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Abstract. Underwater bioacoustics, the study of sound in aquatic biolog-
ical systems, is increasingly enhanced by machine learning (ML) technolo-
gies. This paper explores recent developments in applying ML to under-
water bioacoustics, focusing on marine and freshwater species identification,
environmental monitoring, and noise reduction. We examine key method-
ologies, present performance analysis from various applications, and address
the challenges unique to the underwater domain. Additionally, we propose
future directions for research including multimodal approaches and real-time
processing systems.
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1. Introduction

Underwater bioacoustics investigates the production, propagation, and perception
of sound by aquatic organisms. This field is essential for understanding marine and
freshwater life behavior, communication, and ecological dynamics. Sound plays a
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crucial role in aquatic environments where visual information is often limited by
depth, turbidity, or lighting conditions.

However, collecting and analyzing underwater acoustic data presents signifi-
cant challenges due to signal distortion, background noise, and the diversity of
sound sources. Traditional manual analysis methods are time-consuming and often
impractical for large-scale monitoring efforts. The acoustic environment underwa-
ter is complex, with sounds from biological sources, geological activities, weather
conditions, and increasing anthropogenic noise pollution.

Machine learning offers promising tools to overcome these issues by automating
detection, classification, and interpretation of bioacoustic signals [7]. The appli-
cation of ML in underwater bioacoustics has grown significantly in recent years,
driven by advances in deep learning architectures and the availability of larger
acoustic datasets. These developments enable researchers to process acoustic data
with improved accuracy and efficiency, opening new possibilities for monitoring
and conservation applications.

2. Machine learning methodologies in underwater
bioacoustics

2.1. Species identification and classification

Supervised ML algorithms, especially convolutional neural networks (CNNs), have
been widely used for classifying species-specific vocalizations. These models are
trained on spectrograms derived from hydrophone recordings, leveraging pattern
recognition capabilities to identify acoustic signatures. The transformation of tem-
poral acoustic signals into spectrograms creates a visual representation that cap-
tures both frequency content and temporal dynamics.

Recent implementations have achieved notable classification accuracy. Re-
searchers have successfully detected dolphin clicks, whale songs, fish choruses, and
freshwater species such as frogs and riverine fish using deep learning approaches [2,
10]. Transfer learning approaches, where models pre-trained on general datasets are
adapted for bioacoustic spectrograms, have proven effective when labeled acoustic
data is limited [3].

Different species present varying challenges for detection algorithms. Dolphin
echolocation clicks, characterized by their brief duration and high frequency con-
tent, require specialized temporal processing. Whale songs, with their complex
hierarchical structure, benefit from models capable of understanding long-term de-
pendencies. Fish choruses during spawning seasons create complex acoustic land-
scapes where multiple species vocalize simultaneously, necessitating advanced sep-
aration techniques.
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2.2. Environmental monitoring and ecosystem assessment

ML is used to monitor aquatic environments by detecting biotic and anthropogenic
sounds. In both marine and freshwater habitats, anomaly detection models can
identify changes in acoustic environments due to pollution, vessel traffic, or climate
effects. Long Short-Term Memory (LSTM) networks and transformer models have
proven effective in identifying temporal patterns across different time scales [6].

Soundscape ecology applications use ML to examine the acoustic environment
as an indicator of ecological health. Automated species detection enables calcula-
tion of acoustic diversity indices, providing assessments of ecosystem health that
complement traditional surveys. These approaches can track changes over time
with high temporal resolution.

The detection of anthropogenic impacts represents a critical application area.
Vessel noise pollution, construction activities, and other human activities create
distinct acoustic signatures that ML models can detect and quantify [5]. This
capability enables assessment of human impacts on marine ecosystems and supports
management decisions.

2.3. Noise reduction and signal enhancement

Underwater recordings are often degraded by complex noise sources such as boat
engines, wave motion, or flow-induced turbulence in rivers and lakes. ML models,
including denoising autoencoders and non-negative matrix factorization (NMF),
can isolate biological signals from noise. These techniques improve the reliability
of ecological interpretations [9].

Figure 1. Example spectrogram of underwater acoustic data with

visible animal vocalizations in the 10-13 kHz range. Such features

are often targeted by machine learning models for detection and
classification tasks.

Denoising autoencoders learn to map corrupted signals back to their original
form by training on pairs of noisy and clean acoustic data. These models can
effectively remove various types of noise while preserving essential characteristics
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of biological signals. The encoder-decoder architecture enables learning of complex
mappings that traditional filters cannot achieve.

Recent advances include generative adversarial networks (GANs) for signal en-
hancement, where competing networks learn to generate clean signals and dis-
tinguish between real and generated outputs. This approach shows promise for
removing non-stationary noise sources that vary over time. Traditional spectral
subtraction and Wiener filtering methods have also been enhanced through ML-
based parameter optimization [1, 9].

3. Performance analysis and applications

3.1. Marine environment applications

Studies in marine environments have demonstrated the effectiveness of ML ap-
proaches for large-scale monitoring with quantitative improvements over traditional
methods. Shiu et al. [10] reported a multi-species cetacean detection system achiev-
ing mean average precision (mAP) of 0.87 across 15 species, with individual species
ranging from 0.72 (beaked whales) to 0.94 (humpback whales). Their CNN-based
approach processed 187,000 hours of recordings from the Pacific Ocean, demon-
strating scalability for large-scale monitoring efforts.

Bermant et al. [2] developed a deep learning system for beluga whale detection
achieving 97.5% precision and 94.8% recall on a test set of 5,840 calls. The sys-
tem maintained 91.2% accuracy when deployed in different geographic locations,
demonstrating cross-region generalization capabilities. Environmental factors sig-
nificantly influenced performance, with detection accuracy dropping to 78.4% in
high noise conditions (SNR < 10dB).

For dolphin echolocation clicks, recent implementations achieved F1 scores of
0.89-0.93 using ResNet architectures [3]. Detection performance varied with click
train characteristics: isolated clicks (precision: 0.91, recall: 0.88) versus overlap-
ping click trains (precision: 0.84, recall: 0.79). Processing speeds reached 450x
real-time on GPU hardware, enabling efficient analysis of long-term recordings.
Multi-species detection systems have been developed capable of identifying multi-
ple cetacean species from continuous recordings. These systems typically employ
hierarchical classification, first detecting the presence of marine mammal vocaliza-
tions, then applying species-specific models.

Performance varies across species, with larger whales generally showing higher
detection rates due to their distinctive vocalizations. Smaller dolphins and por-
poises present greater challenges due to overlapping frequency ranges and variable
acoustic signatures. Environmental factors such as ambient noise levels and prop-
agation conditions significantly influence detection performance [2, 5].
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3.2. Freshwater monitoring systems

Freshwater environments present unique challenges due to species diversity and
variable acoustic conditions. ML-based fish monitoring systems have been devel-
oped for species detection during spawning seasons when acoustic activity peaks.
Custom architectures account for the specific propagation characteristics and noise
sources in shallow water environments.

Success rates vary among species, with those producing distinctive sounds
achieving higher detection accuracy. Environmental factors including wind-genera-
ted noise, thermal stratification, and human activities affect system performance.
Adaptive algorithms that adjust detection thresholds based on ambient conditions
have improved robustness [1, 4].

3.3. Real-time processing implementations

Real-time monitoring systems demonstrate practical deployment capabilities with
quantifiable performance trade-offs. Edge computing implementations using op-
timized neural networks achieved 82-89% of full model accuracy while reducing
computational requirements by 75%. Briggs et al. [4] deployed autonomous buoys
processing 24 kHz audio continuously for 6 months, detecting target species with
86.3% accuracy using models compressed to 2.4 MB.

Lightweight architectures such as MobileNet variants maintained detection F1
scores above 0.80 while operating within 5 W power budgets. Processing latency
ranged from 50-200 ms per l-second audio segment on embedded platforms
(NVIDIA Jetson series), enabling near real-time alerts for conservation applica-
tions. Battery-powered systems achieved 3-6 month deployment durations with
solar charging, processing 8-16 hours daily [3]. Real-time monitoring systems have
been deployed using edge computing platforms to process acoustic data continu-
ously. These systems balance computational constraints with monitoring require-
ments, achieving acceptable performance for ecosystem-level assessment while op-
erating within power and processing limitations.

Lightweight neural networks optimized for low-power consumption enable con-
tinuous operation on autonomous platforms. Despite computational constraints,
these systems provide valuable insights into ecosystem dynamics and can detect
significant changes in acoustic patterns [3, 4].

4. Challenges and limitations

4.1. Data-related challenges

The underwater environment introduces unique obstacles for ML applications.
A major challenge is the scarcity of labeled datasets for marine and freshwater
bioacoustics, which limits supervised training effectiveness. Data collection re-
quires specialized equipment and often lengthy field campaigns, resulting in smaller
datasets compared to other ML, domains.
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Data quality issues compound scarcity problems. Underwater recordings are
affected by equipment limitations, environmental variability, and temporal con-
straints. Many species are only acoustically active during specific seasons or con-
ditions, limiting representative training data availability.

Annotation quality presents additional challenges. Manual labeling requires ex-
pertise in both target species and acoustic analysis. Variability between annotators
can be substantial, particularly for subtle vocalizations or overlapping calls from
multiple species. Standardized annotation protocols and quality control measures
are essential for reliable training data [6, 8].

4.2. Generalization and adaptation

Several strategies have been developed to address generalization challenges in un-
derwater bioacoustics. Domain adaptation techniques using adversarial training
improved cross-region performance by 15-22% for marine mammal detection tasks
[10]. Unsupervised domain adaptation methods, requiring only unlabeled data
from target environments, achieved 78-85% of supervised performance levels.

Transfer learning approaches demonstrate varying success rates depending on
source-target similarity. Models pre-trained on terrestrial bird vocalizations and
fine-tuned for marine mammals achieved 82% of purpose-trained model perfor-
mance with 60% less training data. Within-domain transfer (e.g., between cetacean
species) showed better results, reaching 91-95% of baseline performance [3].

Data augmentation strategies specifically designed for underwater acoustics in-
clude: Time-frequency masking: improved generalization by 8-12%. Noise injec-
tion using real environmental recordings: 10-15% improvement. Pitch shifting
within species-specific ranges: 5-8% improvement. Simulated propagation effects:
12-18% improvement for depth-variant deployments. Models trained in specific re-
gions or conditions often fail to generalize to new environments, limiting applicabil-
ity across different ecosystems. This challenge is acute in underwater bioacoustics
due to high variability in acoustic environments caused by bathymetry, substrate
composition, and local noise sources.

Geographic variation in species vocalizations presents additional generalization
challenges. Many species exhibit regional variations in acoustic signatures, re-
quiring models to adapt to these differences. Transfer learning approaches show
promise but require careful consideration of domain similarities and differences.

Seasonal and temporal variations further complicate generalization. Models
trained on recordings from one season may perform poorly on data from different
periods due to changes in species behavior, ambient noise, and acoustic propagation
characteristics [8].

4.3. Technical and deployment constraints

Real-time processing requirements present computational challenges for many mon-
itoring applications. Underwater platforms often have limited power and process-
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ing resources, requiring efficient algorithms that operate within these constraints.
Specialized hardware approaches are being explored to address these limitations.

The underwater environment creates unique deployment challenges. Equip-
ment must withstand harsh conditions including pressure, corrosion, and biofoul-
ing. Communication limitations restrict data transmission capabilities, requiring
on-board processing and compression techniques.

Maintenance and calibration difficulties affect long-term deployments. Unlike
terrestrial systems, underwater platforms are difficult to access for routine mainte-
nance, requiring robust designs and remote diagnostic capabilities.

5. Future directions

5.1. Methodological advances

Future research directions include developing more sophisticated architectures for
underwater-specific challenges. Attention-based models show promise for captur-
ing long-range dependencies in complex vocalizations. Self-supervised learning ap-
proaches may address data scarcity by learning representations without extensive
manual labeling [3, 10].

Multimodal approaches that combine acoustic data with other sensor modalities
offer potential for improved monitoring capabilities. Integration of acoustic record-
ings with environmental sensors and visual data could provide more comprehensive
ecosystem insights [1, 5].

5.2. Technology integration

The development of edge computing solutions will enable more sophisticated real-
time processing on autonomous platforms. Integration with distributed monitoring
networks could create comprehensive systems that adapt to changing conditions
and species distributions.

Cloud computing integration may enable advanced post-processing and analysis
of data from multiple sources, identifying patterns and trends across larger spatial
and temporal scales.

5.3. Conservation applications

Integration of ML outputs into real-time monitoring systems could enhance conser-
vation efforts by providing immediate ecological insights. Early warning systems
for environmental threats or species changes could enable rapid response measures.

Citizen science applications using simplified ML models could expand monitor-
ing coverage while engaging public participation. Predictive modeling approaches
combining species detection with environmental forecasting may enable proactive
conservation measures.
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6. Conclusion

Machine learning is transforming underwater bioacoustics by enabling automated
analysis of marine and freshwater acoustic data. The field has progressed from
manual analysis methods to sophisticated systems capable of species detection,
ecosystem monitoring, and environmental assessment. As datasets grow and com-
putational methods advance, ML will play an increasingly important role in aquatic
ecology and conservation.

The integration of ML techniques with underwater bioacoustics has shown suc-
cess across diverse applications, from species identification to ecosystem health
monitoring. However, significant challenges remain, including data scarcity, gener-
alization difficulties, and computational constraints for deployment.

Future developments will likely focus on multimodal systems, real-time process-
ing capabilities, and conservation applications. As pressures on aquatic ecosystems
continue to increase, these technological advances will become increasingly valuable
for understanding, monitoring, and protecting aquatic environments.
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