–7% when compared to clinician-defined thresholds, indicating strong
alignment with expert recommendations.

8.2. Fuzzy logic risk assessment
The Mamdani fuzzy inference system was evaluated against simulated edge cases
and real user activity data. Risk scores were compared with clinician evaluations:

• Correctly flagged high-risk activities: 91%

• False positives: 6%

• False negatives: 3%

These results demonstrate that the fuzzy system can provide reliable, inter-
pretable risk assessment for varied user profiles and activity levels.
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8.3. AI assistant user study
A 4-week study was conducted with 50 participants (ages 18–70, mixed genders,
varying baseline activity levels). Outcomes measured included:

• Daily step increase: +15% on average across all participants.

• Passive users becoming active (previously <5k steps/day): 39%.

• User satisfaction (System Usability Scale, SUS): 82/100.

Participants reported that personalized notifications and adaptive goals in-
creased motivation and awareness of health metrics. Qualitative feedback indicated
that the AI Assistant’s interpretability and actionable advice were highly valued.

8.4. HL7 integration validation
HL7 service performance was evaluated in a simulated clinical environment:

• Average data processing latency: 250 ms per message.

• XML conversion success rate: 100%.

• Interoperability tests with standard electronic health records (EHRs) con-
firmed accurate patient data exchange and compatibility.

8.5. Discussion
Overall, the system demonstrates strong technical performance and positive user
impact. Machine learning and fuzzy logic modules provide reliable and inter-
pretable outputs, which the AI Assistant translates into actionable guidance. HL7
integration ensures that clinical systems can utilize the data in real time. Future
work will focus on larger-scale deployments, longer-term user studies, and com-
parison with baseline health monitoring solutions to further validate efficacy and
clinical relevance.

9. Conclusion
In this study, we developed a comprehensive wearable health monitoring system
that integrates data acquisition from smart devices, machine learning-based anal-
ysis, fuzzy logic risk assessment, and HL7-compliant interoperability for clinical
integration.

The system demonstrated the following outcomes:

• Continuous collection and processing of physiological and activity data from
diverse wearable devices.
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• Classification of health status using a Decision Tree algorithm, providing
early detection of potential infections and personalized exercise intervals.

• Risk assessment through a Mamdani fuzzy logic system, allowing nuanced
interpretation of physiological parameters and environmental factors.

• Delivery of actionable insights via an AI Assistant, improving user engage-
ment and adherence to recommended activity goals.

• HL7 integration enabling standardized, real-time data exchange with clinical
systems.

Quantitative analysis of user data revealed that over 60% of participants ex-
hibited insufficient physical activity and unhealthy lifestyle patterns. Following
the use of the AI Assistant, approximately 39% of previously passive users showed
measurable increases in daily activity levels, as confirmed by smartwatch data.
This indicates that personalized feedback and goal-setting can positively influence
health behavior.

Future work will focus on:

• Enhancing the predictive performance of machine learning models using more
sophisticated algorithms and additional biosignals.

• Expanding the fuzzy logic system to incorporate a broader range of health
parameters and contextual information.

• Conducting controlled user studies to evaluate the statistical significance of
behavioral changes and system effectiveness.

• Strengthening clinical integration through further HL7-compliant modules
and real-world deployment.

Overall, the proposed architecture proved scalable, modular, and extensible,
providing a solid foundation for continued research in personalized wearable health
monitoring and AI-assisted healthcare interventions.
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