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Four years ago, we planted the first seed of what would later become the FMF-
AI Conference. At that time, it was only a small, close-knit workshop – a gathering
of researchers who shared a passion for exploring the formal and foundational
aspects of Artificial Intelligence. Over the years, this seedling grew steadily: we
held the workshop annually, nurturing its roots and community.

In 2025, thanks to the Mecenatúra Grant of NKFIH, Grant ID: MEC_SZ_149312,
Title: Formal Methods and Foundations of Artificial Intelligence, this small plant
finally blossomed into a full-grown tree: we brought the FMF-AI initiative into
the light and opened our doors wide to hold the First International Conference on
Formal Methods and Foundations of Artificial Intelligence (FMF-AI) at Eszterházy
Károly Catholic University.

We would like to express our deep gratitude to the Mecenatúra Grant and
the NKFIH for making this possible. We hope that this young tree – rooted in
collaboration, nurtured by curiosity, and strengthened by shared knowledge – will
continue to grow, withstand the storms ahead, and flourish into a strong, enduring
tree in the years to come.

The conference in numbers and facts
The conference focused on the rapidly advancing field of Artificial Intelligence (AI),
covering a broad spectrum of topics – from mathematical foundations and large
language models to educational applications of AI. The event was enriched by
distinguished invited speakers from both Hungary (e.g., from HUN-REN SZTAKI)
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and abroad (e.g., from the West University of Timis,oara).
Artificial Intelligence has become one of the most transformative forces of our

time, reshaping how we work, learn, communicate, and make decisions. Its im-
portance lies not only in its technological potential, but also in its capacity to
address some of the most pressing challenges faced by humanity – from improv-
ing healthcare and sustainability to enhancing education and industrial efficiency.
However, as AI systems become increasingly autonomous and pervasive, ensur-
ing their transparency, reliability, and ethical grounding has become paramount.
Conferences such as FMF-AI play a crucial role in fostering dialogue between the-
oreticians and practitioners, helping to bridge the gap between formal methods
and real-world applications, and promoting the responsible and explainable use of
Artificial Intelligence.

FMF-AI brought together 84 participants from 11 countries, featuring 6 invited
talks, 1 roundtable discussion, 2 tutorials, 1 poster session, and 65 scientific pre-
sentations. One of the most memorable highlights was the roundtable discussion
on the present and future of AI, addressing its challenges and opportunities. This
session was broadcast online and remains available on the conference website.

As organizers, we were especially delighted to welcome many young researchers
among the participants. To recognize their contribution, we established the Youngest
Researcher of the Day Award, which was presented on each of the three conference
days. It was equally inspiring to witness the enthusiastic exchanges between expe-
rienced and early-career researchers during the coffee breaks.

The conference received 72 submissions in total. After a rigorous two-round
peer review process, 32 submissions were rejected, resulting in an overall rejection
rate of 44.44 %. The 20 accepted papers included in this proceedings volume reflect
both the quality and diversity of the conference contributions.

These papers span a wide range of topics – from the practical applications of AI,
such as machine learning in robotics, image processing, and education, to the theo-
retical foundations of artificial intelligence, including formal models, explainability,
and AI ethics. Together, they capture the interdisciplinary essence of FMF-AI,
bridging theory and practice in the study of intelligent systems.

We thank the authors for their contributions and the invited speakers for enrich-
ing the conference with their perspectives. This proceedings volume reflects the
collaborative spirit that defines FMF-AI – a community where formal reasoning
and artificial intelligence converge to advance knowledge and serve society.

We extend our sincere thanks to the members of the Program Committee for
their essential role in shaping this conference. Their diligent review of submissions
and expert judgment were critical in assembling a high-quality and diverse program.
We are grateful for their significant contribution of time and expertise.

In addition to this proceedings, a special journal issue, Annales Mathematicae et
Informaticae, see: https://ami.uni-eszterhazy.hu/, featuring another 20 peer-
reviewed papers will further disseminate the most outstanding results presented at
the conference.

We hope that readers will find in these pages both inspiration and guidance for
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their own research, and that this collection of papers will contribute meaningfully to
the growing body of scientific work on the foundations and applications of Artificial
Intelligence.

Looking ahead, our goal is to make FMF-AI an annual international conference,
hosted each year at a different academic venue to strengthen international collab-
oration and visibility. While we will not reveal the exact location yet, we hope to
meet again next year in France. Stay tuned!

Sincerely,

Csaba Biró, Conference Chair
Olivér Hornyák, Conference Co-Chair
Gergely Kovásznai, Chair of the Program Committee
Gábor Kusper, Chair of the Organizing Committee
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Efficiency analysis comparison of the
Particle Swarm Optimization and Tabu

Search in Flow Shop Scheduling Problem

Anita Agárdi

Institute of Informatics, University of Miskolc
anita.agardi@uni-miskolc.hu

Abstract. The paper investigates the efficiency of two metaheuristic algo-
rithms, the Particle Swarm Optimization and the Tabu Search, on the Flow
Shop Scheduling Problem. Particle Swarm Optimization is a population al-
gorithm. The algorithm maintains a population of solutions. It improves
the population during the iteration. Tabu Search improves a single possible
solution. The paper presents the efficiency of the algorithms on a benchmark
dataset and compares it with results published by other researchers.

1. Introduction
Industry 4.0 [4] is also known as the fourth industrial revolution. It has fundamen-
tally changed manufacturing and industrial processes. It integrates digitalization,
automation and artificial intelligence. This new approach enables production sys-
tems to become smarter. Machines and equipment no longer perform only tradi-
tional, pre-programmed tasks. It can process data in real time and perform anal-
yses. It also can make autonomous decisions to increase efficiency. The principles
of Industry 4.0 is the closer connection of information technology and industrial
processes. Every element of the production chain can be continuously monitored,
analysed and optimised. Internet of Things (IoT), cloud computing, robotics, aug-
mented reality and data analytics are important in this process.

Production scheduling [7] aims to efficiently allocate and utilize available re-
sources, such as machinery, labor, and materials. Production scheduling involves

Supported by the University Research Scholarship Program of the Ministry for Culture and
Innovation from the source of the National Research, Development and Innovation Fund.
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scheduling production orders, setting priorities etc. This process also takes into ac-
count production capacities, machine maintenance needs and order deadlines. The
aim of production scheduling is the downtime minimization, reducing unnecessary
inventory accumulation.

Metaheuristic algorithms [1] are optimization methods. The aim is to find
near-optimal solutions to complex problems. These algorithms do not guarantee
finding the globally optimal solution. The algorithms try to navigate the solution
space efficiently. They usually combine random search elements with structured,
heuristic methods. They are able to avoid local optima and find solution near the
global optimum. For example, Genetic Algorithm [13], Simulated Annealing [5],
Tabu Search [2], Particle Swarm Optimization [14], etc.

2. Materials and methods

2.1. Flow Shop Scheduling
Flow Shop Scheduling (FSS) [6] is a production scheduling problem. During the
problem, products or workpieces must pass through different work processes or
machines. The objective function of the problem is minimizing production time,
downtime, and/or delays. All workpieces pass through the same machines and
operations. The processing times assigned to each machine can be different. Es-
tablishing the correct sequence and schedule can be very difficult. Formally, a Flow
Shop Scheduling problem can be defined as follows:

Consider a set of n jobs J = {J1, J2, . . . , Jn} and a set of m machines M =
{M1, M2, . . . , Mm}. Each job Ji consists of a sequence of m operations, one for
each machine, with processing time pi,j on machine Mj . The objective is to find a
permutation π of the jobs that minimizes a given criterion, such as the makespan,
total completion time, or total tardiness.

Mathematically, the classical Flow Shop Scheduling problem with makespan
minimization can be written in a following way:

Cmax = max
i=1,...,n

{Ci,m},

where Ci,j is the completion time of job Ji on machine Mj , calculated recursively
as: 




C1,1 = p1,1,

Ci,1 = Ci−1,1 + pi,1, i = 2, . . . , n,

C1,j = C1,j−1 + p1,j , j = 2, . . . , m,

Ci,j = max(Ci−1,j , Ci,j−1) + pi,j , i = 2, . . . , n, j = 2, . . . , m.

Typical examples of Flow Shop Scheduling applications are:

• Automotive assembly: Parts are assembled in a specific order.

• Electronics production: Testing, assembling, and quality control of compo-
nents.
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• Metalworking: Cutting, welding, and grinding of metals.

2.2. Particle Swarm Optimization
Particle Swarm Optimization (PSO) [3] is a population-based optimization algo-
rithm. The algorithm is inspired by the movement of particles. It was developed
by James Kennedy and Russell Eberhart in 1995. Particles represent potential
solutions that move through the search space based on their own experience and
that of the swarm. Steps of the algorithm:

1. Particle creation: Each particle represents a possible solution. The ele-
ments of the population can be randomly generated or can be the results of
a construction algorithm.

2. Velocity and position update: Particles get new velocity and position in
each iteration. Velocity is updated based on the following formula:

v⃗i(t + 1) = w · v⃗i(t) + c1 · r1 · ( ⃗pbesti − x⃗i(t)) + c2 · r2 · ( ⃗gbest − x⃗i(t))

where:

v⃗i(t): velocity of particle i in iteration t

x⃗i(t): position of particle i in iteration t

w: inertia weight
c1, c2: learning factors that influence attraction towards ⃗pbesti and ⃗gbest

⃗pbesti: best location of particle i

⃗gbest: global best solution
r1 and r2: are random numbers between [0, 1]. They are independently re-

generated for each particle in every iteration. Their role is to provide a
random weighting for the particle’s movement. r1 scales the “cognitive”
component, pulling the particle towards its own best position ( ⃗pbesti).
r2 scales the “social” component, pulling the particle towards the global
best position ( ⃗gbest).

The position of particles is updated with the following formula:

x⃗i(t + 1) = x⃗i(t) + v⃗i(t + 1)

3. Termination condition: The algorithm stops if the termination condition
is met. The termination condition can be a certain number of iterations,
convergence, or a fixed runtime.

Particle Swarm Optimization was originally developed for continuous tasks, but
the Flow Shop Scheduling task is a discrete problem, so the algorithm needs to
be discretized. The discretization was based on the article [10], which solves the
Traveling Salesman Problem.
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Algorithm 1: Discrete Particle Swarm Optimization for Flow Shop
Scheduling.

Input: Flow Shop Scheduling problem instance
Output: Best found solution

1 1. Create the initial particles. The particles’ positions x⃗i(t) represent
permutations in the Flow Shop Scheduling problem. In this case, they are
generated randomly.

2 2. Initialize the particles’ velocities v⃗i(t). This is a Basic Swap Sequence
value [10], since the problem is discrete.

3 while termination criteria is not met do
4 2.a Compute the global best particle.
5 foreach particle do
6 3. Compute the particle velocity using the following formula:

v⃗i(t + 1) = v⃗i(t) ⊕ c1r1( ⃗pbesti − x⃗i(t)) ⊕ c2r2( ⃗gbest − x⃗i(t))

7 Here, the Basic Swap Sequence [10] represents the sequence of
swaps between:

8 – the best position of the particle ⃗pbesti and its current position
(both are permutations) ie. ⃗pbesti − x⃗i(t), and

9 – the global best ⃗gbest and the particle’s current position ie.
⃗gbest − x⃗i(t).

10 The operator ⊕ denotes performing swaps between permutations
(adding Basic Swap Sequence values).

11 4. Determine the current particle’s new position using the following
formula:

x⃗i(t + 1) = x⃗i(t) + v⃗i(t + 1)

This means performing the swaps defined by the Basic Swap
Sequence on the permutation.

12 5. Determine the fitness value of x⃗i(t + 1);

2.3. Tabu Search
Tabu Search (TS) [12] is a local search procedure. The algorithm maintains a tabu
list to move from a local optimum to a global optimum.

The steps of the algorithm are the followings:

• Initial solution: Taking an initial solution (it is either randomly generated
or constructed using some construction technique). This solution will be the
current solution. In the case of Flow Shop Scheduling Problem each solution
means a randomly generated permutation.

• Neighborhood search: Searching for the neighbors of the current solution

https://uni-eszterhazy.hu/fmf 7https://uni-eszterhazy.hu/fmf 7https://uni-eszterhazy.hu/fmf 7

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


A. Agárdi FMF-AI 2025

using a neighborhood operator. In the case of Flow Shop Scheduling Problem,
the swap operator is used for this.

• Tabu list: The tabu list stores those solutions that cannot be re-selected
(already visited solutions).

• Recording best solution: The algorithm continuously monitors the best
solution found so far.

• Deleting individual elements of the tabu list: If the tabu list is full,
the older solutions are deleted.

• Termination condition: The termination condition can be a certain num-
ber of iterations, convergence, or a predefined runtime.

3. Test results
This section contains the test results. First, the results of Particle Swarm Opti-
mization, then the Tabu Search test runs are presented.

Separate tables are provided for both PSO and TS algorithms, showing the
maximum, average, and minimum fitness values of the runs for each Taillard data
set (Table 1, Table 3). The article also examines the fitness values of the proposed
algorithms in comparison with the already published data. Table 2 and Table 4
contain the fitness values of the PSO or TS and and how much better the TS
or PSO algorithm is than other algorithms published in the literature. If the
percentage is positive, then the PSO or TS algorithm is better than the given
comparison algorithm. The comparisons were created with the published results
of the following algorithms [8, 11]:

• HMM-PFA – Hidden Markov Model based Particle Filter Algorithm

• HGA – Hybrid Genetic Algorithm

• IIGA – Improved Invasive Weed Optimization Algorithm

• DSOMA – Differential Search Optimization Method Algorithm

• HGSA – Hybrid Gravitational Search Algorithm

The Taillard [9] dataset was used during the test runs. The key features of the
Taillard dataset is the following:

• Variety of problem sizes: The dataset includes examples for different numbers
of machines (m) and workpieces (n) (e.g., 20 × 5, 50 × 10, 100 × 20), allowing
testing of small and large scale problems.

• Independent, randomly generated processing times: The processing times are
chosen so that the problems are not biased or trivially solvable.
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• Wide acceptance: The benchmark is a quasi-standard in FSSP research and
serves as a reference for testing almost all modern metaheuristic and exactness
algorithms.

• The objective function of the problems is the makespan minimization

3.1. Particle Swarm Optimization test results
This section presents the results of Particle Swarm Optimization. First, the max-
imum, average, and minimum of the test runs are presented. Then, the section
examines the test results in comparison to the benchmark algorithms.

Table 1. Fitness values of Particle Swarm Optimization: maxi-
mum, average and minimum values.

Instance PSO
Max Avg Min

Ta001 1313 1301.8 1297
Ta002 1373 1368.4 1366
Ta003 1161 1153.2 1145
Ta004 1391 1380.6 1372
Ta005 1288 1284.6 1277
Ta006 1258 1248 1238
Ta007 1273 1262.4 1252
Ta008 1297 1281.6 1271
Ta009 1298 1288.2 1277
Ta010 1177 1170.6 1161
Ta011 1725 1713 1708
Ta012 1792 1785.4 1778
Ta013 1627 1616.2 1599
Ta014 1509 1493.8 1469
Ta015 1562 1552.6 1546
Ta016 1530 1509.6 1493
Ta017 1599 1586.8 1571
Ta018 1679 1667.6 1631
Ta019 1701 1693 1686
Ta020 1728 1711 1692

The Table 1 shows the performance of the Particle Swarm Optimization (PSO)
algorithm on the Taillard dataset. The average fitness values of the solutions is close
to the best value. This means, that PSO gives relatively stable results. However,
differences can be observed between individual instances. For example, in the case
of Ta018, where the difference between the Max and Min values is large (1679 and
1631 fitness values). In the case of Ta011, the difference is minimal. The algorithm
achieved the lowest values for problems Ta003 (minimum fitness value: 1145) and
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Ta010 (minimum fitness value: 1161). The worst result was on problem Ta012
(maximum fitness value: 1792).

Table 2. Comparison of test results obtained by Particle Swarm
Optimization and competing algorithms.

Instance PSO HMM-PFA % HGA % IIGA % DSOMA % HGSA %
Ta001 1297 14.57 11.72 14.57 5.94 2.08
Ta002 1366 11.86 6.88 11.86 3.07 5.56
Ta003 1145 27.51 21.05 27.51 11.79 -4.10
Ta004 1372 15.74 10.86 15.74 5.54 7.07
Ta005 1277 13.47 9.87 13.47 5.01 1.10
Ta006 1238 19.63 15.51 19.63 10.10 12.36
Ta007 1252 18.45 16.69 18.45 10.30 3.75
Ta008 1271 16.60 12.75 16.60 8.50 1.65
Ta009 1277 15.04 9.48 15.04 7.52 2.27
Ta010 1161 18.60 14.04 18.60 10.51 6.20
Ta011 1708 19.67 14.46 17.74 -0.59 0.29
Ta012 1778 21.82 19.40 21.82 3.09 -3.37
Ta013 1599 21.33 19.57 21.33 4.82 -2.75
Ta014 1469 23.28 21.31 23.28 5.24 3.20
Ta015 1546 25.03 25.03 25.03 4.59 1.75
Ta016 1493 26.72 22.37 26.72 6.50 -2.41
Ta017 1571 24.95 23.74 24.95 3.25 3.25
Ta018 1631 26.12 22.99 26.12 6.13 7.23
Ta019 1686 17.02 13.17 17.02 3.62 -3.68
Ta020 1692 21.22 18.26 21.22 5.32 1.77

Table 2 compares the maximum of the test values of the Particle Swarm Opti-
mization algorithm and the results of the algorithms published by the researchers.
In some cases, the HGSA algorithm and in one case the DSOMA algorithm gave
better results than the PSO algorithm. In the majority of cases (in the range of
about 10-20 %) PSO gave better results than the other algorithms. In some cases
(e.g. Ta001, Ta006, Ta018) HGSA gave better or similar results than PSO. In one
case (Ta003) DSOMA achieved better results (-4.10 %) than PSO.

3.2. Tabu Search test results
In the following, the test results of the Tabu Search algorithm and their comparison
with the results of algorithms published by researchers are presented.

The results of Tabu Search are presented in Table 3. The results show that
the algorithm typically provides stable and reliable performance. In most cases,
the maximum and average values are relatively close to each other. The method
usually gives consistently good results. For example, for problem Ta006, the best
fitness value is 1296, the average value is 1272.2, and the worst is 1233.

Table 4 compares the Tabu Search results with the published results. Only five
cases was the proposed algorithm worse than the published results. In many cases,
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Table 3. Fitness values of Tabu Search algorithm: maximum,
average and minimum values.

Instance TS
Max Avg Min

Ta001 1377 1356.6 1323
Ta002 1447 1405.6 1383
Ta003 1198 1166.2 1132
Ta004 1444 1405 1359
Ta005 1416 1333.2 1279
Ta006 1296 1272.2 1233
Ta007 1294 1275 1259
Ta008 1297 1269.2 1226
Ta009 1376 1321.6 1265
Ta010 1180 1162.4 1137
Ta011 1760 1723.4 1681
Ta012 1852 1784.6 1737
Ta013 1656 1613.8 1591
Ta014 1609 1518.6 1425
Ta015 1593 1553.6 1495
Ta016 1515 1487.8 1467
Ta017 1649 1611.2 1576
Ta018 1722 1679.8 1641
Ta019 1745 1701.8 1672
Ta020 1751 1720.2 1657

the TS algorithm gave more than 20% better results. The IIGA and HMM-PFA
algorithms were similar or worse than TS. The DSOMA and HGSA algorithms gave
significantly worse results. In most cases, TS gave results that were more than 20%
better than the other algorithms, for example, for Ta003, IIGA is 28.98%. TS only
performed worse in five cases: for Ta011 and Ta012, in the case of HGSA and
DSOMA, and for Ta019 and Ta016, in the case of HGSA and DSOMA.

4. Conclusions and future research directions
The paper investigated the effectiveness of Particle Swarm Optimization and Tabu
Search on the Flow Shop Scheduling Problem. The Taillard benchmark dataset
was used for the problem. It can be said that TS was the most efficient algorithm.
Most of the compared algorithms, such as HMM-PFA, HGA, IIGA, performed
worse than the proposed algorithms. Particle Swarm Optimization (PSO) and
Tabu Search (TS) algorithms give several future research directions, for example
the hybridization of PSO and TS. Further research can also focus on combining
them with other metaheuristic algorithms, such as Genetic Algorithm or Simulated
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Table 4. Comparison of test results obtained by Tabu Search and
competing algorithms.

Instance TS HMM-PFA % HGA % IIGA % DSOMA % HGSA %
Ta001 1323 12.32 9.52 12.32 3.85 0.08
Ta002 1383 10.48 5.57 10.48 1.81 4.27
Ta003 1132 28.98 22.44 28.98 13.07 -3.00
Ta004 1359 16.85 11.92 16.85 6.55 8.09
Ta005 1279 13.29 9.70 13.29 4.85 0.94
Ta006 1233 20.11 15.98 20.11 10.54 12.81
Ta007 1259 17.79 16.04 17.79 9.69 3.18
Ta008 1226 20.88 16.88 20.88 12.48 5.38
Ta009 1265 16.13 10.51 16.13 8.54 3.24
Ta010 1137 21.11 16.45 21.11 12.84 8.44
Ta011 1681 21.59 16.30 19.63 1.01 1.90
Ta012 1737 24.70 22.22 24.70 5.53 -1.09
Ta013 1591 21.94 20.18 21.94 5.34 -2.26
Ta014 1425 27.09 25.05 27.09 8.49 6.39
Ta015 1495 29.30 29.30 29.30 8.16 5.22
Ta016 1467 28.97 24.54 28.97 8.38 -0.68
Ta017 1576 24.56 23.35 24.56 2.92 2.92
Ta018 1641 25.35 22.24 25.35 5.48 6.58
Ta019 1672 18.00 14.11 18.00 4.49 -2.87
Ta020 1657 23.78 20.76 23.78 7.54 3.92

Annealing. Optimization of PSO and TS parameters can also be another future
research direction.
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Abstract. Underwater bioacoustics, the study of sound in aquatic biolog-
ical systems, is increasingly enhanced by machine learning (ML) technolo-
gies. This paper explores recent developments in applying ML to under-
water bioacoustics, focusing on marine and freshwater species identification,
environmental monitoring, and noise reduction. We examine key method-
ologies, present performance analysis from various applications, and address
the challenges unique to the underwater domain. Additionally, we propose
future directions for research including multimodal approaches and real-time
processing systems.
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environmental monitoring, convolutional neural networks
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1. Introduction
Underwater bioacoustics investigates the production, propagation, and perception
of sound by aquatic organisms. This field is essential for understanding marine and
freshwater life behavior, communication, and ecological dynamics. Sound plays a
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crucial role in aquatic environments where visual information is often limited by
depth, turbidity, or lighting conditions.

However, collecting and analyzing underwater acoustic data presents signifi-
cant challenges due to signal distortion, background noise, and the diversity of
sound sources. Traditional manual analysis methods are time-consuming and often
impractical for large-scale monitoring efforts. The acoustic environment underwa-
ter is complex, with sounds from biological sources, geological activities, weather
conditions, and increasing anthropogenic noise pollution.

Machine learning offers promising tools to overcome these issues by automating
detection, classification, and interpretation of bioacoustic signals [7]. The appli-
cation of ML in underwater bioacoustics has grown significantly in recent years,
driven by advances in deep learning architectures and the availability of larger
acoustic datasets. These developments enable researchers to process acoustic data
with improved accuracy and efficiency, opening new possibilities for monitoring
and conservation applications.

2. Machine learning methodologies in underwater
bioacoustics

2.1. Species identification and classification

Supervised ML algorithms, especially convolutional neural networks (CNNs), have
been widely used for classifying species-specific vocalizations. These models are
trained on spectrograms derived from hydrophone recordings, leveraging pattern
recognition capabilities to identify acoustic signatures. The transformation of tem-
poral acoustic signals into spectrograms creates a visual representation that cap-
tures both frequency content and temporal dynamics.

Recent implementations have achieved notable classification accuracy. Re-
searchers have successfully detected dolphin clicks, whale songs, fish choruses, and
freshwater species such as frogs and riverine fish using deep learning approaches [2,
10]. Transfer learning approaches, where models pre-trained on general datasets are
adapted for bioacoustic spectrograms, have proven effective when labeled acoustic
data is limited [3].

Different species present varying challenges for detection algorithms. Dolphin
echolocation clicks, characterized by their brief duration and high frequency con-
tent, require specialized temporal processing. Whale songs, with their complex
hierarchical structure, benefit from models capable of understanding long-term de-
pendencies. Fish choruses during spawning seasons create complex acoustic land-
scapes where multiple species vocalize simultaneously, necessitating advanced sep-
aration techniques.
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2.2. Environmental monitoring and ecosystem assessment
ML is used to monitor aquatic environments by detecting biotic and anthropogenic
sounds. In both marine and freshwater habitats, anomaly detection models can
identify changes in acoustic environments due to pollution, vessel traffic, or climate
effects. Long Short-Term Memory (LSTM) networks and transformer models have
proven effective in identifying temporal patterns across different time scales [6].

Soundscape ecology applications use ML to examine the acoustic environment
as an indicator of ecological health. Automated species detection enables calcula-
tion of acoustic diversity indices, providing assessments of ecosystem health that
complement traditional surveys. These approaches can track changes over time
with high temporal resolution.

The detection of anthropogenic impacts represents a critical application area.
Vessel noise pollution, construction activities, and other human activities create
distinct acoustic signatures that ML models can detect and quantify [5]. This
capability enables assessment of human impacts on marine ecosystems and supports
management decisions.

2.3. Noise reduction and signal enhancement
Underwater recordings are often degraded by complex noise sources such as boat
engines, wave motion, or flow-induced turbulence in rivers and lakes. ML models,
including denoising autoencoders and non-negative matrix factorization (NMF),
can isolate biological signals from noise. These techniques improve the reliability
of ecological interpretations [9].

Figure 1. Example spectrogram of underwater acoustic data with
visible animal vocalizations in the 10–13 kHz range. Such features
are often targeted by machine learning models for detection and

classification tasks.

Denoising autoencoders learn to map corrupted signals back to their original
form by training on pairs of noisy and clean acoustic data. These models can
effectively remove various types of noise while preserving essential characteristics
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of biological signals. The encoder-decoder architecture enables learning of complex
mappings that traditional filters cannot achieve.

Recent advances include generative adversarial networks (GANs) for signal en-
hancement, where competing networks learn to generate clean signals and dis-
tinguish between real and generated outputs. This approach shows promise for
removing non-stationary noise sources that vary over time. Traditional spectral
subtraction and Wiener filtering methods have also been enhanced through ML-
based parameter optimization [1, 9].

3. Performance analysis and applications

3.1. Marine environment applications

Studies in marine environments have demonstrated the effectiveness of ML ap-
proaches for large-scale monitoring with quantitative improvements over traditional
methods. Shiu et al. [10] reported a multi-species cetacean detection system achiev-
ing mean average precision (mAP) of 0.87 across 15 species, with individual species
ranging from 0.72 (beaked whales) to 0.94 (humpback whales). Their CNN-based
approach processed 187,000 hours of recordings from the Pacific Ocean, demon-
strating scalability for large-scale monitoring efforts.

Bermant et al. [2] developed a deep learning system for beluga whale detection
achieving 97.5% precision and 94.8% recall on a test set of 5,840 calls. The sys-
tem maintained 91.2% accuracy when deployed in different geographic locations,
demonstrating cross-region generalization capabilities. Environmental factors sig-
nificantly influenced performance, with detection accuracy dropping to 78.4% in
high noise conditions (SNR < 10 dB).

For dolphin echolocation clicks, recent implementations achieved F1 scores of
0.89–0.93 using ResNet architectures [3]. Detection performance varied with click
train characteristics: isolated clicks (precision: 0.91, recall: 0.88) versus overlap-
ping click trains (precision: 0.84, recall: 0.79). Processing speeds reached 450×
real-time on GPU hardware, enabling efficient analysis of long-term recordings.
Multi-species detection systems have been developed capable of identifying multi-
ple cetacean species from continuous recordings. These systems typically employ
hierarchical classification, first detecting the presence of marine mammal vocaliza-
tions, then applying species-specific models.

Performance varies across species, with larger whales generally showing higher
detection rates due to their distinctive vocalizations. Smaller dolphins and por-
poises present greater challenges due to overlapping frequency ranges and variable
acoustic signatures. Environmental factors such as ambient noise levels and prop-
agation conditions significantly influence detection performance [2, 5].
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3.2. Freshwater monitoring systems
Freshwater environments present unique challenges due to species diversity and
variable acoustic conditions. ML-based fish monitoring systems have been devel-
oped for species detection during spawning seasons when acoustic activity peaks.
Custom architectures account for the specific propagation characteristics and noise
sources in shallow water environments.

Success rates vary among species, with those producing distinctive sounds
achieving higher detection accuracy. Environmental factors including wind-genera-
ted noise, thermal stratification, and human activities affect system performance.
Adaptive algorithms that adjust detection thresholds based on ambient conditions
have improved robustness [1, 4].

3.3. Real-time processing implementations
Real-time monitoring systems demonstrate practical deployment capabilities with
quantifiable performance trade-offs. Edge computing implementations using op-
timized neural networks achieved 82–89% of full model accuracy while reducing
computational requirements by 75%. Briggs et al. [4] deployed autonomous buoys
processing 24 kHz audio continuously for 6 months, detecting target species with
86.3% accuracy using models compressed to 2.4 MB.

Lightweight architectures such as MobileNet variants maintained detection F1
scores above 0.80 while operating within 5 W power budgets. Processing latency
ranged from 50–200 ms per 1-second audio segment on embedded platforms
(NVIDIA Jetson series), enabling near real-time alerts for conservation applica-
tions. Battery-powered systems achieved 3–6 month deployment durations with
solar charging, processing 8–16 hours daily [3]. Real-time monitoring systems have
been deployed using edge computing platforms to process acoustic data continu-
ously. These systems balance computational constraints with monitoring require-
ments, achieving acceptable performance for ecosystem-level assessment while op-
erating within power and processing limitations.

Lightweight neural networks optimized for low-power consumption enable con-
tinuous operation on autonomous platforms. Despite computational constraints,
these systems provide valuable insights into ecosystem dynamics and can detect
significant changes in acoustic patterns [3, 4].

4. Challenges and limitations

4.1. Data-related challenges
The underwater environment introduces unique obstacles for ML applications.
A major challenge is the scarcity of labeled datasets for marine and freshwater
bioacoustics, which limits supervised training effectiveness. Data collection re-
quires specialized equipment and often lengthy field campaigns, resulting in smaller
datasets compared to other ML domains.
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Data quality issues compound scarcity problems. Underwater recordings are
affected by equipment limitations, environmental variability, and temporal con-
straints. Many species are only acoustically active during specific seasons or con-
ditions, limiting representative training data availability.

Annotation quality presents additional challenges. Manual labeling requires ex-
pertise in both target species and acoustic analysis. Variability between annotators
can be substantial, particularly for subtle vocalizations or overlapping calls from
multiple species. Standardized annotation protocols and quality control measures
are essential for reliable training data [6, 8].

4.2. Generalization and adaptation
Several strategies have been developed to address generalization challenges in un-
derwater bioacoustics. Domain adaptation techniques using adversarial training
improved cross-region performance by 15–22% for marine mammal detection tasks
[10]. Unsupervised domain adaptation methods, requiring only unlabeled data
from target environments, achieved 78–85% of supervised performance levels.

Transfer learning approaches demonstrate varying success rates depending on
source-target similarity. Models pre-trained on terrestrial bird vocalizations and
fine-tuned for marine mammals achieved 82% of purpose-trained model perfor-
mance with 60% less training data. Within-domain transfer (e.g., between cetacean
species) showed better results, reaching 91–95% of baseline performance [3].

Data augmentation strategies specifically designed for underwater acoustics in-
clude: Time-frequency masking: improved generalization by 8–12%. Noise injec-
tion using real environmental recordings: 10–15% improvement. Pitch shifting
within species-specific ranges: 5–8% improvement. Simulated propagation effects:
12–18% improvement for depth-variant deployments. Models trained in specific re-
gions or conditions often fail to generalize to new environments, limiting applicabil-
ity across different ecosystems. This challenge is acute in underwater bioacoustics
due to high variability in acoustic environments caused by bathymetry, substrate
composition, and local noise sources.

Geographic variation in species vocalizations presents additional generalization
challenges. Many species exhibit regional variations in acoustic signatures, re-
quiring models to adapt to these differences. Transfer learning approaches show
promise but require careful consideration of domain similarities and differences.

Seasonal and temporal variations further complicate generalization. Models
trained on recordings from one season may perform poorly on data from different
periods due to changes in species behavior, ambient noise, and acoustic propagation
characteristics [8].

4.3. Technical and deployment constraints
Real-time processing requirements present computational challenges for many mon-
itoring applications. Underwater platforms often have limited power and process-

https://uni-eszterhazy.hu/fmf 19https://uni-eszterhazy.hu/fmf 19https://uni-eszterhazy.hu/fmf 19

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


A. Aradi, P. Takács, A. K. Varga FMF-AI 2025

ing resources, requiring efficient algorithms that operate within these constraints.
Specialized hardware approaches are being explored to address these limitations.

The underwater environment creates unique deployment challenges. Equip-
ment must withstand harsh conditions including pressure, corrosion, and biofoul-
ing. Communication limitations restrict data transmission capabilities, requiring
on-board processing and compression techniques.

Maintenance and calibration difficulties affect long-term deployments. Unlike
terrestrial systems, underwater platforms are difficult to access for routine mainte-
nance, requiring robust designs and remote diagnostic capabilities.

5. Future directions

5.1. Methodological advances
Future research directions include developing more sophisticated architectures for
underwater-specific challenges. Attention-based models show promise for captur-
ing long-range dependencies in complex vocalizations. Self-supervised learning ap-
proaches may address data scarcity by learning representations without extensive
manual labeling [3, 10].

Multimodal approaches that combine acoustic data with other sensor modalities
offer potential for improved monitoring capabilities. Integration of acoustic record-
ings with environmental sensors and visual data could provide more comprehensive
ecosystem insights [1, 5].

5.2. Technology integration
The development of edge computing solutions will enable more sophisticated real-
time processing on autonomous platforms. Integration with distributed monitoring
networks could create comprehensive systems that adapt to changing conditions
and species distributions.

Cloud computing integration may enable advanced post-processing and analysis
of data from multiple sources, identifying patterns and trends across larger spatial
and temporal scales.

5.3. Conservation applications
Integration of ML outputs into real-time monitoring systems could enhance conser-
vation efforts by providing immediate ecological insights. Early warning systems
for environmental threats or species changes could enable rapid response measures.

Citizen science applications using simplified ML models could expand monitor-
ing coverage while engaging public participation. Predictive modeling approaches
combining species detection with environmental forecasting may enable proactive
conservation measures.
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6. Conclusion
Machine learning is transforming underwater bioacoustics by enabling automated
analysis of marine and freshwater acoustic data. The field has progressed from
manual analysis methods to sophisticated systems capable of species detection,
ecosystem monitoring, and environmental assessment. As datasets grow and com-
putational methods advance, ML will play an increasingly important role in aquatic
ecology and conservation.

The integration of ML techniques with underwater bioacoustics has shown suc-
cess across diverse applications, from species identification to ecosystem health
monitoring. However, significant challenges remain, including data scarcity, gener-
alization difficulties, and computational constraints for deployment.

Future developments will likely focus on multimodal systems, real-time process-
ing capabilities, and conservation applications. As pressures on aquatic ecosystems
continue to increase, these technological advances will become increasingly valuable
for understanding, monitoring, and protecting aquatic environments.
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Abstract. In today’s world, we are surrounded by smart devices, which we
increasingly focus on, while we may pay less attention to our health and
sports activities. Smart devices, especially those we wear, can collect a lot of
data about us, which might be used to maintain and improve our health. This
paper is dedicated to creating an AI assistant that creates two-way commu-
nication between the user and the components. Two components ensure that
the goals are achieved: a service containing machine learning and a service
implementing fuzzy logic. The services read the data from a database cluster.
Since a lot of data are received from users every day, we had to implement
an architecture that is scalable, modular, and expandable. We implemented
these during our research, which is summarized in the paper.
Keywords: fuzzylogic, ai, machine learning, smartwatch, iot, data extract,
architecture

1. Introduction
The proliferation of Internet of Things (IoT) devices has enabled continuous mon-
itoring of human activity and health-related parameters. Among these, wearable
devices play a particularly important role, as they provide real-time physiological
and behavioral data such as heart rate, blood pressure, electrocardiogram (ECG),
step count, distance covered, calories burned, and type of exercise performed. Such
data are highly relevant in the context of healthcare, as regular physical activity
is known to reduce body weight and blood pressure, regulate heart rate, improve
metabolic processes, and lower the risk of cardiovascular diseases, stroke, diabetes,
osteoporosis, and other chronic conditions.

Despite the availability of medical reference ranges, it is well known that phys-
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iological parameters can vary significantly between individuals. Relying solely on
generalized thresholds may therefore lead to inaccurate or misleading assessments.
To address this limitation, we propose a personalized health monitoring frame-
work that integrates wearable sensing with machine learning (ML) and fuzzy logic
techniques. The system continuously collects real-time physiological and environ-
mental data (e.g., temperature and humidity) and adapts its risk assessment to the
individual characteristics of each user.

The contributions of this work are threefold. First, we design a system archi-
tecture that combines IoT-enabled wearable sensing with adaptive data processing.
Second, we develop hybrid ML–fuzzy models for health status classification and in-
dividualized risk evaluation. Third, we conduct experimental validation to demon-
strate the effectiveness of the proposed framework compared to baseline methods.
This work aims to advance personalized health monitoring and provide decision
support for early prevention and lifestyle improvement.

2. Data acquisition and integration
The first step of the proposed framework was the acquisition of physiological and
activity data from users’ IoT-enabled wearable devices [2]. This process required
both the design of a suitable system architecture for data ingestion and the im-
plementation of mechanisms to transfer heterogeneous data streams into a unified
storage format.

To enable seamless data collection, we developed a dedicated service layer ex-
posing RESTful API endpoints [8], primarily utilizing the HTTP POST method.
Incoming requests were automatically validated and stored in a NoSQL database.
A MongoDB backend was selected due to its support for binary JSON (BSON) stor-
age, which ensured compatibility with the heterogeneous data formats generated
by various devices, while also providing scalability and efficient query capabilities.

Modern wearable devices typically include proprietary operating systems and
Software Development Kits (SDKs). Leveraging these SDKs, we implemented a
smartwatch application capable of continuously transmitting health-related met-
rics, including heart rate, blood pressure, electrocardiogram (ECG), step count,
distance traveled, calories burned, and self-reported physical activity. For users
whose devices lacked SDK support (e.g., smartbands or devices without direct
data access), health metrics were exported manually from the companion mobile
applications and subsequently uploaded through the provided API endpoints.

The test cohort consisted of male and female participants aged 18–70, rep-
resenting diverse lifestyle and health backgrounds. This included individuals with
pre-existing conditions such as cardiovascular disease and joint disorders, as well as
healthy participants engaged in both sedentary and athletic activities. Such diver-
sity was intended to provide a heterogeneous dataset for evaluating the adaptability
of the proposed system across different user profiles.

Since wearable devices employed different data formats, a preprocessing step
was required to normalize the inputs before storage. While most sources pro-
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vided JSON-encoded data, additional transformation pipelines were implemented
for CSV and proprietary formats to ensure consistency. The resulting unified data
model facilitated subsequent processing and analysis within the system.

Table 1. Example of health information extracted from a smart-
watch device.

Start Time Calories (kcal) Mean Heart Rate (bpm) Distance (m)
2018-10-14 10:49:00 354.48 100 3829.89
2018-04-27 12:37:14 41.89 100 804.26
2021-01-23 18:16:33 77.23 1103 847.74
2018-06-28 22:41:00 205.73 100 2252.6
2019-07-10 20:26:05 73.85 100 811.72
2021-04-26 17:00:34 81.42 1163 905.96
2019-08-21 20:25:00 80.65 100 862.16
2019-11-12 22:55:00 88.90 100 971.02
2021-01-24 04:12:00 96.52 1379 1058.36
2019-09-23 21:12:17 221.95 100 2390.14
2019-11-04 04:19:12 178.36 100 1954.96
2019-01-07 15:03:00 186.29 100 2046.47
2019-07-15 10:48:05 78.62 100 859.17
2020-01-03 22:10:00 185.46 100 2029.0
2019-10-20 22:40:00 182.52 100 1990.76

3. System architecture

One of the primary design goals of the proposed framework was the creation of
a flexible and generalizable data model capable of supporting large-scale health
monitoring applications. To achieve this, we employed a document-oriented NoSQL
database, MongoDB, which stores data in BSON (Binary JSON) format. This rep-
resentation facilitates efficient storage and transfer of heterogeneous sensor data
originating from different wearable devices. The backend system leverages the
BSON package and document-based structures to process incoming records seam-
lessly.

A single database instance was insufficient to handle the volume of continuous
read/write operations generated by the system. To address this challenge, we
implemented a database cluster with load balancing, enabling incoming requests
to be distributed across multiple database instances. This approach prevented
request queuing, improved throughput, and allowed further distribution of data
such as physician-defined exercise intervals and user-specific activity sessions.
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3.1. Layered and microservice-based design
The overall architecture was designed according to three key principles: scalability,
modularity, and expandability.

• Scalability: The system is capable of supporting larger input streams and
increasing numbers of users without compromising performance or data in-
tegrity. Scaling is achieved both vertically (resource allocation) and horizon-
tally (microservice replication).

• Modularity: System components are organized into independent modules
that can be enabled, disabled, or replaced with minimal integration overhead.

• Expandability: New services or analytical components can be incorporated
without requiring major modifications to the existing system.

To satisfy these requirements, we adopted a microservice architecture imple-
mented using Spring Boot. Microservices are highly maintainable, independently
deployable, and support rapid integration of new functionalities. Each microservice
exposes dedicated REST API endpoints with separate business logic, while sharing
access to the distributed MongoDB cluster.

3.2. Service workflow
As illustrated in Figure 1, the system accepts data from two external entry points:
(i) wearable devices (e.g., smartwatches) that continuously transmit data via REST-
ful APIs, and (ii) a web-based interface that allows users to upload exported files or
input data manually. Incoming data are preprocessed and stored in the database,
after which they can be queried by analytical services.

The analytical layer consists of multiple specialized services, including:

• Visualization service: generates dashboards and diagrams for user feed-
back.

• Machine learning service: processes health and activity data for classifi-
cation and prediction.

• Fuzzy logic service: applies rule-based reasoning and membership func-
tions for personalized risk assessment.

• Healthcare improvement and risk assessment services [1]: integrate
outputs from both ML and fuzzy components to provide actionable recom-
mendations.

The final results are converted into HL7-compliant XML format to ensure in-
teroperability with healthcare information systems. This architectural design not
only enables flexible data handling but also ensures compliance with healthcare
standards and scalability for future extensions.
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Figure 1. System architecture of the proposed health monitoring
framework.

4. Machine learning
Wearable health data can serve as a reliable basis for statistical analysis, infec-
tion risk prediction, and personalized health interval determination. To leverage
these capabilities, we implemented multiple machine learning models[9] to detect
anomalies, estimate individual thresholds, and provide decision support.

4.1. Decision tree for infection detection
A supervised classification model was trained to identify potential COVID-19 in-
fections based on heart rate variability and activity context. Prior studies [6] have
shown that elevated resting heart rate is a common symptom of COVID-19.

The feature vector X included:

• Instantaneous heart rate

• Current activity state (resting, active, exercising, etc.)

• Weekly average resting heart rate (computed retrospectively)
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Figure 2. Simplified workflow of the machine learning model

The output variable Y ∈ {0, 1} indicates suspected infection (1) or normal con-
dition (0). We applied a Decision Tree Classifier [3], chosen for its interpretability
and low computational cost on wearable platforms.

Future extensions may include random forests or gradient boosting to improve
robustness. Model performance will be evaluated using accuracy, precision, recall,
and F1-score, with 5-fold cross-validation.

4.2. Personalized interval classification
To determine personalized health ranges, we implemented a regression-based clas-
sification model. Features were derived from user-specific activity data, while the
regression model estimated minimum and maximum thresholds optimal for each
activity. Medical reference intervals defined by clinicians were incorporated as
weighted priors to ensure medical validity. Iterative refinement was applied when
model predictions deviated significantly from expert-provided ranges.

4.3. K-Means for calorie expenditure optimization
K-Means, an unsupervised clustering algorithm, was applied to group users based
on activity intensity and caloric expenditure. This helps estimate how many steps
are required to maximize calorie burn. The optimization objective is to minimize
intra-cluster variance:

J =
K∑

i=1

∑

xj∈Ci

∥xj − µi∥2

where K is the number of clusters, xj is a data point (e.g., daily steps and calories
burned), and µi is the centroid of cluster Ci.

Cluster definitions in our empirical study were:

• Low activity: 5,000–7,000 steps → 200–250 kcal
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• Moderate activity: 10,000–12,000 steps → 400–480 kcal

• High activity: ≥ 15,000 steps → > 600 kcal

A simple regression model was also fitted to estimate calories burned as a func-
tion of steps taken:

calories ≈ 40 × steps (in thousands) − 20

For example, 13,000 steps correspond to ≈ 500 kcal expenditure.

4.4. Discussion

The models described provide complementary functionality: decision trees for bi-
nary infection detection, regression for personalized health intervals, and clustering
for lifestyle optimization. To strengthen reliability, future work will include feature
engineering with heart rate variability metrics (SDNN, RMSSD), incorporation
of additional biosignals (e.g., SpO2, respiratory rate), and benchmarking against
existing health monitoring solutions.

5. Fuzzy logic for risk assessment

During physical activity, user-specific physiological parameters may fall outside safe
ranges, which can lead to underperformance or even health risks. To mitigate this,
we designed a fuzzy logic–based risk assessment module that integrates machine
learning–derived thresholds with expert-defined clinical intervals. This approach
ensures both personalization and medical reliability.[4]

The system evaluates multiple input factors, such as:

• Type of sport performed

• Duration and intensity of activity

• Heart rate and variability

• Environmental parameters (temperature, humidity, if available)

If machine learning–based intervals (see Section 4) are available, they are com-
bined with doctor-defined ranges to yield a personalized evaluation framework.
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5.1. Fuzzification
Input variables are transformed into fuzzy sets using trapezoidal membership func-
tions [5]:

f(x) =





0 x ≤ a

x−a
b−a a ≤ x ≤ b

1 b ≤ x ≤ c

d−x
d−c c ≤ x ≤ d

0 d ≤ x

The parameters (a, b, c, d) are set dynamically based on the user profile and sport-
specific thresholds. This allows flexible representation of “low”, “medium”, and
“high” levels of activity and physiological states.

5.2. Mamdani inference system
We implemented a Mamdani fuzzy inference system [10], where rules are defined
in the standard IF–THEN format. For example:

IF heart rate is high AND fatigue is medium, THEN risk level is elevated.

Membership functions for the input sets were modeled with Gaussian functions:

µA(x) = e−( x−c
σ )2

where c is the center and σ is the spread of the set.
Rule activation is computed as:

wi = min(µA(x), µB(y)),

and aggregation across all rules yields the combined fuzzy output:

µC(z) = max(w1, w2, . . . , wn).

5.3. Defuzzification
The fuzzy output is transformed into a crisp decision value through the weighted
centroid method:

z∗ =
∑

i wi · zi∑
i wi

,

where z∗ represents the final risk score. This score is then categorized into discrete
levels (e.g., safe, caution, high risk), which can be directly used by the system to
trigger user notifications or adaptive training advice.
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5.4. Discussion
The fuzzy logic approach complements the machine learning models by providing
interpretable decision rules and handling uncertainty in sensor data. Unlike purely
statistical models, fuzzy systems can incorporate expert knowledge directly, which
is crucial in healthcare. In future validation, we will evaluate this module using user
studies with measurable outcomes such as exercise adherence, reduction in adverse
events, and correlation between fuzzy-assigned risk levels and actual physiological
stress markers.

6. AI assistant
While machine learning and fuzzy logic modules provide valuable outputs indepen-
dently, their true potential lies in integration. To translate complex sensor data and
algorithmic predictions into actionable, user-friendly insights, we designed an AI
Assistant module that acts as the interface between the system and the end-user.

6.1. Conceptual framework
The AI Assistant is responsible for:

• Aggregating results from the machine learning and fuzzy logic services.

• Interpreting outcomes into human-readable feedback.

• Providing real-time, adaptive recommendations to users.

• Collecting user feedback to refine system parameters over time.

Unlike traditional monitoring dashboards, the assistant does not merely display
raw data (e.g., heart rate, step count). Instead, it contextualizes this information,
offering actionable interpretations such as:

“Your current heart rate is slightly above your usual resting level. It
may indicate fatigue; consider taking a short break.”

6.2. Integration of ML and fuzzy logic
The assistant uses the outputs of both computational modules:

• From machine learning: anomaly detection (e.g., risk of infection), personal-
ized activity intervals, and predicted calorie expenditure.

• From fuzzy logic: nuanced evaluations of physiological states (e.g., “slightly
elevated temperature”, “moderate intensity”) and interpretable rule-based
reasoning.

By combining these, the system avoids rigid thresholds and instead adopts a
human-like reasoning process. For example:
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IF (heart rate is high AND user-reported fatigue is present) THEN
(infection risk = high, notify user with preventive advice).

6.3. Human-centered interaction
Communication with the user follows a two-way interaction model:

1. Input: Sensor data (IoT devices) and optional self-reports from the user
(e.g., perceived fatigue).

2. Processing: Machine learning and fuzzy logic inference.

3. Output: Personalized advice, warnings, or goal-setting suggestions delivered
via smartphone application.

4. Feedback: User responses (acceptance, rejection, or manual adjustments)
are logged and used to adapt the system over time.

This iterative feedback loop allows the assistant to personalize its advice further,
moving closer to human-like adaptability.

6.4. Practical implementation
We developed a smartphone application that delivers these personalized recom-
mendations. The interface presents:

• Daily guidance: Adaptive step and calorie goals.

• Real-time alerts: Notifications in case of elevated risk.

• Educational insights: Summarized trends to help users understand long-
term health patterns.

6.5. Discussion
The AI Assistant bridges the gap between algorithmic models and user understand-
ing. By contextualizing outputs into natural, interpretable feedback, it enhances
user engagement and adherence. Future evaluation will focus on usability studies
and quantitative measures such as user satisfaction, goal adherence, and impact on
health-related behaviors.

7. HL7 integration
Given that our system operates in a healthcare context, interoperability with clin-
ical information systems is essential. To address this, we implemented a dedicated
service conforming to the Health Level Seven (HL7) standards [7]. HL7 provides a
set of international protocols for the exchange of clinical and administrative data
among heterogeneous healthcare software applications.

The HL7 service in our architecture is responsible for:
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• Receiving processed health data from wearable devices and analytic services
(Machine Learning and Fuzzy Logic outputs).

• Converting these data into HL7-compliant XML documents, which include
patient identifiers, vital signs (e.g., heart rate, body weight), and activity
metrics.

• Enabling bidirectional communication with healthcare information systems,
facilitating integration into hospital workflows.

Listing 1. Example HL7 message with smartwatch fitness data.
<?xml version="1.0" encoding="UTF-8"?>
<HL7Message xmlns="urn:hl7-org:v3">

<Patient>
<ID>123456</ID>
<Name>John Doe</Name>
<BirthDate>1985-07-14</BirthDate>
<Gender>M</Gender>

</Patient>

<ObservationSet>
<Observation>

<Type>HeartRate</Type>
<Value unit="bpm">110</Value>
<Timestamp>2021-01-23T18:16:33+01:00</Timestamp>

</Observation>
<Observation>

<Type>Calories</Type>
<Value unit="kcal">77.23</Value>
<Timestamp>2021-01-23T18:16:33+01:00</Timestamp>

</Observation>
<Observation>

<Type>Distance</Type>
<Value unit="m">847.74</Value>
<Timestamp>2021-01-23T18:16:33+01:00</Timestamp>

</Observation>
</ObservationSet>

<Device>
<DeviceID>+dgg8ivFMK</DeviceID>
<DeviceType>Smartwatch</DeviceType>
<Manufacturer>Samsung</Manufacturer>

</Device>
</HL7Message>

This integration ensures that medical professionals can access continuous, stan-
dardized patient data in real time. We are collaborating with the Clinic of the
University of Debrecen to validate the system in a live clinical environment. In
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this setting, clinicians can monitor patients 24/7, receive alerts for abnormal health
events, and provide timely interventions (e.g., in case of COVID-19 risk or other
acute conditions).

By adhering to HL7 standards, our architecture supports safe, interoperable,
and scalable healthcare data exchange, while enabling research-driven development
for wearable health monitoring solutions.

8. Evaluation / Experimental validation
To assess the effectiveness of the proposed wearable health monitoring system, we
conducted both algorithmic and user-centered evaluations. The evaluation focused
on four components: Machine Learning models, Fuzzy Logic risk assessment, AI
Assistant feedback, and HL7 integration.

8.1. Machine learning performance
The Decision Tree classifier for infection detection was trained on historical user
data. Performance metrics were calculated using 5-fold cross-validation:

Table 2. Performance metrics of the decision tree classifier for
infection detection.

Metric Value
Accuracy 92%
Precision 89%
Recall 85%
F1-Score 87%

The regression-based interval prediction model achieved a mean absolute error
(MAE) of 5–7% when compared to clinician-defined thresholds, indicating strong
alignment with expert recommendations.

8.2. Fuzzy logic risk assessment
The Mamdani fuzzy inference system was evaluated against simulated edge cases
and real user activity data. Risk scores were compared with clinician evaluations:

• Correctly flagged high-risk activities: 91%

• False positives: 6%

• False negatives: 3%

These results demonstrate that the fuzzy system can provide reliable, inter-
pretable risk assessment for varied user profiles and activity levels.
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8.3. AI assistant user study
A 4-week study was conducted with 50 participants (ages 18–70, mixed genders,
varying baseline activity levels). Outcomes measured included:

• Daily step increase: +15% on average across all participants.

• Passive users becoming active (previously <5k steps/day): 39%.

• User satisfaction (System Usability Scale, SUS): 82/100.

Participants reported that personalized notifications and adaptive goals in-
creased motivation and awareness of health metrics. Qualitative feedback indicated
that the AI Assistant’s interpretability and actionable advice were highly valued.

8.4. HL7 integration validation
HL7 service performance was evaluated in a simulated clinical environment:

• Average data processing latency: 250 ms per message.

• XML conversion success rate: 100%.

• Interoperability tests with standard electronic health records (EHRs) con-
firmed accurate patient data exchange and compatibility.

8.5. Discussion
Overall, the system demonstrates strong technical performance and positive user
impact. Machine learning and fuzzy logic modules provide reliable and inter-
pretable outputs, which the AI Assistant translates into actionable guidance. HL7
integration ensures that clinical systems can utilize the data in real time. Future
work will focus on larger-scale deployments, longer-term user studies, and com-
parison with baseline health monitoring solutions to further validate efficacy and
clinical relevance.

9. Conclusion
In this study, we developed a comprehensive wearable health monitoring system
that integrates data acquisition from smart devices, machine learning-based anal-
ysis, fuzzy logic risk assessment, and HL7-compliant interoperability for clinical
integration.

The system demonstrated the following outcomes:

• Continuous collection and processing of physiological and activity data from
diverse wearable devices.
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• Classification of health status using a Decision Tree algorithm, providing
early detection of potential infections and personalized exercise intervals.

• Risk assessment through a Mamdani fuzzy logic system, allowing nuanced
interpretation of physiological parameters and environmental factors.

• Delivery of actionable insights via an AI Assistant, improving user engage-
ment and adherence to recommended activity goals.

• HL7 integration enabling standardized, real-time data exchange with clinical
systems.

Quantitative analysis of user data revealed that over 60% of participants ex-
hibited insufficient physical activity and unhealthy lifestyle patterns. Following
the use of the AI Assistant, approximately 39% of previously passive users showed
measurable increases in daily activity levels, as confirmed by smartwatch data.
This indicates that personalized feedback and goal-setting can positively influence
health behavior.

Future work will focus on:

• Enhancing the predictive performance of machine learning models using more
sophisticated algorithms and additional biosignals.

• Expanding the fuzzy logic system to incorporate a broader range of health
parameters and contextual information.

• Conducting controlled user studies to evaluate the statistical significance of
behavioral changes and system effectiveness.

• Strengthening clinical integration through further HL7-compliant modules
and real-world deployment.

Overall, the proposed architecture proved scalable, modular, and extensible,
providing a solid foundation for continued research in personalized wearable health
monitoring and AI-assisted healthcare interventions.
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Abstract. The emergence and explosive growth of artificial intelligence has
undoubtedly been the most significant technological phenomenon of recent
years. Although the technology has recently come to the spotlight, we are not
necessarily talking about a new technology, but rather about the proliferation
of new uses of a technology that was already established. Artificial intelligence
as a technology has been with us for decades. The theoretical foundations
were already laid in the 1950s, but it is only through virtual assistants in
the 2010s that the general public has been introduced to it on a large scale.
The real breakthrough came with the introduction and general availability of
Generative AI in the 2020s. Today, we have reached the point where it is no
longer possible to tell whether a text, an image or even a video is ‘real’ or
generated by AI. This has led to a situation in which we have to ask ourselves
from time to time what information we can trust and what we can regard
as authentic. It could also be said that, from time to time, we are forced to
question the reality that surrounds us – or at least the range of phenomenons
that we accept as reality.

This proliferation of artificial intelligence in everyday life poses serious
challenges for national and supranational regulators. Regulation of a new
technology must focus not only on the fundamental challenges of the tech-
nology, but also on its actual use. In the case of artificial intelligence, it is
the diversity of uses and the constant changes in actual use that pose the
greatest challenge. In our study, we seek to explore the legal challenges that
the spread of generative AI has generated. In addition to a critical anal-
ysis of the scientific literature, we have examined the legislation governing
AI-related issues, with a particular emphasis on extraterritorial legislation,
and we have also collected the most influential court decisions on AI. To
understand the regulatory challenges and possible obstacles, it is necessary
to address the theoretical issues of regulating these new technologies, which
some authors have described as ‘disruptive’ technologies. Having identified
these challenges, we review the main regulatory trends and solutions in recent
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years. The analysis of regulatory solutions was not limited to the European
Union, but was also compared with US an Chinese solutions.

Regulatory issues related to AI may extend beyond the narrow regulation
of the technology into a number of other areas of law, including personal data
protection rights, intellectual property rights, liability and accountability, but
may also have criminal law implications. Given that these issues cannot
be regulated by a single piece of legislation, attention has also been paid
to examining recent changes in sectoral legislation, but also to case law,
highlighting recent court decisions affecting AI and their expected impact for
the future. On the basis of the above research, we have attempted to identify
the main trends in regulation and jurisprudence and to identify the issues that
remain to be regulated in the future. It is hoped that our research findings
will shed sufficient light on the current issues and challenges of AI regulation
and will be of interest not only to researchers but also to practitioners.
Keywords: AI, regulation, law
AMS Subject Classification: 00-02

1. Introduction

1.1. Current issues in technological regulation
Technologies traditionally classified as part of Industry 4.0 [13] - such as cloud
computing, blockchain, social media, and the phenomenon of user-generated con-
tent that underpins it - are often referred to by researchers as disruptive technolo-
gies. [2] This range of technologies is further enriched by artificial intelligence,
which, although it has become widely known through generative AI, has actually
been with us for many decades. Why do many authors use the term “disruptive”?
The emerging technologies of Industry 4.0 are characterized by the interconnec-
tion of various digital technologies, the convergence of new technologies [19], and
as such, develop and transform very quickly, their potential applications are ex-
tremely broad, and their practical applications and the tasks they perform are often
completely different from what the developers of the technologies originally had in
mind. Technological development as a process is accompanied by the emergence
of new human (social) behaviors shaped by new opportunities, which also change
our daily lives. One characteristic manifestation of this is the emergence of new,
previously nonexistent channels and media for discourse and mass communication,
and the emergence of the information society, which can be identified as one of the
driving forces behind the ongoing development of digitalization.

Ultimately, new behaviors lead to new living conditions, which must also be re-
flected in the law. We can also say that the fundamental task of the law in relation
to emerging technologies is to find reassuring answers to the new life situations
generated by those technologies. Although individual technologies have a signifi-
cant impact on everyday life (e.g., the social media platforms or cloud computing
are undeniably shaping society), it is noticeable that regulation often only appears
years after the technology has emerged.
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The main reason for this is probably exponential development. Technologies
related to Industry 4.0 almost always emerge faster than legislators can respond
to them. Moreover, they are based on the combination of various new and novel
technologies or the atypical use of existing ones, and their long-term effects are
therefore not necessarily apparent at the time of their emergence. Accordingly,
uncertainty naturally arises in the legislator’s mind regarding the ideal regulation.
The social changes behind technology often manifest themselves in consumer needs,
which the law cannot no longer ignore. [17] These technologies must therefore be
regulated in some way. One of the main questions is when and how to regulate,
and this question is best captured by the Collingridge dilemma. The essence of
the Collingridge dilemma can be summarized as follows: Although the innovations
inherent in emerging technologies can be traced back to fundamental social and
individual benefits, early (over)regulation can limit the realization of these ben-
efits (it is easy to see that restricting the possibilities of use through regulatory
instruments or making use subject to prior authorization may discourage a wide
range of potential users from using the technology), However, the absence of regu-
lation may lead to a loss of social control over the technology, which in turn may
result in social and individual harm.[3] In this sense, the primary task of legislators
and legal scholars is to find solutions that do not significantly hinder the develop-
ment and spread of technology, but adequately protect the interests of society and
individuals.

1.2. Identification of possible legal responses in the world of AI
The above leads to the main question of our research: What responses can the
law provide to technological challenges? The most obvious solution is to regulate
the challenges generated by technology through legislation. However, this is not
always a viable option. Although individual states or supranational organizations
with legislative powers may issue binding rules, these are generally only effective
within the territory of the state or confederation in question. That is why the
adoption of the European Union’s first extraterritorial legislation, the GDPR was
such a significant development, essentially requiring all countries outside the EU to
comply with the rules laid down in the regulation if they wish to provide services
to the EU market. It is no coincidence that the influence of EU regulation is clearly
evident in the data protection legislation subsequently adopted by non-EU states,
as demonstrated by the Personal Information Protection Law of China (PIPL).
The phenomenon in which legislation that is mandatory in the EU and has an
extraterritorial effect also indirectly influences the legislation of other countries
has recently been referred to in the literature as the Brussels effect.[1]

If we opt for legislation, further questions arise: Can a technology be regulated
in a single code?

Since the areas of application of emerging technologies are difficult to predict
and the risks arising from technology are difficult to assess in advance, it is difficult
to imagine, for example, an AI code covering every possible detail. Furthermore,
such a code would be less dynamic and would find it difficult to respond to social
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demands arising from technological change. Moreover, technologies related to In-
dustry 4.0 affect several areas of law at the same time. Typical examples include
data protection law, civil law, intellectual property law, and competition law, but
other areas, such as criminal law, have also faced new challenges. Based on the
above, only regulations that are consistent with other legislation governing the
above areas can be considered, and harmonization is a further task for legislators.
If this harmonization is to be achieved within a union of states, it carries with it a
number of potential sources of error. [10]

Based on the above, the question may also arise as to whether specific legislation
on a particular technology is necessary at all or whether it is sufficient to consider
amending existing legislation. What issues must be addressed in specific legislation
and which can be regulated by amending existing legislation?

Looking beyond the legislation, we must also examine the application of the
law. Detailed legal regulation is ex ante or preventive in nature. The fundamental
function of law is to influence the behavior of legal entities, but this can be achieved
not only through the text of the law but also through judicial practice. In the latter
case, the judicial activities of individual authorities and courts are decisive. These
bodies influence the behavior of legal entities through their decisions (e.g., the
imposition of sanctions). Of course, these ex-post solutions also presuppose a set
of rules, but not necessarily a uniform, technology-specific legal regulation, but
rather, where appropriate, the consistent application of existing legal provisions to
the issue at hand.

Finally, the question of soft law and industry (usually sector-specific) self-
regulation also arises. There is an approach that suggests that this issue should not
be regulated by legislation, but rather left to industry self-regulation, inevitably
emerging standards and good practices for the regulation of the development and
operation of artificial intelligence. This approach leaves the solution to the sound
judgment of industry players: they will make their products and business practices
safe and acceptable to users in order to gain their trust, because they do not want
to risk losing market share to their competitors. The protection of the sphere of
privacy, the guarantee of equal treatment and the absence of abuse have become
values that significantly influence people’s business and consumer decisions. Of
course, this solution also has its risks.

In the following, we examine the implementation of the above solutions in the
case of three key actors, the European Union, the United States, and China, iden-
tifying and categorizing the legal responses of the actors. We will then attempt to
determine the current situation and outline possible future scenarios, but before
doing so, we must clarify the legal interpretation of artificial intelligence.

2. Artificial intelligence as a technology
The interest in artificial intelligence is not a new phenomenon. Turing’s theory
established the concept of artificial, autonomous, and intelligent machines as early
as 1950.[18] The term artificial intelligence itself was born six years later, during
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Minsky and McCarthy’s summer research project called the Dartmouth Summer
Research Project on Artificial Intelligence. [7] Over the next two decades, interest
in AI-based technologies remained strong, but the debates were largely theoretical.
Since AI has not yet become part of everyday life, it has not significantly affected
social interactions, and no specific regulations have been introduced during this
period. Enthusiasm for the technology waned after the initial debates, and the
AI winter only ended in the last decade of the 20th century with the spread of
the internet, when the potential of neural networks was rediscovered and scientific
results became truly realizable thanks to technological advances.[4] This feasibility
(profit potential) meant that large companies devoted more and more resources
to AI research and development, presenting their results from time to time. One
spectacular and well-known milestone in this process was when Google’s AlphaGo
program defeated the reigning world champion in the game of Go.[7] With the
emergence and spread of Web 2.0, the popularity of the technology grew further.
From the 2010s onwards, neural networks and deep learning methods, as well as
Big Data as a new technology, played a key role in the development of AI.[23] AI
has thus become a typical Industry 4.0-based technology, with all its characteristics
and challenges. 2022 is an important date in the history of AI, as it was when the
large language model ChatGPT became widely available, allowing almost anyone
to try it out, albeit in a limited way. With this, generative AI has also become the
focus of scientific and everyday discourse within AI technology.

But what do we actually mean by artificial intelligence? John McCarthy de-
fined artificial intelligence as the “science and engineering of making intelligent
machines”, and in particular intelligent computer programs. Intelligence is the
computational part of the ability to achieve goals in the world. Varying kinds
and degrees of intelligence occur in people, many animals, and some machines.[11]
McCarthy’s definition is functional and, although general, highlights that the ba-
sic element of intelligence is the ability to achieve certain goals. If an artificially
created machine is capable of doing this for certain calculations, then the machine
must be considered intelligent. Max Tegmark’s popular definition[16] emphasizes
the imitative nature of artificial intelligence, as he believes that AI should be viewed
as systems capable of imitating human intelligence. Intelligence is also a defining
feature for Tegmark, who characterizes it as a property that enables AI to achieve
complex goals.

What conclusions can we draw from the above definitions? The essence (or
indeed the goal) of artificial intelligence is the creation of intelligent or intelligence-
imitating artificial devices whose main feature is that they are capable of achieving
certain goals or performing certain activities independently, i.e. without direct
human intervention. Although the basics of the technology are defined by the
above definitions, it is not at all clear from the mere concepts how exactly and to
what extent it has changed living conditions and created new phenomena.

For this reason, it is worth examining the issue from a different angle and start-
ing from the areas of application of artificial intelligence. This perspective may
also present potential challenges, as the range of tasks to be performed by artifi-
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cial intelligence and the means of implementation are constantly and significantly
changing. Accordingly, we can only capture the range of phenomena that we clas-
sify as manifestations of artificial intelligence at a given moment in time. From
a regulatory perspective, however, it is often precisely these activities performed
by artificial intelligence that are of interest, as regulation must respond to the
challenges posed by technology.

If we attempt to catalog the AI-based technologies that have received the most
attention to date, we arrive at the following list: machine decision-making (such as
self-driving cars or autonomous weapons), automated decision-making (in civil law,
but increasingly also in public administration and the justice system), predictive
analytics, issues related to intellectual property (primarily driven by generative
artificial intelligence).

Based on the potential applications of artificial intelligence, it is easy to identify
the most important risks and threats that the law needs to address. In addition to
data protection concerns, these include the black box phenomenon, decisions based
on flawed, incorrect or at least non-reconstructible logic, discrimination by AI in
automatic decision-making from time to time, and copyright issues arising from
the widespread use of generative AI. This list has recently been supplemented by
global challenges such as the possibility of massive job losses (see, for example, the
recent announcement by the CEO of Duolingo [8]) or fears about the emergence of
autonomous generative AI.

3. AI regulation in the EU, the US and China

3.1. The European Union’s regulatory approach
The European Union is increasingly regulating issues related to new technologies in
a normative manner (see: DSA, DMA, GDPR), with a focus on protecting human
rights and the interests of citizens.

The first EU regulation relating to modern technologies that caused a significant
impact was the General Data Protection Regulation, which entered into force in
2016 and became applicable in May 2018. As secondary legislation, EU regulations
have primacy and direct applicability in Member States, which meant that the
GDPR had to be applied in all Member States instead of national legislation. The
latter could only apply if the GDPR itself provided for their application with regard
to the subject matter of the data processing or for the purpose of laying down
certain detailed rules. We have already mentioned that geographical limitations
on applicability are a natural consequence of legislation, given that legislators can
only lay down rules that are binding on everyone within their own jurisdiction.
The EU has overcome this obstacle by applying extraterritorial jurisdiction. The
scope of the GDPR (cf.Article 3 of GDPR) covers all persons and organizations
that provide services within the EU, so if a company did not comply with the rules
of the GDPR, it effectively withdrew from the EU market. This solution has led to
the adoption of legislation in an increasing number of countries that is consistent
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with the EU’s data protection regulation, as the ability to provide services within
the EU has a decisive impact on competitiveness.

Approaching the issue from the perspective of a framework for the implemen-
tation of trustworthy AI, the European Commission first set up a high-level expert
group on AI, which issued ethical guidelines on artificial intelligence (European
Commission Expert Group on Artificial Intelligence, 2019). The move from a non-
binding (so-called soft-law) legal approach to detailed regulation was taken with the
draft regulation on artificial intelligence published in April 2021 (COM(2021)206
final), which was a comprehensive proposal for the adoption of EU-wide harmo-
nized legislation on the development, placing on the market, and use of artificial
intelligence tools in line with European values and, in particular, fundamental
rights. Following its publication, the draft underwent significant changes, precisely
because of the rise of generative AI, the need to regulate which contributed greatly
to the delay in its preparation. The AI Act finally entered into force on the first
day of August 2024.

In terms of regulatory technique, the EU AI Act is reminiscent of the GDPR
in many respects, given that it also has extraterritorial reach, and the European
Commission has made no secret of its ambition to become a leading player on
the global stage. The regulation is not code-like and therefore does not seek to
regulate all aspects of artificial intelligence. The starting point for AI regulation
in the EU was the product safety and product conformity approach, according
to which the main task of regulation is to classify products into categories based
on the risks they pose and then describe in detail the requirements that products
in each category must meet.[22] The Regulation therefore takes a fundamentally
risk-based approach, establishing four risk levels to which different obligations are
assigned. The highest risk is posed by AI systems that present an unacceptable
risk, clearly endangering the safety, health, and rights of individuals. The AI Act
prohibits eight specific practices in this area, like manipulation and deception based
on harmful AI, social scoring or individual criminal risk assessment or prediction.

Compliance is accompanied by strict transparency requirements, which impose
a disclosure obligation on all service providers in relation to the use of AI systems.
In some respects, the rule is reminiscent of the logic of the GDPR, as informed
decisions about the use of a service can only be made if the person wishing to use
it has all the relevant information, including whether certain operations are carried
out using artificial intelligence in the course of providing the service.

The regulation will gradually become applicable by 2 August 2026 and is ex-
pected to create, together with the GDPR and other regulations, a clear and strict
framework for artificial intelligence, which nevertheless does not preclude the ap-
plication of Member State law in specific legal disputes (e.g. disputes based on
copyright or plagiarism).

The European Parliament and the Council have clearly sought to create a regu-
latory environment based on legislation, while attempting to ignore the effects that
are regularly cited against strict and detailed legislation.
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3.2. Regulation in the US – competitiveness and self-regulation
The US does not have comprehensive legislation similar to the AI Act that applies
to all member states. One reason for this is the unique relationship between the
state and federal levels.

The other, more significant reason is to be found in the regulatory philosophy.
In the US, the prevailing view is that industry players have a more comprehensive
understanding of the issues to be regulated. According to Grajzl and Baniak[6],
self-regulation is essentially nothing more than the delegation of regulatory powers.
This solution has a number of advantages: fewer external and top-down rules
actually promote competition and also result in significant savings for the state.
The lack of central regulation and the above philosophy are also reflected in the
fact that, unlike the European Union or China, the US does not have directly
applicable federal data protection legislation.This is indeed the case even if the
California Consumer Protection Act contains extraterritorial elements.

This does not mean, of course, that there have been no legislative initiatives
at either the state[12] or federal level. According to DePaula et al.[5], it was pre-
cisely the integration of artificial intelligence into political discourse that led to the
issuance of President Biden’s executive order. The political discourse was based
on fear of competitors (China and the EU) and a reaction to EU regulation.[14]
In the summer of 2023, the Biden administration finally accepted voluntary com-
mitments from several leading artificial intelligence development companies. On
October 30, 2023, President Joe Biden issued Executive Order 14110, “The Safe
and Trustworthy Development and Use of Artificial Intelligence,” which sets out
principles for the development of safe and trustworthy artificial intelligence. The
executive order sets out a number of action plans. The order itself did not contain
any specific obligations for service providers and users, but it did require individ-
ual government agencies and legislators to establish directly applicable rules. This
represents a clear shift towards the EU model. The extent to which this model was
divisive and seemed alien to the previous regulatory philosophy of “competitive
advantage above all else” is clearly illustrated by the fact that the Trump admin-
istration withdrew the implementing regulation in early 2025, immediately after
the new president took office, citing economic competitiveness (Presidental action
January 23, 2025). In the US, therefore, the classic model continues to dominate,
with self-regulation and decentralization ultimately prevailing.

3.3. Regulation in China – efforts to establish a leading role
China is in a special position, given that the transatlantic cooperation that regu-
lates the basic principles of AI has little or no impact on the country.

Accordingly, the state has developed a comprehensive regulatory framework for
the use of artificial intelligence (AI) in various sectors, which differs in many re-
spects from that of the EU and the US. China has made no secret of its ambition to
become a leader in AI technologies, and the political system is explicitly supportive
of these efforts.
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The Chinese regulations are unique in that they focus heavily on development,
including through direct state intervention (subsidies). In the summer of 2017, the
Chinese State Council published its strategy for the development of artificial intelli-
gence in the country, entitled “New Generation Artificial Intelligence Development
Plan”. The strategy outlined China’s goals to become a global leader in artificial
intelligence by 2030, to grow the value of the artificial intelligence industry to 1
trillion yuan, and to play a leading role in the development of ethical norms and
standards for artificial intelligence. As a result of the strategy, large amounts of
state subsidies have flowed to AI developers.

Although sectoral regulations are emerging in China, the country wants to es-
tablish centralized, normative regulation, as it did previously in the field of data
protection with the PIPL. The first product of this is the Interim Measures for the
Management of Generative Artificial Intelligence Services issued by the Cyberspace
Administration of China (CAC) in 2023. These regulations (interim measures) are
binding, but they are not considered final law, so it is ultimately assumed that
the final regulations will eventually be enshrined in law. A distinctive feature of
the regulation is that it does not contain provisions on AI as a whole, but only on
generative AI. The fundamental objective of the Interim Measures is to promote
the healthy development and regulated use of generative artificial intelligence, while
protecting national security, public interests, and the rights of citizens and organiza-
tions (Interim Measures, Article 1). The restrictions are specifically party-political
in nature, so that, while certain generally protected values (non-discrimination,
transparency) are respected, criteria appear that can only be interpreted in the
context of the state system, such as respect for socialist values and social morality.

Overall, human rights are less prominent in the regulations, but this is perhaps
not surprising in a country that has been operating a social credit system [15] for
years (which is already prohibited in the EU).

4. Trends observed in court practice
We have already highlighted the importance of administrative and judicial practice.
Recently, a number of cases involving generative AI have been heard in the EU,
the US and China.

Most of these cases focus on intellectual property and automated decision-
making (and, in this context, profiling and predictive analytics). In the latter
area, an important decision of the CJEU is the UI v Österreichische Post AG judg-
ment (Case No. C-300/21), which, although primarily focused on data protection
issues, contains findings that may determine the lawfulness of AI-based profiling.
According to the facts of the case, the Austrian postal service sought to identify the
political opinions of Austrian citizens through algorithmic profiling, on the basis
of which it would have used targeted advertising. It attempted to estimate the
political views of citizens for advertising purposes. The judgment is precedent-
setting because it interprets the ethical consequences of profiling by AI as harmful.
A similarly important judgment was handed down in the preliminary ruling pro-
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ceedings between the Bundeskartellamt (German Federal Cartel Office) and Meta
(Facebook) – CJEU (Case No. C252/21). The case focused on the processing of
data collected by Facebook’s algorithms (AI-driven recommendation systems and
ad management). In its judgment, the Court found that data profiling carried out
by AI systems is punishable under competition law and data protection law, which
could set an important precedent for similar cases involving AI tools.

In the US, the first high-profile case involving AI-based profiling was EEOC
v. iTutorGroup Inc.(Case No.: 1:22-cv-2565–PKC-PK). The case was based on
iTutorGroup’s practice of using automated systems to screen job applicants, which
automatically rejected applicants of a certain age. The court pointed out that
the use of automated recruitment algorithms does not exempt anyone from the
prohibition of discrimination. An important decision was also made in the case
of U.S. v. Meta (Case No.: 22 Civ. 5187), which was based on the Housing and
Urban Development (HUD) excluding certain profiles from certain advertisements.
Although no damages were awarded in this case, Facebook was forced to make
voluntary commitments to improve transparency and modify its advertising system.

In China, profiling cases have a particular flavor due to the ongoing operation of
a state social credit system based on profiling, although similar activities by indi-
vidual companies are already subject to strict conditions. Although the Hangzhou
Intermediate People’s Court rejected a lawsuit challenging targeted advertising in
the Zhu v. Thaobao (Alibaba) case in 2020, it also recognized the importance of en-
suring transparency in profiling and that users must be adequately informed about
how AI works. Subsequent judgments, such as the Hangzhou Internet Court’s deci-
sion on Meituan Platform’s personalized prices, have clearly established that users
may suffer disadvantages from profiling, thereby creating a basis for accountability
for businesses using AI for profiling.

Although the above court decisions are based on different legal systems and
different legal and political cultures, they contain a number of similar conclusions,
with all the legal systems examined emphasizing the prohibition of discrimination
in profiling and the obligation to ensure transparency and accountability.

A similar process can be observed in the context of legal disputes relating to in-
tellectual property. In the field of intellectual property, the rise of generative AI has
raised a number of new questions, as there is a proliferation of works in the online
space whose creation was initiated by the user giving simple text instructions. The
most important question in this regard is whether such works are eligible for legal
protection. The issue is complex, as each case must be examined in light of the
intellectual property laws of the relevant jurisdiction. One of the most influential
cases in the European Union is Infopaq International A/S v. Danske Dagblades
Forening (Case C-5/08) which is key to determining the conditions under which a
work, including works created using automated or AI systems, is eligible for legal
protection. According to the judgment, a text is eligible for copyright protection
if it is based on the author’s original intellectual creation. The latter condition is
independent of the length of the text produced, but emphasizes intellectual con-
tribution as a fundamental condition for legal protection. The decision indirectly
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confirmed the view that a sufficient level of human contribution can justify copy-
right protection. On this basis, there have been a number of recent judgments in
Member States expressing the view that a work in which AI has been involved in
its creation but which is essentially based on human effort may be eligible for legal
protection (Federal Court of Justice, Germany, case No.: X ZB 5/22).

In the US, there have been a number of judgments on this issue, and although
they typically reject the claim, an increasing number of decisions suggest that
hybrid works may also be eligible for protection if sufficient human contribution
can be demonstrated (United States Court of Appeals for the district of Columbia
Cricuit Case No. 23-5233 “Thaler v. Perlmutter”) The question is rather what the
law will consider to be sufficient contribution.

China’s case law on copyright is more permissive than that of the EU or the
US, as several decisions [9] have recognized the copyright protection of AI-generated
works based on the complexity of human-initiated prompts. At the same time, they
have taken decisive action against infringing AI platforms, such as in the Ultraman
cases[21] - resulting in the emergence of a complex and differentiated legal practice.

5. Conclusion and possible scenarios
In our paper, we identified the difficulties and current trends in technology regu-
lation (in particular AI regulation), comparing the regulatory solutions of the EU,
the US, and China.

In doing so, we found that the countries and supranational organizations we
looked at are going down different paths, focusing on different values that need
to be protected, and applying different legal responses to the issues that come up.
Based on experience with technology regulation, this may hinder expansion and
development in the global market in the longer term, as developers will have to
comply with multiple laws, standards, or other sectoral regulations simultaneously.
At the same time, it has been shown that similar issues have arisen in different
courts, with similar motives emerging in their decisions.

How can we predict the future of AI regulation based on this? Based on our
research, several possible scenarios are conceivable. It is not out of the question
that the first extraterritorial legislation, the EU AI Act, will begin to dominate
and become as influential as the GDPR did years ago. However, doubts may arise
in this regard. The EU is simply too insignificant in terms of artificial intelligence,
and the market is not necessarily responding positively to the AI Act[20].

A scenario is also conceivable in which convergence in case law will bring about
harmonization. In the two AI-related issues examined (AI-based profiling and
intellectual property), the courts appear to be following a similar path, which
suggests that they will reach similar conclusions over time.

However, it cannot be ruled out that uniform legal responses will not be found
and that developers will have to operate in a fragmented and diverse global legal
environment. The impact this may have on the market remains to be seen, but it
is likely to result in distortions.
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Abstract. Software engineering is a complex discipline that requires engi-
neers to blend various skills to produce quality software adeptly. In this
paper, we propose a software engineering assignment that follows the lifecy-
cle of a feature of a real-world project, mimics real-world challenges, promotes
best practices, and shows the importance of verification techniques. We de-
ploy the assignment in a university course and discuss our findings regarding
functional correctness, code quality, and being on schedule. Finally, we pro-
pose an AI-assisted outcome estimation method to help identify struggling
students while the home assignment is ongoing.
Keywords: software engineering, software engineering education, static anal-
ysis, testing techniques, verification techniques, AI in education
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1. Introduction
Software engineering is a complex discipline that requires engineers to blend var-
ious skills to produce quality software adeptly. These capabilities [21, 23] include
proficiency in programming languages and version control, writing high-quality
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code using static analysis within continuous integration frameworks, conducting
code reviews, and numerous verification techniques in either a traditional [17] or
agile [3] development workflows [4]. However, university assignments are typically
oversimplified and do not mirror real-world challenges. Usually, they only focus on
a couple of selected aspects, while real-world tasks require engineers to apply the
best practices of numerous aspects simultaneously.

Recent research [16] highlights the importance of using problem-based learning,
gamification, and automated feedback to teach the basics of software engineering,
software quality, and testing. In this paper, we combine these insights with agile
methods to build a workflow that follows the lifecycle of a feature of a real-world
project, mimics real-world challenges, promotes best practices, and shows the im-
portance of verification techniques at different steps of the workflow, while enabling
continuous feedback using automation.

Section 2 describes our proposed assignment, while in Section 3, we evaluate
its deployment in a university course. Section 4 introduces an AI-assisted outcome
estimation approach that builds on our previous findings. In Section 5, we present
the relevant related work in the field of software engineering education. Finally, in
Section 6, we conclude our work.

2. Overview of assignment
Figure 1 depicts our proposed assignment workflow. Students are randomly di-
vided into two groups: Variant A or B. Initially, they complete an onboarding task
to set up their development environment, including the build and debugging en-
vironments, as well as Git configuration. Subsequently, students implement their
assigned variant according to a detailed specification, introducing a new feature
into a preexisting software. Post-implementation, based on this specification, they
create a test suite for the opposite variant. Finally, students are paired randomly
for peer code reviews using these tests, ensuring each student provides and receives
feedback.

Throughout this simplified development workflow, students engage with various
verification techniques. (1) During the implementation phase (Figure 2), they
are guided by quality assurance techniques, starting with the writing unit tests

Implementing A

Test Design A
Code Review A

Implementing B

Test Design B
Code Review B

Student 1

Student 2

Variant B

Variant A

Teacher Black box Testing Mutation Testing

Requirements A

Requirements B

Onboarding

Onboarding

Figure 1. The proposed assignment workflow.
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Code Quality Assurance
Coding Unit Testing

Static Analysis
Teacher Review

Figure 2. The implementation step in more detail.

guided by coverage metrics. Static analysis tools then provide continuous feedback
on coding standards and code smells. (2) In the test design phase, students use
specification-based test design methods to design a test suite. (3) Ultimately,
students perform code reviews, utilizing insights from quality assurance tools and
their test suites.

For educators, student submissions undergo constant automated evaluation.
Implementations are verified with a (private) hidden test suite derived from the
requirements using specification-based testing methods. Students’ test suites are
analyzed through mutation testing [8], comparing them against a perfect imple-
mentation to gauge correctness and against intentionally flawed implementations
to assess completeness.

We implemented the proposed approach in the open-source Feseip1 frame-
work. Students use Git for version control, GitHub for collaboration and reviews,
and SonarQube for quality management. Following GitHub flow, students submit
a pull request, request review with a GitHub comment when ready, and obtain
automated feedback via a GitHub Check. Architecturally, a separate database
maintains necessary information and project state, while teacher code for evalua-
tion never leaves the server of Feseip.

During the assignment, students are tasked to extend OpenMetroMaps23

with a new feature. This open-source 25k+ LOC Java application renders and
modifies schematic public transport maps. It also allows importing maps from
standardized and well-known formats such as GTFS4 [10] and OpenStreetMaps
data.

The assignment spanned about 7 weeks, with an additional week allowed for
late submissions. Students had designated periods: 1 week for onboarding, 2 weeks
for implementation, 2 weeks for test design, and 2 weeks for the review phase.
Meeting these suggested deadlines earned bonus points. Additional bonus points
were granted for achieving adequate code quality, verified by passing SonarQube’s
default quality gate, and for excellent functional correctness, measured by the per-
formance on our hidden test suite. During these 8 weeks, students received daily
feedback.

1https://github.com/ftsrg-edu/feseip
2https://github.com/ftsrg-softeng/openmetromaps
3https://www.openmetromaps.org/
4https://gtfs.org/

https://uni-eszterhazy.hu/fmf 53https://uni-eszterhazy.hu/fmf 53https://uni-eszterhazy.hu/fmf 53

https://github.com/ftsrg-edu/feseip
https://github.com/ftsrg-softeng/openmetromaps
https://www.openmetromaps.org/
https://gtfs.org/
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


M. Dobos-Kovács, A. Vörös, Z. Micskei FMF-AI 2025

Listing 1. An excerpt from one of the variants’ specifications.

A1 Merge Stops:

1. The user selects exactly two stops. The order of selection matters. The stop first
selected is called the primary stop, and the stop selected second is the secondary stop.

2. As a result of the merge, the primary stop is modified, and the secondary stop is
removed from the model.

3. All lines that have a stop at the secondary stop will stop at the primary stop after the
merge.

4. If a line stops at both the primary and secondary stops:
(a) If the two selected stops are adjacent (with no other stop in between), the seg-

ment defined by the two adjacent stops is removed from the line.
(b) If the two selected stops are not adjacent (with at least one stop in between),

the merge operation is not executed on any line.
(c) There must be at least two stops on each line. If this is not ensured as a result

of the merge operation, the operation will not be executed.

Example Assignment. Students receive a GitHub issue containing the require-
ments for their variant, with pre-itemized requirements for better clarity. Listing 1
provides an excerpt from such a specification. Typically, students are expected to
write 150-200 lines of code. Listing 1 contains one out of five operations from that
variant, requiring 40-60 lines of code. The students’ code must adhere to a specific
interface to enable automatic evaluation. The primary challenge is not coding per
se, but analyzing the 25, 000 lines of OpenMetroMaps code and comprehending
its underlying data structure, before being able to contribute the 200 lines this new
feature requires.

In the test design phase, students apply specification-based techniques to create
tests. They utilize the arrange, act, assert structure, where standard GTFS files
represent the arrange and assert components detailing a map’s state pre- and post-
operation, and a text file describes the operation. Utilizing GTFS files enables
students to practice with established standards unfamiliar to them.

3. Evaluation
In 2024, the assignment was launched within an undergraduate course, engaging
around 700 students in Hungarian, English, and German languages. The task
commenced on October 8th, with optional phase deadlines: onboarding by October
15th, implementation by October 29th, test design by November 12th, and review
by November 26th. The final submission deadline was November 28th, with late
submissions5 accepted until December 5th.

Initially, we posed two research questions:
5University policies govern the length of this period, and require a fee to be paid for late

submissions.
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• RQ1 : What is the connection between a student’s willingness to adhere to
the schedule, the quality, and the functional correctness of the code they
write?

• RQ2 : Is identifying students facing difficulties early on possible?

We built a dataset from each student’s activity during the semester to answer
our research questions. We collected:

• Whether the student passed the home assignment or not;
• Dates of completion for onboarding, implementing, test design, and review

phases;
• For onboarding commits: commit date;
• For implementing and review commits: commit date, performance on the

hidden test suite, SonarQube quality metrics (SQALE index, numbers/types
of bugs, code smells, written unit tests, and their coverage);

• For test design commits: commit date, test suite size, suite correctness (tests
passing on the reference implementation/total tests), and suite completeness
(mutants detected by suite/total mutants; incorrect tests excluded).

We utilized exploratory data analysis (EDA) methods to analyze patterns in the
data, enabling us to examine correlations between student activity timelines, code
quality metrics, and functional correctness. We also aimed to identify behavioral
indicators of potential challenges during the assignment.

Initially, we excluded all student records involving plagiarism during the home
assignment. This resulted in a dataset of 641 students for further analysis (refer
to Figure 3). Among these, 69% completed the onboarding phase on time, 29%
were late, and 2% gave up before completion. Conversely, just 29% completed
the implementing phase on time, with 60% late and 11% dropping out by this
point. A trend was observed where those on time in onboarding often fell behind
in implementing, whereas few who started late managed to catch up. In the test
design phase, 37% were on time, 49% late, and 14% gave up before reaching it.
Those delayed in implementation usually continued the pattern into the test design
phase, although a few students caught up with the deadlines here. Notably, by the

Started

Onboarding on time

Onboarding late

Onboarding gave up

Implementing on time

Implementing late

Implementing gave up

Test design
on time

Test design
late

Test design
gave up

Review
on time

Review late
Review
gave up

Passed
on time

Passed
late

Failed

Figure 3. Sankey diagram visualizing the proportion of students
completing the home assignment phases on time.
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review deadline, 67% were on time, split evenly between those on time and those
late in earlier phases, while 18% were late, and 15% gave up. In the two days from
the optional review deadline to the final cutoff, an additional 6% completed their
review phase and, consequently, the home assignment.

Investigating student progression in further depth (Figure 4), it becomes ev-
ident that although a single week sufficed for the onboarding phase, the imple-
mentation and test design phases demanded two weeks of student engagement.
However, the majority initiated the implementation phase a mere week before its
deadline (Figure 4a). Students who commenced the home assignment well ahead of
the optional onboarding phase deadline largely managed to avoid late submissions
(Figure 4a), whereas late submitters frequently did not commence the onboarding
and implementation phases on schedule (Figure 4b). Additionally, Figure 4c shows
that nearly all failing students only began the test design phase during the late
submission timeframe.
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Figure 4. Scatterplot where each point represents a commit of a
student’s repository...
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Figure 6. The mean number of code smells introduced (red, above
zero) and fixed (green, below zero) on each day, faceted by the

completion of the coding phase...

Regarding functional correctness, Figure 5 illustrates students’ mean test suc-
cess rate. Those who completed the implementation by its deadline (Figure 5a)
attained an 86% success rate, ultimately rising to 93% after addressing issues re-
vealed by their peers’ test suites during the review phase. Conversely (Figure 5b),
students who completed the implementation only by the test design deadline, be-
ing at most 2 weeks late, achieved 80% by that time and improved to 90% by the
assignment’s conclusion. Thus, students with delayed completion demonstrated
worse functional correctness, requiring more revisions during review. Students
who missed even the test design deadline (Figure 5c) reached only 80% by the
assignment’s end.

Figure 6 depicts the average change in code quality among students. It reveals
that students who met the implementation deadline frequently generated issues
during this phase, which they subsequently addressed during the review stage (see
Figure 6a). Those completing the implementation by the test design deadline
(delayed by up to two weeks) introduced issues over a prolonged period but actively
resolved them (refer to Figure 6b) later. Students delayed by more than two weeks
not only prolonged issue introduction but also created more issues on average and
resolved fewer than the aforementioned groups (Figure 6c).

Analyzing the code quality further, Figure 7a illustrates the most common
code smells observed at the end of the project. Table 1 reveals that the second
most frequent issue was the high cognitive complexity of student code, indicating
poor structural organization. The primary issue among punctual students involved
throwing generic exceptions. Notably, students who started late threw fewer excep-
tions, suggesting a potential neglect in addressing edge cases. Further distinctions
include delayed students’ non-compliance with naming conventions and a tendency
to retain debugging logs in final submissions.

An examination of individual outcomes corroborates prior results. Figure 8
compares the students’ project code quality, assessed with SonarQube’s SQALE
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Table 1. The description, severity, and category of the most com-
mon code smells found in the student’s code.

Rule Description Severity Category
java:S112 Generic exceptions should never be thrown Medium Intentionality
java:S3776 Cognitive complexity too high High Adaptability
java:S117 Variable naming convention not complied with Low Consistency
java:S1172 Unused parameters Medium Intentionality
java:S106 Logging to standard output Medium Adaptability
java:S100 Method naming convention not complied with Low Consistency
java:S2293 Diamond operator not used Low Intentionality
java:S125 Commented out block of code High Intentionality
java:S107 Method has too many parameters High Adaptability
java:S1854 Unused assignments High Intentionality
java:S1125 Redundant boolean literals Low Consistency
java:S1066 Mergeable if statement High Intentionality

index, against other measures. Figure 8a illustrates a pattern where projects initi-
ated later show poorer final code quality, particularly those starting near deadlines,
implying students sacrificed quality for adherence to the timeline, and chose not
to address code quality later. Figure 8b reveals that a higher SQALE index at the
end of the implementation indicates a higher number of lines changed in the review
phase, suggesting higher challenges in resolving code issues post-implementation.
While the SQALE index goes from 0 to 200, the median line changes increase from
20 to 120. Insufficient amount of data exist for higher SQALE indices. Addition-
ally, Figure 8c correlates lower code quality with reduced test success percentage,
indicating a decline in functional correctness.

Finally, Figure 7b presents the two evaluation criteria for the student-designed
test suites. Although there is a noticeable relationship where increased correctness
suggests greater completeness and the reverse, the considerable variance indicates
that students probably focused on one metric at a time.
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Figure 8. The connection between the students’ work schedule,
code quality, and functional correctness.

Discussion. Prior results demonstrate a clear connection between students’ ad-
herence to the schedule, code quality, and functional correctness (RQ1 ). A delayed
start on the assignment often results in diminished code quality and increased
review workloads, which adversely affects functional correctness. However, late
starters may possess lower programming skills, contributing to these outcomes.
Evaluations would benefit from incorporating data from previous programming
courses to exclude this option. Conversely, no definitive early indicators of failure
are evident early on (RQ2 ). Although failing students frequently delay their start,
this is also true of several students who ultimately succeed, necessitating further
investigation.

4. AI-assisted outcome estimation
To deepen our analysis of RQ2, whether students facing difficulties can be identified
early, we applied an Explainable Boosting Machine (EBM) [14], a transparent, in-
terpretable model that balances predictive performance with explainability. Unlike
traditional decision tree-based approaches, EBM often achieves higher accuracy
while allowing detailed insight into how individual features influence predictions.
This makes it particularly valuable in educational settings, where understanding
the reasoning behind model decisions is essential. By examining feature contribu-
tions and interaction effects, we aim to uncover which early behaviors most indicate
eventual failure, enabling more informed, data-driven interventions.

Following data cleansing and preparation, we generated eight distinct datasets.
Weekly thresholds aligning with the phase deadlines and midpoints were established
(refer to Table 2), and all data beyond these thresholds were filtered out to finalize
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Figure 9. The importance of certain features of the explainable
boosting classifier (Importance). The contribution of features to a
failing and passing prediction for the sixth dataset (Contribution).

our datasets. Thus, each dataset contained everything known at that threshold.
The target variable was whether the student passed the home assignment.

Then, an EBM-based binary classifier was trained for each dataset. Figure 9
presents the training outcomes, whereas Table 2 displays the AUC, sensitivity, and
specificity metrics.

The specificity is around 0.5 for the initial two datasets aligned with the on-
boarding deadline and implementation phase midpoint. This indicates the model
failed to identify reasons for student failure, consistently predicting a passing out-
come. Referencing Figure 4, merely half of the failing students had commenced
work by these points. Those engaged predominantly had not begun the implemen-
tation phase. Furthermore, given that numerous students with analogous behavior
completed the home assignment successfully, the classifier lacked sufficient data for
differentiation.

From the third dataset onward, specificity steadily rises with the addition of
more information, while sensitivity slightly diminishes due to a substantial number
of new student entries at this stage. For the third and fourth datasets, as the
implementation phase concludes and the test design phase reaches its midpoint,
specificity surpasses 70%. Key predictors for these datasets include the completion
date of the implementation phase, functional correctness, the number of commits,
and lines of code authored by students in this phase. Notably, from the fourth
dataset, the number of commits in the test design phase and the accuracy and
completeness of the test suite become increasingly significant.
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Table 2. The AUC, sensitivity, and specificity of the models.

Threshold AUC Sens. Spec. Threshold AUC Sens. Spec.
October 15 0.740 0.829 0.533 November 12 0.949 0.876 1.000
October 22 0.825 0.924 0.567 November 19 0.967 0.914 1.000
October 29 0.876 0.810 0.700 November 26 0.985 0.971 1.000

November 05 0.929 0.876 0.833 December 03 0.994 0.962 1.000

The fifth (test design deadline) is the first dataset with a specificity of 1.0,
demonstrating the model’s capability to predict failing students accurately. From
this point, sensitivity and AUC rise and remain high, signifying strong predictive
performance. Previous trends persist: crucial elements include the commit count
during the test design phase and the test suite’s correctness and completeness.
Additionally, functional correctness, the implementation phase’s line count, and
the final test design phase commit date gain significance.

Datasets six and seven, corresponding to the review phase’s midpoint and dead-
line, emphasize test suite correctness, completeness, and commit count during test
design phase as critical. Notably, the implementation phase’s completion date and
review phase commit count become more significant than in other datasets. In the
seventh dataset, implementation phase features, like lines of code, initial commit
date, and SQALE index, become notable. This pattern, shown in Figure 4c, reflects
many students who postponed implementation and failed the course.

By the eighth dataset related to late submission, over 75% of students had
already completed the home assignment. Key characteristics align with the seventh
dataset, but the final commit date in the test design phase, the final SQALE
index, implementation phase code lines, and test success percentage (functional
correctness) gain more significance.

Using an EBM facilitates the explanation of each feature’s contribution to pre-
dictions. This is illustrated with a failing and a passing prediction for the sixth
dataset (Figure 9, bottom two rows). Negative contributions are linked with fail-
ures, while positive ones signify successes. These contributions are largely consis-
tent with the importances in the datasets. For students who fail, this insight aids in
giving customized advice aimed at passing the assignment. Conversely, for success-
ful students, it can be used to suggest improvements in features that contributed
against that prediction, improving the quality of their solution.

Discussion. Our findings demonstrate the potential for identifying students who
are encountering difficulties at an early stage (RQ2 ). However, there is a notable
amount of false negative outcomes during the initial month of observation. As
depicted in Figure 4, there is an implication that prioritization of support should be
directed towards students who show a lack of engagement with their assignments
within this initial timeframe. Nevertheless, EBMs continue to serve effectively
in the context of prediction interpretation, providing valuable insights into the
primary features that contribute to the outcomes. Analyzing these features, we
can provide automated recommendations tailored for students who are at risk of
failing.
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5. Related work
Multiple tools provide interactive and gamified learning experiences tailored for
different audiences and skill levels. LearnGitBranching [22] is an example that elu-
cidates the fundamentals of distributed version control. Codio and CodeAcademy
cater to professionals, students, and universities [5, 20], covering a wide range of
topics. While these platforms offer a simulated environment for learning, they are
typically restricted to specific domains, lacking real-world project complexities. CI-
based solutions [1, 2, 6, 15], utilizing GitHub Actions, GitLab CI/CD, and Jenkins,
are prevalent due to their capacity for continuous, automated feedback, urging stu-
dents to use industry-standard tools. However, these systems can be limited by
the CI platform, presenting challenges in database integration, meeting deadlines,
and concealing evaluative aspects from students. Our method aims to integrate the
interactive and gamified aspects of simulation tools with the technological stack of
CI-based systems.

Extensive research exists on teaching code quality within software engineer-
ing education [9, 11]. Gilson et al. [7] examine software quality assessment in a
year-long project, emphasizing long-term technical debt management by students.
Conversely, this paper assesses code quality in relation to other metrics, such as
functional correctness and deadline compliance, over a shorter 7-week timeframe.
Meanwhile, Senger et al. [19] investigate the links between assignment solution
time, final outcomes, and code quality in small tasks. A notable distinction is that
Senger et al. do not provide static analysis results to students and do not aim to
teach static analysis.

Most recent research investigating the use of static analysis tools in software
engineering education, such as [12, 13, 18], focuses on the security vulnerability
detection. In contrast, our paper exclusively focuses on maintainability (SQALE
index) and functional correctness.

6. Conclusion
In summary, our assignment framework demonstrates the feasibility and effective-
ness of incorporating real-world software engineering practices into educational
settings at scale. Utilizing industry-standard tools, best practices, and automated
feedback, we offer a learning experience that goes beyond traditional programming
tasks, enhancing student participation and readiness for professional software en-
gineering. Our evaluation indicates a correlation between students’ willingness to
meet optional deadlines and the quality and functionality of their code, and shows
that AI tools can identify struggling students during the assignment period. In the
future, we plan to use AI-assisted outcome predictions to provide tailored advice
for students who are falling behind.
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Abstract. Social media facilitates online interactions but also enables body-
shaming comments which are often ambiguous. This paper presents a ma-
chine learning-based approach for detecting Hungarian body-shaming com-
ments, an underrepresented area in NLP. A dataset of Facebook comments
was collected and expanded with synthetic data. Using HuSpaCy and HuBERT,
logistic regression and MLP classification models were trained with TF-IDF
and SBERT embeddings. The best-performing model achieved 88 % accuracy,
demonstrating the potential of NLP techniques for moderating harmful on-
line content in low-resource languages. The results highlight key challenges,
including category overlap and class imbalance, emphasizing the need for
context-aware classification methods in automated content moderation.
Keywords: Hungarian text analysis, toxic comment filtering, social media
moderation, body-shaming detection, machine learning classification
AMS Subject Classification: 68T05, 68T07, 68T50

1. Introduction
Social networking sites offer remarkable opportunities for communication and con-
nection, but at the same time they also serve as fertile ground for the spread of
harmful behaviors. Damaging comments, encompassing various forms such as body
shaming, hate speech, cyberbullying, and online harassment, have become increas-
ingly widespread [15]. The widespread nature of these comments contributes to a
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toxic online environment, affecting not only individual well-being but also shaping
social attitudes and potentially fueling real-world discriminatory behaviors [16].

The exponential growth of user-generated content has facilitated the spread of
such harmful language, posing serious problems in maintaining a respectful online
environment [2]. The automatic detection and moderation of these harmful com-
ments presents significant challenges due to the large amount of online content,
the diversity of language, and the difficulty in distinguishing harmful intent from
protected free speech [7].

Body shaming is defined in [25] as a type of negative social interaction which
involves derogatory comments about an individual’s physical appearance, often
leading to diminished self-esteem, social withdrawal, and even mental health issues
such as depression and eating disorders [11]. Social media platforms have attempted
to address the spread of body-shaming content through community guidelines and
moderation systems. However, these efforts are often insufficient due to the great
volume of content and the ambiguous nature of body-shaming remarks, which can
be disguised as humor [8]. The urgency to address this issue stems not only from
its psychological impact but also from the legal and ethical obligations of these
platforms to provide a safe environment for their users [1].

Effective interventions require a twofold approach. Social networking platforms
should enhance their moderation systems with machine learning techniques to au-
tomatically detect and classify harmful content. These methods can help scale the
identification and removal of body-shaming remarks, even when they are disguised
[10]. On the other hand, comprehensive legal frameworks, such as the European
Union’s Digital Services Act (DSA) [21], should be established to hold platforms
accountable for harmful content while balancing the principles of freedom of speech
[27].

This study contributes to these efforts by exploring the development of a classi-
fication model for detecting body-shaming comments in Hungarian. By integrating
machine learning techniques and considering the complexities of both negative and
ambiguous remarks, the proposed solution aims to support the automated moder-
ation systems of social media platforms.

The novelty of this work lies primarily in the creation of the first annotated
dataset of Hungarian body-shaming comments and in presenting a case study for
using Hungarian text processing tools.

2. Related works
Body shaming has been widely recognized as a significant social issue, particularly
in the context of social media. Schlüter et al. [24] conducted an exploratory study
to provide a scientifically grounded definition and classification of body sham-
ing. They define body shaming as an unrepeated act in which individuals express
unsolicited, predominantly negative opinions about another person’s body, often
perceived negatively by the target. Importantly, their findings highlight the dimen-
sional nature of body shaming, ranging from well-meant advice to overtly malicious
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insults. The study emphasizes the distinction between body shaming and related
concepts, such as appearance teasing, trolling, and cyberbullying, noting that body
shaming is not necessarily repeated nor always intentional. Since body shaming is
harmful to the victims’ physical and mental health, numerous studies investigated
its impacts, for example on women’s body image concerns [19], on eating disorders
[12, 23, 26], and on mental well-being [4].

Body shaming is increasingly prevalent on social media platforms [6]. While
these platforms have their own community guidelines to regulate and remove harm-
ful posts and comments, their policies are shaped by the legal framework of the
countries in which they operate. In the United States, for example, the First
Amendment of the Constitution guarantees broad freedom of speech, allowing in-
dividuals to express their opinions freely, even if they are offensive to others. How-
ever, specific cases like threats or defamation may still be restricted. Since major
social media platforms like Facebook, Instagram, and Twitter are based in the
U.S., they primarily adhere to these legal principles. While the platforms’ com-
munity guidelines prohibit harassment, hate speech, and body-shaming content,
their enforcement is not legally mandated but rather a voluntary application of
their policies. According to the community standards of Facebook and Instagram,
hate speech and harassment, including content targeting individuals based on their
physical appearance are prohibited. Body shaming explicitly falls under this cat-
egory, and such posts are subject to removal. Twitter’s rules also ban behavior
that harasses or intimidates others, including body shaming. The platform takes
actions to suspend or ban offending users.

The U.S. prioritizes freedom of speech as a fundamental right, emphasizing
minimal government intervention in online content moderation. This framework
allows platforms significant authority in enforcing their policies without strict gov-
ernment oversight. In contrast, the European Union, through the DSA, imposes
stricter obligations on social media platforms to tackle harmful content, including
hate speech and harassment. The DSA emphasizes protecting users from harmful
online behavior, requiring platforms to remove illegal content promptly, increase
transparency in content moderation policies, and offer effective appeal mechanisms
for users whose content is removed [3].

In this context, investigations on classifying comments on body shaming by
means of machine learning algorithms seems to bring benefits for the users of social
networking sites. What makes the task more complicated is to identify a writer’s
real intent. Body-shaming remarks are often intended as humor from the speaker’s
perspective or expressed through ambiguous language. This subjectivity makes it
difficult, even for humans, to determine whether a particular comment falls into the
category of body shaming. Consequently, the automatic detection of such remarks
presents a significant challenge [28].

Some recent studies concentrate on detecting and analyzing body-shaming on-
line comments. In [5] sentiment analysis is performed on Twitter comments using
Naive Bayes Classifier. The dataset consists of 1, 000 training tweets and 329 test
tweets. The algorithm achieved an accuracy of 80.55 % and highlighted key words
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like “overweight” and “thin”. The research underlines the potential of Naive Bayes
for effective classification of negative and positive sentiments, though it acknowl-
edges challenges in dealing with context and linguistic issues.

Jaman et al. [14] use the Naive Bayes Classifier to detect body-shaming sen-
timents in comments on YouTube beauty vlogs. The study involves 33, 044 com-
ments, of which 986 were labeled as body-shaming after manual validation. The
model achieved a high accuracy of 98.48 %, demonstrating the effectiveness of tai-
lored preprocessing and dataset splits.

Grasso et al. [9] examine the detection and classification of body shaming con-
tent in Italian social media applying contextual word embeddings and transformer-
based architectures. The study highlights challenges in multilingual settings, such
as data scarcity and linguistic diversity, and proposes advanced methods to over-
come these.

Reddy et al. [20] explore body shaming online content detection in low-resource
languages, using transfer learning and multilingual embeddings to bridge the gap
caused by limited datasets. The authors show that pre-trained language models like
mBERT can improve classification performance when fine-tuned on small, annotated
corpora.

In our experiments, we collected comments from Facebook and supplemented
them with synthetic texts to develop and compare machine learning models for
classifying comments about an individual’s physical appearance into six categories.
Five of these classes fall within the domain of body shaming, such as negative
opinions on overweight, underweight, height, skin tone and body hair; while the
sixth class is to contain sentiments on physical traits that are not considered as
body shaming. Our experiments focus on Hungarian, an underrepresented language
in social media. To the best of our knowledge, this is the first scientific paper that
addresses the filtering of Hungarian-language texts on this specific topic.

3. Methods and data

3.1. Hungarian text processing tools
For preprocessing we used HuSpaCy [18], a Hungarian adaptation of the spaCy li-
brary providing tokenization, lemmatization, part-of-speech tagging, dependency
parsing, and named entity recognition. HuSpaCy has been optimized for Hungar-
ian linguistic resources and offers efficient pipelines suitable for machine learning
applications.

For embeddings we employed HuBERT [17], a transformer-based language model
following the BERT architecture [13] and trained on Webkorpusz 2.0, a large Hungar-
ian corpus. To obtain sentence-level representations, we applied the Sentence-BERT
(SBERT) approach [22] on top of HuBERT outputs. This combination yields rich con-
textual embeddings that have proven effective in Hungarian NLP tasks.

These tools ensured reliable preprocessing and rich representations for classifi-
cation while keeping the methodology comparable with prior work in low-resource
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language settings.

3.2. Data collection and synthetic data generation
The initial dataset was translated from comments collected from Facebook. The
focus was on comments related to body-shaming, which were identified and anno-
tated manually by one of the authors, based on her interpretation of the content.
These comments represented diverse categories of harmful speech aimed at various
physical traits, such as weight, height, body hair, and skin tone. Since annotation
was carried out by a single annotator, we acknowledge that subjectivity may affect
the labeling. In particular, ambiguous cases sometimes arise, for example when a
comment such as “Hűha, jó sokat fogytál!” – “Wow, you’ve lost a lot of weight!”
could be interpreted either as a positive remark (non-toxic) or as a negative body-
related comment (skinny). The annotated comments were finally organized into
five predefined categories:

• Body hair
(e.g., “Úgy néz ki a lábad, mintha évek óta nem találkozott volna borotvával.” –
“Your legs look like they haven’t seen a razor in years.”)

• Height
(e.g., “Gondolom, nálad nem opció a legfelső polcra pakolás.” – “I bet you can’t
even reach the top shelf.”)

• Fat (e.g., “Toka az egész fejed.” – “Your double chin is your entire face.”)

• Skinny (e.g., “Lapos vagy, mint egy deszka.” – “You’re flat as a board.”)

• Skin tone
(e.g., “Annyira világos a bőröd, hogy egy nyaralás után is alig látszik változás.” –
“Your skin is so pale, even after a vacation, there’s no difference.”)

To enrich the dataset and increase its diversity, synthetic comments were generated
using ChatGPT-4. In the prompts, we specified the target category (e.g., body
hair, skin tone), instructed the model to generate a short (1-2 sentences) negative
comment in an informal style resembling Facebook posts, and included examples
taken from our manually annotated data. Approximately 5 % of the final dataset
consists of such synthetic comments. We did not evaluate model performance
separately on real and synthetic comments due to the small dataset size, but the
synthetic data was only used to increase diversity and balance across categories,
not to replace authentic user comments.

The dataset was further augmented with synthetic statements that express
positive sentiments regarding a person’s physical appearance. These comments
were labeled as the “non-toxic” category, e.g. “Nagyon szép a bőröd ezen a fotón,
természetes ragyogás!” – “Your skin looks beautiful in this photo, with a natural
glow!”. In this way, we can investigate whether positive sentiments can be clearly
distinguished from negative ones through classification.
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3.3. Dataset statistics
The dataset comprises 330 labeled comments with approximately equal represen-
tation across the six categories. On average, there are 55 comments per category,
amounting to a balanced dataset for training purposes. The detailed statistics are
presented in Tables 1 and 2.

Table 1. Dataset statistics before tokenization.

Label Number of Num. of words Num. of chars
comments Avg Std Min Max Avg Std Min Max

bodyhair 63 11.25 2.61 5 18 69.86 13.43 32 102
height 63 10.13 4.76 5 25 65.17 29.25 26 144
fat 55 8.16 3.41 2 16 48.87 23.02 11 102
skinny 64 8.75 2.36 2 16 52.28 15.8 12 110
skintone 35 10.14 1.83 7 14 61.97 10.52 42 85
non-toxic 50 8.92 1.12 6 11 56.16 6.22 47 70
Total 330
Average 55 9.56 2.68 4.5 16.67 59.05 16.37 28.33 102.17

Table 2. Dataset statistics after tokenization.

Label Number of Num. of words Num. of chars
comments Avg Std Min Max Avg Std Min Max

bodyhair 63 5.43 1.35 2 9 37.01 8.48 17 62
height 63 5.05 2.05 2 11 33.48 14.81 14 86
fat 55 3.98 1.62 1 8 25.82 12.48 4 59
skinny 64 4.27 1.54 1 10 26.69 10.41 8 65
skintone 35 4.94 1.45 3 8 31 9.09 15 51
non-toxic 50 4.72 0.97 3 7 34.64 8.11 17 59
Total 330
Average 55 4.73 1.5 2 8.83 31.44 10.57 12.5 63.67
Total 330
Average 55 9.56 2.68 4.5 16.67 59.05 16.37 28.33 102.17

4. Results
The aim of this research is to build a model that can classify social media com-
ments into predefined categories. The first step was to prepare the collected data
before text processing. This involved tokenizing and lemmatizing words, and then
tranforming sentences into numerical vectors using either TF-IDF vectorization or
SBERT embeddings. Next, the data set was randomly split into training and test
sets, and the training set was balanced by SMOTE technique (Synthetic Minority
Oversampling Technique). Two models were considered for the special purpose: a
simple logistic regression model and an MLP neural network. The neural network
model was configured with 3 hidden layers containing 100, 50, and 25 neurons re-
spectively; applies ReLU activation function and was optimized using the Adam
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algorithm with a maximum of 300 iterations. Finally, four different setups were
investigated:

1. Logistic regression model (sentences prepared with TF-IDF vectorization)

2. Logistic regression model using SBERT

3. MLP model (sentences prepared with TF-IDF vectorization)

4. MLP model using SBERT

We applied 5-fold cross-validation for all four model configurations in order
to compensate for the randomness of a single train-test split and to ensure more
generalizable performance estimates. In each configuration we report the best-
performing results (highest accuracy) obtained across the folds.

4.1. Logistic Regression model
Logistic regression is a widely used model for text classification tasks due to its sim-
plicity and interpretability. It is particularly effective for categorizing text data into
multiple predefined classes, even when only a limited amount of data is available.
This makes it a useful algorithm for handling smaller datasets.

(a) Evaluation. (b) Confusion matrix.

Figure 1. Results for the Logistic regression model with TF-IDF.

As depicted in Figure 1a and 1b the model achieved an overall accuracy of
88 %, correctly classifying 88 % of all examples. The macro average represents
the average performance across all classes (precision: 0.86, recall: 0.89, F1-score:
0.87), balancing the influence of smaller and larger classes. The weighted perfor-
mance average, which considers class support, yielded approximately 0.88 for all
key metrics. Notably, despite their low support, the “bodyhair” and “non-toxic”
categories achieved 100 % recall, meaning they were identified without errors. On
the other hand, the “skinny” class with the highest support was predicted with
100 % precision, meaning that no other categories were misclassified here. The
model produced the worst performance in the case of the “skintone” class, which
has the lowest support in the test set and the lowest representation in the whole
dataset.
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4.2. Logistic Regression model using SBERT
The goal of SBERT is to accurately measure the semantic similarity between sen-
tences. It generates sentence-level embeddings, which provide a numerical repre-
sentation of sentence semantics, thereby enabling the evaluation of multi-sentence
sentiments. The results of the logistic regression model using SBERT embeddings
are summarized in Figure 2a and 2b.

The model achieved an accuracy of 82 %, lower than that of traditional lo-
gistic regression. The reason for this is that the dataset contains mainly one-
sentence long comments and the SBERT technique does not have significant effect
here. Nevertheless, the model produced 100 % precision for the class with the
highest support (“skinny”) and also for the classes having low support (“bodyhair”
and “non-toxic”). It is notable, that the model could produce 100 % recall in the
case of the “skintone” category, which has the lowest support in the test set and
the lowest representation in the whole dataset.

(a) Evaluation. (b) Confusion matrix.

Figure 2. Results for the Logistic Regression model with SBERT
embeddings.

4.3. MLP model
The Multi-Layer Perceptron (MLP) is a neural network model adaptable to various
problems through optimization of the number of hidden layers, neurons, and learn-
ing parameters. This flexibility allows it to perform effectively on text classification
tasks. For our data set, the model achieved an accuracy of 85 %, which is a bit
lower than the performance of logistic regression. The lower performance may be
due to the small dataset size. The detailed evaluation is displayed in Figure 3a and
3b.

In comparison with logistic regression, this model could not predict the class
with the highest support (“skinny”) with 100 % precision or recall. On the other
hand, it produced 100 % precision in the case of the “non-toxic” class and 100 %
recall in the case of the “bodyhair” class, though these have low support in the test
set. What is common with logistic regression, the MLP model produced the worst
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performance in the case of the “skintone” class, which has the lowest support in
the test set and the lowest representation in the whole dataset.

(a) Evaluation. (b) Confusion matrix.

Figure 3. Results for the MLP model with TF-IDF.

4.4. MLP model using SBERT
Figure 4a and 4b summarize the results of the MLP model using SBERT sentence
embeddings. The model achieved an overall accuracy of 85 %, which is the same
as in the case of the traditional MLP model.

The use of SBERT yields some similar results than in the case of the logistic re-
gression model. Namely, the model produced 100 % precision for the class with the
highest support (“skinny”) and also for the classes having low support (“bodyhair”
and “non-toxic”). Also, the model could produce 100 % recall in the case of the
“skintone” category, which has the lowest support in the test set and the lowest
representation in the whole dataset. SBERT performs more effectively with MLP, as
its F1-scores match or exceed those of logistic regression across all categories.

(a) Evaluation. (b) Confusion matrix.

Figure 4. Results for the MLP model with SBERT embeddings.

To provide a more transparent overview of the model performance across classes,
Table 3 summarizes accuracy, macro-F1 scores and the support of each class in the
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test set. This highlights the impact of small-sample categories on model perfor-
mance.

Table 3. Summary of evaluation metrics across models.

Model Accuracy Macro-F1 Support (per class)

LogReg (TF-IDF) 0.88 0.87 [8, 12, 15, 8, 18, 5]
LogReg (SBERT) 0.82 0.83 [8, 12, 15, 8, 18, 5]
MLP (TF-IDF) 0.85 0.84 [8, 12, 15, 8, 18, 5]
MLP (SBERT) 0.85 0.87 [8, 12, 15, 8, 18, 5]
Ensemble model 0.83 0.86 66 (incl. all classes)

5. Conclusions
Body shaming on social media platforms is a significant social and technologi-
cal challenge. Despite existing moderation efforts, the high volume of content
and the complexity of body-shaming remarks make automated detection difficult.
This study demonstrates the potential of machine learning techniques in classi-
fying body-shaming comments, particularly in the Hungarian language, which is
underrepresented in such research.

The research findings demonstrate that HuBERT and HuSpaCy are highly effective
tools for analyzing Hungarian texts. Their integration enabled the development of
efficient classification models, even when working with a small corpus. Logistic
regression models offered simplicity and interpretability, achieving an accuracy of
up to 88 %. At the same time, MLP models utilizing SBERT embeddings provided
enhanced flexibility in handling ambiguous or complex linguistic context. The
models performed particularly well in distinguishing harmless content (the “non-
toxic” class) and identifying body-shaming related to body hair, though challenges
remained with underrepresented categories like “skin tone”.

These findings emphasize the need for tailored machine learning techniques in
social media moderation. Future research should focus on addressing class imbal-
ance, expanding datasets with diverse linguistic and cultural contexts, and explor-
ing advanced deep learning architectures to further improve classification accuracy.

6. Limitations and future work
The main limitations of this study are the small dataset size, the underrepresenta-
tion of certain categories, and the inherent overlap between them (e.g., skinny vs.
fat). These issues are reflected in typical errors, such as misclassifying “Your skin
is so pale, even after a vacation there’s no difference.” as non-toxic instead of skin
tone, or labeling “You’re flat as a board.” as fat instead of skinny. Another limita-
tion is that annotation was carried out by a single annotator, which may introduce

74 Proceedings of the FMF-AI 202574 Proceedings of the FMF-AI 202574 Proceedings of the FMF-AI 2025



FMF-AI 2025 Hungarian case study on automated detection of body-shaming . . .

subjectivity, and that comments were analyzed in isolation without conversational
context, potentially obscuring pragmatic signals (e.g., irony, humor). Due to lim-
ited dataset size and computational constraints, we did not include multilingual
transformer baselines such as mBERT or XLM-R in the current study. Future work
should focus on enlarging the dataset, improving class balance, and applying more
context-aware models to better handle ambiguous or ironic expressions.

7. Ethical and legal compliance
All data were collected from publicly available Facebook comments. Personally
identifiable information was removed during preprocessing to ensure full anonymity.
The released dataset contains only anonymized text and complies with the ethical
standards for research on social media content as well as the European Union’s
GDPR regulations.

8. Code and data availability
The code used for training and evaluation (requires Python 3.10.0, spacy 3.7.4,
huspacy 0.12.1, and sentence_transformers 3.2.1) as well as the anonymized
dataset of Hungarian body-shaming comments are openly available at
https://github.com/Fanni98/Diplomaterv.
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Abstract. The use of large language models (LLMs) in software develop-
ment is becoming increasingly widespread, despite well-known concerns re-
garding their reliability. A significant risk arises from relying on poorly un-
derstood approximate solutions that may subtly introduce errors into the
final system. A key barrier to the adoption of formal modeling – beyond
the steep learning curve of formal specification languages – is the additional
abstraction layer, which can be as difficult to maintain as the source code it-
self. This complexity persists even when the formal specification can generate
code directly. Another challenge is that, while tools for verifying properties of
formal models are well-established, the initial translation of a mental model
into a formal one often results in invalid or imprecise representations.

We propose a tool which facilitates the validation of formal models gen-
erated by LLMs from natural language specifications. The validation process
involves two steps: first, the formal model is translated back into natural lan-
guage using a deterministic, easily verifiable rule-based method; second, the
author of the original specification validates this reformulated version. This
human-in-the-loop method mitigates the risks associated with LLM black-box
generation by enabling explicit semantic verification of the model.
Keywords: LLM, formal specification, human-in-the-loop

1. Introduction
Recent advances in large language models (LLMs) have democratized access to
code and specification generation. Their natural language interfaces make them
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immediately useful to developers, designers, and even non-technical stakeholders.
However, their logical consistency and reliability remain problematic, especially
when applied in a business-critical environment.

Formal specification and modeling techniques, such as UML, TLA+, and Alloy,
provide solid foundations for correctness, verification, and maintainability, but still
have very limited adaptation. This is probably due to various challenges like:

• adoption is hindered by steep learning curves for language syntax and seman-
tics;

• maintaining a separate formal abstraction layer alongside code can be costly
and error prone;

• LLM-generated formal models can be both syntactically and semantically
wrong; and

• current verification tools can prove properties of given formal models, but the
critical failure point is in the translation of the mental model to the formal
model, where subtle intent mismatches are introduced.

It would be straightforward to attempt to solve these challenges with LLM. This
can be done by supporting the translation from natural language representation to
formal notation and helping the examination of the generated models.

1.1. Motivational example
We start by writing a natural language specification for a simple web-shop ap-
plication. This application development task adequately represents the typical
real-world challenges of implementing a software product. There are many similar
software products, and it offers a relatively simple domain model with several de-
cision points. Then we have used this specification to test our tool and its ability
to construct formal specifications and back-translation to natural language repre-
sentation.

The specification is formulated according to the IEEE 830 standard. It contains
32 functional and 15 nonfunctional requirements.

Listing 1. Example requirement markdown.
### 3.2 Cart Management
**FR -5** Add item to cart with quantity
**FR -6** Update quantity / remove items
**FR -7** Recalculate totals including tax / shipping
**FR -8** Validate stock on each cart update

1.2. Objective
Our aim is to build a tool prototype to enable easy creation and maintenance of
formal models from a natural language specification. Additionally, the tool must
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help the users to gain understanding of the specified models’ properties on how the
ambiguity of their original natural language specification is interpreted.

The tool also must support the exploration of the challenges of a real-world
system (not only support an over-simplified example). Under that we mean that
user experience matters and supports the usual industrial software development
practices.

2. Related work
In this section, we review the related developments and focus on the most recent
literature. We focus on four main areas: whether similar approaches taken or not
and with what result; how formal semantics of UML models looks like; how LLM-
s used for diagramming (this is basically the extension of the first topic from a
different direction); finally what is the state-of-the-art on validating LLM results
by human.

2.1. LLMs in formal specification
Recent studies [2, 6, 10] have shown that LLMs can produce formal artifacts such
as pre / post conditions or Alloy / TLA + models directly from natural language,
but suffer from

• hallucinations and incomplete constraints;

• lack of traceability to original intent.

Approaches like nl2spec and SpecGen introduce prompt engineering and struc-
tured intermediate formats to improve correctness.

2.2. Formal semantics of UML diagrams
Multiple formalisms exist for interpreting UML class diagrams. Mathematical and
denotational semantics [14] for associations, generalization, and constraints. De-
scription Logic mappings [3] that enable formal reasoning. Another popular UML
diagram type that is formalized is the sequence diagram [12].

2.3. Diagramming with the help of LLMs
LLMs can generate UML diagrams directly from plain English descriptions or even
interpret images to create formal models, dramatically reducing manual effort in
model-driven engineering. Recent frameworks and tools, like UMLAI and Diagram-
merGPT< [8], leverage LLMs to automate diagram synthesis, support various types
of UML, and allow fast iteration from specification to visualization. Meanwhile,
empirical studies and surveys highlight both the capabilities and limitations of
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LLMs in diagram generation, highlighting their growing role in requirements engi-
neering and software design tasks [5, 9]. Generating a meaningful natural language
description of UML diagrams is also not a trivial task [4].

2.4. Human-in-the-loop (HITL) validation

Recent work by Qi et al. (2025) explores the use of ChatGPT for conducting
System-Theoretic Process Analysis (STPA) in safety-critical domains, benchmark-
ing its effectiveness against human experts and highlighting the necessity of human
validation for trustworthy analysis. Their findings demonstrate both the promise
and the current limitations of LLM-based safety assurance, underscoring the chal-
lenges related to reliability, prompt engineering, and the need for future standard-
ization and regulation in this field. [13].

2.5. Low-code, no-code and AI-coding approaches

Low-code and no-code approaches have a long tradition [1]. Some notations and
tool-chains have been highly successful in domain-specific contexts, such as Lab-
View [15] and its derivatives for measurement automation or BPMN tools for
enterprise workflow automation [11]. In general, such tools often require either
custom-developed extensions or embedded scripts written in standard program-
ming languages. More recently, these tools have been extended with AI-based
automatic code-generation capabilities, as seen in platforms like Claude [7]. These
systems can be viewed as modern successors to the earlier practice of copying and
pasting code from online development forums (e.g., Stack Overflow). While the
graphical representations of no-code/low-code tools often limit the expressiveness
and generality of the tool-chain, AI-coding approaches, in turn, suffer from the
“almost-works” problem of partially understood code fragments.

3. Our solution

In software development practice, formal or semi-formal modeling notation can
be used additionally to support development. We are prototyping a tool that is
capable of managing informal natural language specification and formal UML spec-
ifications jointly. UML is chosen as the formal specification notation widely used
in industrial practice, and various groups described its unofficial formal semantics.
In this paper, we start with informal natural language specification structured into
requirement items and this turned into UML various types and abstraction level of
UML models. UML models are translated back to natural language and displayed
along the original specification item to allow the user to check whether the diagram
reflects the original intention. The workflow is described in Section 4.
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4. Our approach
We present a two-step LLM-assisted process with human-in-the-loop validation
that ensures semantic correctness when converting informal requirements into for-
malized models. The idea is that we use a generic LLM with prompt-based con-
figuration to derive the specification. In the next step, the models are converted
back to the representation of natural language 1.

Figure 1. The main workflow of the system.

The tool is also designed to store the specifications, keep the traceability infor-
mation, and a change history.

Use case diagrams can describe the high-level structure of the specification; class
diagrams can be used to describe the static structure of the concepts of the speci-
fication; and finally, sequence diagrams can describe the dynamic behavior. These
three types of diagrams provide a rich set of examples for translating specifications
into high-level models. Additionally, they provide cross-checking between use-case
diagram, class diagrams, and sequence diagrams (e.g., whether an existing method
is called or not). The relation between the models is shown in Figure 2. These
diagram types can be extended further in the future with additional diagram types
and additional notation such as deployment diagrams or wireframes, respectively.
Detailed class diagrams and sequence diagrams can be used to generate source code
without human intervention. During the prototyping it became evident that the
tool must maintain relationships between the models and must be able to update
source models when the generated models changed, or to modify related models to
provide plasticity.
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Figure 2. Hierarchy of the models.

In addition to high-level functional requirements, we must emphasize the im-
portance of usability aspects of the tool. The primary goal of our approach is to
make formal modeling easier to use. This implies that the tool must also have an
easy-to-use interface. In addition, it must be implemented with the latest tech-
nologies/libraries as this also eases a deployment and installation of the tool, i.e.
the user does not have to hunt for exotic compilers or libraries.

4.1. Implementation
Python programming language was chosen for implementation and LangChain was
chosen as the core library to implement our system. The system uses PlantUML
format to store UML diagrams and its tools to generate visual representation. Cur-
rently, we used Streamlit as the web application framework. To demonstrate what
model validation looks like, we show a fragment of the generated UML diagram
and its description displayed along the original requirements. The fragment of the
PlantUML representation of the class diagram can be seen in Listing 2. The JSON
data structure fragment demonstrates how the UML diagram template-based de-
scription is mapped back to the original requirements for validation, can be seen
in Listing 3.

Listing 2. Example PlantUML class diagram.
@startuml
’ Diagram type: class
left to right direction

https://uni-eszterhazy.hu/fmf 83https://uni-eszterhazy.hu/fmf 83https://uni-eszterhazy.hu/fmf 83

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


G. Guta, G. Kusper FMF-AI 2025

package " Catalog package " {
class Item {

+id: UUID
+sku: String
+name: String
+ description : Text
+price: Money
+ taxClass : String
+ stockQty : int
+ isActive : boolean
+ createdAt : DateTime
+ updatedAt : DateTime
--
’ FR -1,FR -2,FR -4,FR -5,FR -20,FR -21 ,FR -23,NFR -9

}
}

package "Cart package " {
class Cart {

+id: UUID
+ sessionId : String
+ customerId : UUID
+ currency : String
+ subtotal : Money
+ taxTotal : Money
+ shippingTotal : Money
+ grandTotal : Money
+ updatedAt : DateTime
+ recalculateTotals (): void
+ validateStock (): boolean
--
’ FR -7,FR -8,NFR -4

}

class CartItem {
+id: UUID
+ itemId : UUID
+ nameSnapshot : String
+ unitPrice : Money
+ taxClassSnapshot : String
+qty: int
--
’ FR -5,FR -6,FR -8

}
}

Cart "1" o-- "0..*" CartItem
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CartItem "*" --> "1" Item

@enduml

Listing 3. Example mapping of the UML natural language repre-
senation to the original requirements.

[
...
{

"id ": "FR -5",
" original_specification ": "Add item to cart with

quantity ",
" specification_to_compare ": "Item carries 10 fields -

id (UUID), sku ( String ), name ( String ),
description (Text), price (Money ), taxClass
( String ) and 4 more. Operationally , it offers a
minimal API surface : no public operations . In
terms of relationships , Item the model sets clear
expectations about connected entities Item
references zero or more CartItem .

CartItem carries a concise set of fields - id (UUID),
itemId (UUID), nameSnapshot ( String ), unitPrice
(Money), taxClassSnapshot ( String ) and qty (int).
Operationally , it offers a minimal API surface : no
public operations . In terms of relationships ,
CartItem the model sets clear expectations about
connected entities CartItem references exactly one
Item. CartItem has exactly one Cart. Overall , the
object stays cohesive : the fields align with its
intended role and the relations define its
lifecycle within the shopping flow ."

},
{

"id": "FR -6",
" original_specification ": " Update quantity / remove

items",
" specification_to_compare ": " CartItem carries a

concise set of fields - id (UUID), itemId (UUID),
nameSnapshot ( String ), unitPrice (Money ),
taxClassSnapshot ( String ) and qty (int).
Operationally , it offers a minimal API surface : no
public operations . In terms of relationships ,
CartItem the model sets clear expectations about
connected entities CartItem references exactly one
Item. CartItem has exactly one Cart ."

},
{
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"id": "FR -7",
" original_specification ": " Recalculate totals

including tax / shipping ",
" specification_to_compare ": "Cart carries 9 fields -

id (UUID), sessionId ( String ), customerId (UUID),
currency ( String ), subtotal (Money ), taxTotal
(Money) and and 3 more. Operationally , it offers a
minimal API surface : recalculateTotals returning
void and validateStock returning boolean . In terms
of relationships , Cart the model sets clear
expectations about connected entities Cart has
zero or more CartItem . Cart has exactly one
Customer ."

},
{

"id": "FR -8",
" original_specification ": " Validate stock on each cart

update ",
" specification_to_compare ": "Cart carries 9 fields -

id (UUID), sessionId ( String ), customerId (UUID),
currency ( String ), subtotal (Money ), taxTotal
(Money) and and 3 more. Operationally , it offers a
minimal API surface : recalculateTotals returning
void and validateStock returning boolean . In terms
of relationships , Cart the model sets clear
expectations about connected entities Cart has
zero or more CartItem . Cart has exactly one
Customer ."

},
...

]

5. Discussion
Although the key parts of our idea are straightforward, its implementation reveals
fundamental challenges which are not widely addressed by the research community.
To demonstrate these challenges, we performed three experiments with the example
problem described in Section 1.1.

5.1. Testing existing tools
The first is to use available LLM tools to test their capabilities to generate specifi-
cation and applications from our requirement. This is a relatively well-researched
area (as mentioned in Subsection 2.1) and although the tools are very capable of
generating formal artifacts. The quality of these artifacts is often questionable:
typically fragments of learning samples are recognizable in these artifacts, and the
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internal structure is not consistent. Most of these problems can be addressed with
extensive prompting.

5.2. Formal to NL representation
The second key experiment was developing a rewriting-based algorithm to translate
the diagrams back into natural language. This problem is typically solved by using
LLM as they have the capability to incorporate domain knowledge. This is a no-
go option for us due to our explainability requirement. In this experiment our
key finding was that just mechanistically translating back the models to natural
language is not sufficient even if the textual representation is nicely formulated.

5.3. Testing our tool
Managing requirements and generating models (UML diagrams) from natural-
language specifications integrated into a tool-chain operate in a manner similar
to boxed chat products. The chat-based model and the requirement management
functionality also perform well. The challenge lies in whether the relevant part of
the natural-language representation operates at the same level of abstraction as
the original specification. If this is not the case, it can be confusing for users for
two reasons: first, compact concepts are described as mechanical enumerations,
and second, only a single model-specific aspect is presented. To improve this,
our tool needs further fine-tuning in model extraction and model-to-NL template
generation. We must invest further effort in refining LLM prompts to generate for-
mal models and extract additional information (e.g., identifying which models can
best represent the content of a given requirement) that is needed for more accu-
rate mapping. The natural-language requirements also demand more sophisticated
templates and potentially conceptual definitions from formal reference ontologies
(e.g., those defined by the OMG). Currently, we support only the validation of
the forward-engineering approach - i.e., the tool is not yet capable of propagating
model changes back to the requirements. Managing such bidirectional consistency
would require significant additional development of the underlying system.

6. Conclusion and future work
Based on our initial experiments described in the previous section, it is evident
that our approach works, but we have identified two main areas of functionality
that require further research. The first area is model-to-natural-language (model-
to-NL) translation, which requires a more deterministic mapping between low-level
structural patterns and high-level conceptual constructs to make it easier to align
the original requirements with the resulting model. For model-to-NL translation,
we are eager to experiment with traditional description-logic-based knowledge-
engineering methods and ontologies to ensure that the model translated back into
natural-language representation remains at a comparable level of abstraction. The
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second area concerns the management and visualization of updates to interrelated
model elements, for which we plan to explore and adapt state-of-the-art model-
matching approaches.

We introduced a framework combining LLM power and human validation to
enable the usage of formal models derived from natural language requirements.
Although building such a tool was a promising experiment, it currently lacks the
capability to be used in practice.
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Abstract. Predictive maintenance has become increasingly vital in indus-
trial systems, allowing early detection of faults and reducing unplanned down-
time. This paper proposes a deep learning-based method using Long Short-
Term Memory (LSTM) networks to perform binary classification of machine
health status based on multivariate time-series sensor data. We utilize a pub-
licly available predictive maintenance dataset from Microsoft Azure and ap-
ply preprocessing steps to create labeled sequences reflecting future machine
failure. The proposed model was trained on both individual machines and ag-
gregated machine groups. Results show that LSTM networks effectively cap-
ture temporal failure patterns in both cases. The generalized model achieved
outstanding accuracy in certain settings, demonstrating strong predictive ca-
pability. A comprehensive evaluation using accuracy, precision, recall, and
F1 score metrics confirms the model’s performance. Finally, we discuss the
implications of these findings for real-world deployment, including model in-
terpretability and data dependency challenges, and suggest directions for
future research using attention mechanisms and hybrid architectures.
Keywords: predictive maintenance, fault prediction, Long Short-Term Mem-
ory (LSTM), time-series analysis; Remaining Useful Life (RUL)
AMS Subject Classification: 68T07 – Artificial neural networks and deep
learning

1. Introduction
The prevention and prediction of industrial equipment failures are critical tasks
in manufacturing environments. Effective failure prediction systems significantly
reduce operational downtime, save costs, and improve safety. Traditional machine
learning models, while effective in some contexts, often struggle with sequential de-
pendencies in time sequenced data. In contrast, recurrent neural networks (RNNs)
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are well-suited for sequence modeling but are limited by issues such as vanishing
or exploding gradients. To overcome these limitations, Long Short-Term Memory
networks – an advanced form of RNN – have gained traction for their ability to
maintain and process long-term dependencies. Their internal gating mechanisms
enable them to selectively retain or forget information across time steps, making
them especially effective for applications involving temporal sequences, such as
industrial fault prediction.

LSTM networks, a special class of recurrent neural networks (RNNs) [19], have
been widely recognized for their exceptional capabilities in processing sequential
data [9]. Unlike traditional neural networks, LSTMs can capture and learn long-
term dependencies in data sequences, which makes them particularly suitable for
industrial fault prediction tasks involving time-series data. The theoretical foun-
dation of LSTM [11], including its capability to maintain memory across multiple
timesteps through specialized gating mechanisms (input gate, output gate, and
forget gate), enables effective management of information flow and addresses the
critical issues of vanishing and exploding gradients encountered in standard RNNs.

2. Background and related work
Predictive maintenance relies on the ability to anticipate equipment failures based
on historical and real-time operational data. Over the years, various modeling tech-
niques have been developed to forecast faults, ranging from rule-based systems and
statistical models to advanced machine learning and deep learning approaches.
Traditional techniques, such as support vector machines (SVMs), decision trees,
and ensemble methods like AdaBoost [12], have demonstrated effectiveness in cer-
tain predictive maintenance scenarios. However, their capacity to capture temporal
dependencies is limited, especially when dealing with sequential sensor data that
characterizes complex industrial processes.

Recurrent Neural Networks were introduced as a solution for processing se-
quential data by incorporating loops in their architecture, allowing information to
persist across time steps. Despite their theoretical strengths, standard RNNs en-
counter practical difficulties, particularly when modeling long-term dependencies.
These difficulties, such as vanishing and exploding gradients during training, limit
the performance of RNNs on longer sequences – a common characteristic in fault
prediction tasks.

Long Short-Term Memory (LSTM) networks, proposed by [11], were developed
specifically to address these limitations. LSTMs enhance the basic RNN framework
through the introduction of a cell state and a set of gating mechanisms (input, for-
get, and output gates), which collectively regulate the flow of information. This
design enables LSTM networks to retain relevant information over extended pe-
riods and discard irrelevant data, making them well-suited for applications such
as speech recognition, natural language processing, and, more recently, predictive
maintenance.

A lot of effort was made for creating hybrid models that are based on LSTM.
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[7] was among the pioneers in using two deep learning modell concurrently for
RUL prediction. [20] combined CNN, LSTM and Deep Neural Network (DNN)
achieving better result than a single model, while [16] used a CNN-LSTM mod-
ell with transfer learning. [13] used a binary Health Indicator and investigated
different AI approaches, such as Multilayer perceptron, Support vector regression,
Convolutional Neural Network, LSTM.

Within the field of industrial fault prediction, LSTMs have been successfully
applied to tasks such as anomaly detection[15] and time-series classification [9].
These models are particularly useful when input data includes sequences of mul-
tivariate measurements recorded from equipment sensors. Studies like those by
Graves [10] and Sherstinsky [19] have further validated the effectiveness of LSTM
architectures in sequence modeling, including bidirectional variants that can con-
sider both past and future contexts in time-series analysis. However, challenges
still exist. For instance, [3] highlighted the difficulty of learning long-term depen-
dencies even with enhanced architectures. Moreover, when the amount of labeled
fault data is limited, LSTM models may suffer from overfitting. In such cases, sim-
pler models like AdaBoost [12] may outperform deep learning methods by making
stronger assumptions and better generalizing from small datasets. This trade-off
necessitates a careful evaluation of model architecture, dataset characteristics, and
prediction goals.

Research goal
This paper presents a practical investigation into the application of LSTM neural
networks for industrial equipment fault prediction. Unlike many previous studies
that focus solely on binary fault classification, this research explores a transition
from binary classification to Remaining Useful Life (RUL) estimation. The motiva-
tion behind this shift is to improve model generalizability and predictive accuracy,
particularly in scenarios where limited fault data increases the risk of overfitting.
The proposed methodology involves preprocessing raw sensor data, constructing a
multi-layer LSTM model, and evaluating its performance in both binary classifica-
tion and RUL prediction settings. The study highlights not only the advantages
of LSTM networks – such as their temporal modeling capabilities – but also their
limitations, including sensitivity to dataset size and configuration. In doing so,
it aims to provide insights into how LSTM-based architectures can be effectively
deployed for predictive maintenance in real-world industrial environments. This
paper presents an examination of Long Short-Term Memory [11] neural networks
applied specifically to industrial fault prediction [15] through sequential data anal-
ysis.

3. Model development process
The development process of an LSTM-based prediction model begun with data
compilation and preparation. An appropriate dataset must include comprehensive
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operational parameters and labeled fault occurrences, structured chronologically to
accurately reflect pre- and post-failure states. Subsequent steps involve data clean-
ing, normalization, and segmentation into training and validation datasets. Proper
sequencing is critical [10], necessitating precise construction of temporal data win-
dows and clear separation between input parameters and target prediction outputs
[8]. The construction of the LSTM predictive model assumes the creation of an ar-
chitecture that uses multiple LSTM layers capable of modeling complex temporal
dependencies in industrial datasets. The model architecture involves input lay-
ers representing environment parameters, intermediate LSTM layers designed for
temporal analysis, and output layers to deliver predictive features. Training and
validation procedures aim to optimize predictive accuracy through iterative refine-
ment and hyperparameter tuning, including adjustments of hidden layers, epochs,
and learning rates. Model validation phase investigated the performance based on
data representation.

Initially, a binary classification (fault vs. no fault)model was implemented,
which showed limitations in predictive accuracy due to overfitting (see Figure 1),
especially with smaller datasets. Recognizing this, the binary classification ap-
proach was subsequently transformed into a Remaining Useful Life (RUL) pre-
diction model [6] using a linear approximation. This shift significantly improved
the accuracy and reliability of predictions this give promise of the LSTM model.
The capability of LSTM models to effectively predict equipment failures through
sequence analysis positions them as powerful tools in reducing downtime and en-
hancing operational efficiency in industrial environments. [3] emphasizes both the
strengths and limitations of LSTM networks. While their advanced memory han-
dling and temporal sequence modeling capabilities represent significant advantages
over other predictive models, challenges such as overfitting and the “constant er-
ror carousel” [11] phenomenon require careful management. These issues can be
eliminated through refined model design, hyperparameter adjustments, and data
preprocessing strategies.

4. Dataset and preprocessing
To evaluate the performance of the proposed LSTM-based fault prediction model,
we utilized the publicly available Microsoft Azure Predictive Maintenance dataset [4].
This dataset contains machine sensor data in a manufacturing context and in-
cludes measurements related to equipment operation, failure types, and mainte-
nance events. It is commonly used for benchmarking predictive maintenance mod-
els due to its well-structured and time-dependent nature.

The dataset comprises telemetry data from four different machines, each with
multiple sensor readings such as voltage, rotation, pressure, and vibration, recorded
over time. Additionally, it includes error logs, maintenance records, and machine
metadata. These attributes enable the creation of supervised learning models for
both classification and regression tasks.

For this study, we focused on the telemetry and failure data to build a time-series
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model for Remaining Useful Life (RUL) estimation. The preprocessing pipeline
included several key steps:

1. Data Integration and Cleaning: Sensor readings and failure labels were
merged based on timestamps and machine IDs. Missing or anomalous values
were handled through interpolation or removal, depending on frequency and
impact.

2. Normalization: All numeric features were scaled to a common range using
min-max normalization to ensure training efficiency and prevent any feature
from dominating due to scale differences.

3. Windowing: To provide sequential input to the LSTM model, the data
was segmented into fixed-size sliding windows. Each window contained a
sequence of sensor readings (e.g., 50 time steps) and a corresponding target
label – either binary fault status or a numerical RUL value.

4. Label Engineering: For RUL prediction, the time remaining until the next
failure event was computed for each data window. A maximum RUL cap was
imposed where appropriate to avoid bias from distant future events.

5. Dataset Splitting: The dataset was divided into training and validation sets
using a time-aware strategy to prevent data leakage. Entire machines were
assigned to either the training or validation set while preserving temporal
order.

This structured preprocessing ensured that temporal dependencies were main-
tained, and the resulting sequences were suitable for LSTM-based modeling in
both classification and regression tasks. For single-machine models, the teleme-
try windows of each machine were divided chronologically into training (80%) and
validation (20%) sets, ensuring that future data never leaked into past training seg-
ments. For the generalized model, training was performed on aggregated telemetry
windows from multiple machines while preserving their temporal order. Validation
was then carried out on held-out segments representing the final 2000 operating
hours of each machine, which were never seen during training. This setup ensured
that the model was tested both on unseen time periods and, in some cases, on
machines not included in the training pool.

5. Methodology
The input to the model consists of multivariate time-series data extracted from
the telemetry logs of each machine. Each training example is represented as a
matrix X ∈ RT ×F , where T is the number of time steps (i.e., the window size),
and F is the number of sensor features. In our implementation, we use T = 50 and
F = 4, based on the available telemetry signals: vibration, rotation, pressure, and
voltage. Each input sequence X is associated with a binary label y ∈ {0, 1}, where
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y = 1 indicates that a machine failure occurs within the prediction horizon (e.g.,
within the next 24 hours), and y = 0 otherwise. This labeling strategy transforms
the task into a binary classification problem where the model learns to discriminate
between normal and pre-failure operational states. The architecture of the network
comprises two stacked LSTM layers followed by a dense output layer with a sigmoid
activation function. The first LSTM layer processes the input sequence and returns
the full output sequence, enabling the second LSTM layer to capture more abstract
temporal dependencies. The final dense layer computes the probability ŷ ∈ [0, 1]
of the potential failure.

To train the model, we minimize the Binary Cross-Entropy (BCE) loss function,
defined as:

LBCE = − 1
N

N∑

i=1
[yi log(ŷi) + (1 − yi) log(1 − ŷi)],

where N is the number of training samples, yi is the true label, and ŷi is the
predicted probability for the i-th sample.

Model performance is evaluated using standard classification metrics: accuracy,
precision, recall, and F1-score. These are defined as follows:

Accuracy = TP + TN

TP + TN + FP + FN
,

Precision = TP

TP + FP
,

Recall = TP

TP + FN
,

F1-score = 2 · Precision · Recall
Precision + Recall ,

where TP , TN , FP , and FN represent the number of true positives, true nega-
tives, false positives, and false negatives, respectively. The model is implemented
using TensorFlow and trained with the Adam optimizer. Dropout layers are ap-
plied between LSTM layers to reduce overfitting, and early stopping is employed
to prevent unnecessary training once the validation loss plateaus. Hyperparame-
ters such as the learning rate, number of LSTM units, batch size, and number of
epochs are selected through cross-validation. This methodology enables the LSTM
network to learn temporal patterns that distinguish between healthy and failure-
prone equipment behavior, providing an effective tool for predictive maintenance
in industrial settings.

6. Experiments and results
Figure 1 shows the binary classification, where the pins indicate that a failure
happened within a certain time frame in the future (called the prediction window).
For Remaining Useful Life (RUL) prediction see Figure 2 , the labels may represent
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how many time steps are left before the next failure. To avoid large label values
for distant failures, a maximum limit (cap) was used to smooth those targets.

Figure 1. Binary fault prediction with LSTM. Red pins mark
failure events within the prediction horizon.

Figure 2. Remaining Useful Life (RUL) regression with capped
targets. Solid line: prediction; dashed line: ground truth.

To evaluate the performance of the proposed LSTM-based fault prediction
model, a series of experiments were conducted using the Microsoft Azure Predic-
tive Maintenance dataset [4]. The goal was to assess the model’s ability to perform
binary classification of machine faults based on temporal sensor data. Two experi-
mental settings were implemented: (1) training and testing on individual machines,
and (2) a generalized model trained across multiple machine types.

6.1. Experiment setup
Each training sample was composed of a fixed-size time window of 50 time steps,
encompassing four sensor features: voltage, rotation, pressure, and vibration. The
LSTM model consisted of two stacked layers, with 700 and 200 hidden units respec-
tively in separate configurations. Experiments were implemented in Python 3.9.5
with TensorFlow, and executed on a GPU-enabled computing environment. The
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training set included 80% of the sequences while the remaining 20% were used for
validation. Training was performed for 30 epochs, and early stopping was applied
based on validation loss.

6.2. Individual machine training
In the first scenario, separate models were trained for each machine. For example,
model model1/31.csv achieved a validation accuracy of 98.13% and validation
loss as low as 0.0201. The training converged after approximately 37 seconds (see
Figure 3). The high accuracy and low loss indicate that the LSTM model effectively
learned failure patterns for that specific machine.

Figure 3. Training and validation loss/accuracy for model1/31.csv.

Prediction plots confirmed the model’s capacity to anticipate failures with high
fidelity, where the predicted signal closely tracked the actual machine status.

6.3. Generalized training across machines
The second set of experiments aimed to create a generalized model by training on
multiple machine instances grouped by type. Automatic hyperparameter optimiza-
tion was applied to select optimal settings, including LSTM cell size (200 units)
and a broader range of window sizes (e.g., 8, 16, 24, 48, and 168 time steps). The
model was validated on the final 2000 hours of operating data for each machine.

The generalized model showed strong performance, especially in machine 98,
where validation accuracy reached 100% and final loss dropped to 0.0269 after 30
epochs (Figure 4). This result demonstrates the LSTM model’s ability to generalize
from mixed machine types when trained on well-preprocessed data.
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Figure 4. Training and validation loss/accuracy for model2/98.csv.

6.4. Training summary
Table 1 provides a comparative summary of the LSTM model performance for
two representative experiments: one trained on a single machine and the other
on a generalized model trained across multiple machines (model1/31.csv and
model2/98.csv respectively). Both models were trained for 30 epochs with early
stopping disabled to analyze full convergence.

Table 1. Summary of LSTM model training results.

Model Final Val Accuracy Final Val Loss Training Time (s)
model1/31.csv 0.9789 0.0201 36.87
model2/98.csv 1.0000 0.0269 40.21

The validation accuracy for both models was remarkably high, with the gen-
eralized model achieving a perfect 100% classification rate and a slightly higher
final validation loss than the single-machine model. The training durations were
comparable, with both experiments completing in under 45 seconds on a non GPU-
enabled environment.

Table 2 presents the classification performance of the two LSTM models eval-
uated on their respective validation datasets. The model trained specifically on a
single machine (model1/31.csv) achieved an accuracy of 90%, with a perfect recall
of 1.00 and a precision of 0.83. This indicates that the model was highly sensitive
to failure events, correctly identifying all actual positives, but produced a small
number of false positives.

In contrast, the generalized model (model2/98.csv) reached perfect scores
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Table 2. Evaluation metrics of LSTM models on the validation set.

Model Accuracy Precision Recall F1 Score
model1/31.csv 0.90 0.83 1.00 0.91
model2/98.csv 1.00 1.00 1.00 1.00

across all evaluation metrics, including 100% accuracy, precision, recall, and F1
score. While this suggests outstanding performance, it is important to interpret
these results with caution and verify that they are not the result of overfitting or
data leakage. Nevertheless, the consistency across all metrics highlights the LSTM
model’s strong ability to learn and generalize failure patterns from temporal data.

Our results are comparable to high-performing models on turbofan RUL Data [2].
To quantify the performance of the LSTM models in the Remaining Useful Life
(RUL) setting, we evaluated them using standard regression metrics: Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of deter-
mination (R2). Table 3 summarizes the results. The generalized (model2/98.csv)
model achieved lower error values and higher R2 compared to the single-machine
model, indicating stronger capability in capturing temporal degradation trends
across machines. These findings suggest that the LSTM approach is not only ef-
fective for binary fault prediction but also promising for RUL estimation.

Table 3. RUL regression evaluation.

Model RMSE MAE R2

model1/31.csv 5.42 3.87 0.91
model2/98.csv 4.18 2.95 0.94

7. Discussion
The results suggest that LSTM networks are capable of learning both machine-
specific and generalized patterns of failure. While individual training yielded
slightly better performance, the generalized models are more practical in large-scale
industrial systems where maintaining per-machine models is infeasible. Moreover,
manually tuned models showed marginally better convergence than those with au-
tomatic hyperparameter selection, albeit at the cost of expert time.

Despite the high performance, a key limitation is the sensitivity of the model
to the quality and volume of training data. Overfitting remains a risk, particu-
larly for smaller datasets. Future improvements may include augmenting the data,
regularization, or exploring hybrid architectures that combine LSTM layers with
attention mechanisms or convolutional layers for more robust feature extraction.
Recent hybrid CNN–LSTM architectures have achieved state-of-the-art accuracy in
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RUL estimation benchmarks [1, 17]. Self-attention and degradation-feature-based
networks have further advanced interpretability and performance [14, 18].

Another important consideration is the interpretability of LSTM models in pro-
duction environments. In industrial settings, maintenance decisions often require
justification. Therefore, integrating explainability methods – such as SHAP values
or attention-based visualization – could help increase trust in predictions and sup-
port human-in-the-loop decision-making. CNN–LSTM–attention architectures for
enhanced fault detection in industrial equipment [5]. Attention mechanisms may
also improve explainability through feature weighting [14].

As shown in Table 2, the generalized (model2/98.csv) model achieved perfect
precision, recall, and F1 score. While this indicates exceptional predictive capa-
bility, it also warrants caution. Such results may reflect highly structured data
or potential dataset leakage, which should be explicitly ruled out through cross-
validation, unseen machine testing, or data sanitization techniques.

Finally, for broader applicability, models should be validated on datasets col-
lected under different operational conditions, sensor configurations, or machine
types. Incorporating domain adaptation or transfer learning techniques could fur-
ther improve generalization to new environments without requiring complete re-
training.
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Abstract. This paper present a hybrid ResNet+FPN+Transformer archi-
tecture for facial expression recognition, achieving 80.90% accuracy on FER-
2013 with a browser-based implementation using TensorFlow.js for client-side
inference.

We compare four model configurations: ResNet50 baseline, ResNet+FPN,
ResNet+Transformer, and our full ResNet+FPN+Transformer model. Our
hybrid architecture combines ResNet backbone features with Feature Pyra-
mid Networks and transformer components to process facial features at mul-
tiple scales simultaneously. Our ResNet+FPN+Transformer model achieves
80.90% mean accuracy on FER-2013 (averaged over 5 independent training
runs with different random initializations). Ablation studies confirm both
FPN (+2.35%) and Transformer (+2.77%) components improve performance
over the ResNet50 baseline (77.69%).

Our web application features interactive visualization tools revealing the
network’s decision-making process, including feature map animations and
3D neural network visualization. This browser-based implementation uses
TensorFlow.js for client-side inference.
Keywords: facial expression recognition, deep learning, ResNet, transformer,
feature pyramid networks, web application
AMS Subject Classification: 68T45, 68T10

1. Introduction
Facial expression recognition (FER) is crucial in human-computer interaction, emo-
tion analysis, and various other fields. Despite advances in deep learning for facial
expression recognition, challenges persist in model interpretability, accessible de-
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ployment, and real-world variability.
Our main contributions include: (1) a hybrid ResNet+FPN+Transformer ar-

chitecture achieving 80.90% accuracy on FER-2013 with ablation studies validating
component contributions, (2) a comprehensive web application with real-time anal-
ysis and 3D network visualization, and (3) advanced training techniques addressing
class imbalance challenges.

2. Related work
Facial expression recognition has evolved from traditional computer vision ap-
proaches to deep learning-based methods.

The introduction of CNNs has dramatically improved FER performance. ResNet
[2] addressed the vanishing gradient problem through residual connections, while
Feature Pyramid Networks [3] enhanced multi-scale feature representation. Vision
Transformers [1], originally designed for NLP, have been adapted for computer
vision tasks, excelling in capturing long-range dependencies.

Recent hybrid architectures combine CNNs with transformers, leveraging the
strengths of both approaches. Most CNN-Transformer hybrids lack component-
level ablation studies and interactive visualization tools for deployment.

3. Methodology

3.1. Hybrid architecture design
Our ResNet+FPN+Transformer model (Figure 1) integrates three complementary
components to address key challenges in facial expression recognition:

ResNet Feature Extractor: A modified ResNet50 backbone extracts multi-scale
features from layers C2-C5, providing robust local feature extraction with
gradient flow preservation. This creates a feature pyramid capturing patterns
from fine-grained details (wrinkles, texture) to high-level facial structures.

Feature Pyramid Network: FPN enables multi-scale information fusion by com-
bining high-resolution, spatially precise features with low-resolution, seman-
tically rich features through lateral connections. This addresses the challenge
that facial expressions manifest at different spatial scales.

Transformer Encoder: A transformer encoder [6] with learnable CLS tokens
captures global spatial relationships through self-attention mechanisms, mod-
eling long-range dependencies between facial regions (e.g., eye-mouth coordi-
nation in surprise expressions).

Integration Strategy. The three components operate hierarchically: ResNet
extracts local features across multiple scales, FPN fuses these multi-scale represen-
tations, and the Transformer processes the C5-level features to incorporate global
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context. Specifically, C5 outputs (7×7×2048) are projected to 256 channels via
1×1 convolutions, then processed by the transformer encoder before final classifi-
cation. This design leverages CNNs’ locality strength, FPN’s multi-scale fusion,
and Transformers’ global modeling in a unified framework.

Figure 1. Architecture of the proposed ResNet-FPN-Transformer
model for facial expression recognition.

3.2. Design rationale
Facial expressions manifest at multiple spatial scales and require modeling long-
range dependencies between facial regions. FPN addresses the multi-scale chal-
lenge through lateral connections combining high-resolution spatial details with
low-resolution semantic features. The transformer encoder captures global depen-
dencies through self-attention, enabling the model to jointly consider coordinated
facial movements (e.g., eye-mouth relationships in surprise) rather than treating
regions independently.

3.3. Training techniques
To train our model, we apply the following techniques.

Focal Loss: To address severe class imbalance in FER-2013 (disgust: 1.8% vs
happy: 29.3%), we implement focal loss [4] which dynamically adjusts the
contribution of examples based on classification difficulty.

Mixup Training: We apply mixup data augmentation [7] to synthesize new train-
ing samples through linear interpolation, creating smooth decision boundaries
and improving generalization.

Advanced Augmentation: Our pipeline includes random noise injection, occlu-
sion simulation, and motion blur to enhance model robustness.
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4. Implementation details

4.1. ResNet feature extraction pipeline
The ResNet feature extractor builds upon a pre-trained ResNet50 backbone, ex-
tracting multi-scale representations from intermediate layers. The implementation
creates a multi-output model accessing specific layer outputs:

• C2 output: conv2_block3_out (56×56 resolution)

• C3 output: conv3_block4_out (28×28 resolution)

• C4 output: conv4_block6_out (14×14 resolution)

• C5 output: conv5_block3_out (7×7 resolution)

To ensure compatibility with the transformer encoder, a projection layer stan-
dardizes the C5 feature dimensions to 256 channels using 1×1 convolutions. The
grayscale input images are replicated across three channels to match the pre-trained
ResNet50 input requirements.

4.2. Transformer encoder configuration
The transformer encoder processes the projected C5 features with the following
architecture:

• Model dimension: 256 channels

• Attention heads: 8 multi-head attention mechanisms

• Encoder layers: 3 stacked transformer layers

• Feedforward dimension: 1024 neurons

• Dropout rate: 0.1 for regularization

The implementation includes learnable CLS tokens initialized with random nor-
mal distribution (stddev=0.02). Positional encoding preserves spatial relationships
that would otherwise be lost in the self-attention mechanism.

4.3. Training configuration
The hybrid model employs several advanced training techniques to address dataset
challenges:

• Optimizer and Learning Rate: We use AdamW optimizer with initial
learning rate of 1 × 10−4 and weight decay of 1 × 10−4. The learning rate
follows a cosine annealing schedule with warm restarts. All models train for
100 epochs with batch size 128.
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• Focal Loss Implementation: To handle the severe class imbalance, focal
loss with α=0.25 and γ=2.0 dynamically adjusts example contributions based
on classification difficulty.

• Mixup Data Augmentation: Linear interpolation between training pairs
creates synthetic examples using Beta distribution sampling (α=0.2, applica-
tion probability=0.5), improving generalization and creating smoother deci-
sion boundaries.

• Multi-Head Training: The primary classification head receives a weight
of 0.7, with auxiliary heads sharing the remaining 0.3 to enable multi-scale
supervision.

5. Experiments and results

5.1. Experimental setup
We evaluate our approach on the FER-2013 dataset containing 35,887 grayscale
images across seven emotion categories. To assess result stability, each model con-
figuration was trained five times with different random initializations (no fixed
seeds). Training was conducted on NVIDIA Tesla V100 with 32GB VRAM, re-
quiring approximately 42 minutes per run for the hybrid model.

5.2. Performance comparison and ablation study
Figure 2 presents the performance comparison across four model configurations.
Each model was trained five times with different random initializations to assess
stability.

As shown in Figure 2, the proposed ResNet+FPN+Transformer architecture
achieves 80.90% accuracy, demonstrating substantial improvements over the base-
line ResNet50 (77.69%). Both the FPN and Transformer components provide sig-
nificant contributions: FPN adds 2.35 percentage points through multi-scale fea-
ture fusion, while the Transformer contributes 2.77 points through global context
modeling.

Component Comparison. Direct comparison between ResNet+FPN
(80.04%) and ResNet+Transformer (80.46%) reveals that the Transformer pro-
vides a slightly higher individual improvement (+0.42%). This suggests that while
both components are valuable, global context modeling has a marginally stronger
impact than multi-scale features for overall accuracy. However, the similar mag-
nitude of improvements (2.35% vs 2.77%) indicates that both components address
important but complementary aspects of the problem.

Synergistic Effect. Our full hybrid architecture achieves 3.21 percentage
points improvement over the baseline. While the combined improvement is less
than the theoretical sum of individual components (2.35% + 2.77% = 5.12%),
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Figure 2. Ablation study results on FER-2013 dataset. Mean
accuracy over 5 independent runs with error bars showing standard

deviation (±1σ).

this reflects the natural interaction between components where some features over-
lap. The integration successfully leverages the complementary strengths of both
FPN and Transformer, as demonstrated by the superior per-class performance
across all emotion categories. The low standard deviations across all configura-
tions (0.29%–0.50%) indicate stable training across different initializations.

5.3. Per-class performance analysis
To understand how different architectural components affect recognition across
emotion categories, we analyze per-class performance for all model variants in Fig-
ure 3.

Figure 3 reveals distinct performance patterns across emotion categories, demon-
strating how different architectural components contribute to recognition of specific
expressions.

ResNet+FPN Performance. The FPN component demonstrates balanced
improvements across most categories, particularly excelling at fear (47.31%), sur-
prise (86.04%), and neutral (90.89%). This suggests that multi-scale feature ex-
traction effectively captures subtle facial details crucial for these expressions, such
as the fine-grained texture patterns around the eyes in fear and the overall facial
relaxation characteristic of neutral expressions.

ResNet+Transformer Performance. The Transformer component shows
exceptional performance on angry expressions (78.15%), achieving an 8.61% im-
provement over the FPN-based model. This indicates that global context modeling
is particularly beneficial for expressions characterized by complex spatial relation-
ships, where the coordination between multiple facial regions (furrowed brows,
tightened lips, and tensed jaw) must be jointly considered. However, the Trans-
former shows reduced performance on fear (38.71%, -8.60% vs FPN), suggesting
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Figure 3. Per-class accuracy comparison across different architec-
tures on FER-2013 dataset. Results averaged over 5 independent

runs.

that purely global features may miss fine-grained local details critical for this emo-
tion.

Complementary Strengths. Direct per-class comparison reveals that FPN
and Transformer excel at different emotion categories. FPN outperforms Trans-
former on fear (+8.60%), surprise (+2.93%), and neutral (+1.27%), while Trans-
former excels on angry (+8.61%) and sad (+2.03%).

Full Model Advantages. Our complete ResNet+FPN+Transformer architec-
ture successfully integrates these complementary strengths. The full model achieves
best overall performance on neutral (92.00%) and fear (50.54%), demonstrates
improved robustness on underrepresented classes like disgust (52.17% vs 47.83%
baseline), and maintains more balanced performance across all emotion categories.
Notably, while neither FPN nor Transformer alone improves disgust recognition,
their combination yields a 4.34 percentage point improvement, suggesting that the
integration enables the model to better handle challenging minority classes.

The confusion matrix in Figure 4 reveals the classification patterns of our model.
Fear and surprise expressions show some confusion due to similar visual character-
istics such as widened eyes. Sad and neutral expressions also demonstrate moderate
confusion, while happy expressions show the least confusion with other categories.
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Figure 4. Confusion matrix for ResNet-FPN-Transformer model
showing classification patterns.

5.4. Discussion

Dataset limitations

The FER-2013 dataset, while widely used as a benchmark, presents several inherent
limitations that constrain the interpretation of our results:

Low Resolution and Grayscale: The 48×48 grayscale images limit the model’s
ability to capture fine-grained facial details and color-based cues that may be
relevant for expression recognition in higher-quality images.

Cultural Bias: FER-2013 predominantly contains Western facial expressions, po-
tentially limiting generalization to cross-cultural contexts where expression
interpretation may differ.

Label Noise: The crowdsourced annotation process introduces label inconsisten-
cies, as subjective interpretation of subtle expressions varies across annota-
tors.

Performance positioning

While some recent approaches report higher accuracies on FER-2013 through spe-
cialized techniques such as ensemble methods, extensive data augmentation, or
larger model architectures, our work prioritizes practical deployment considera-
tions. Our 80.90% accuracy demonstrates effective integration of multi-scale fea-
tures and global context modeling, while maintaining advantages in privacy (client-
side inference), interpretability (3D visualization), and accessibility (browser-based
deployment without specialized hardware).
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6. Web application
We developed a web application that provides an integrated platform for facial
expression recognition with interactive visualization capabilities.

6.1. Client-side architecture
Our web application implements a fully client-side architecture using TensorFlow.js,
ensuring privacy by processing facial data entirely in the browser. The system
comprises three main modes:

Image Analysis: Users upload images for static expression prediction with con-
fidence visualization and feature map analysis.

Real-Time Recognition: WebRTC-based camera access enables continuous fa-
cial expression analysis with frame processing control for responsive perfor-
mance.

3D Network Visualization: An interactive Three.js-based visualization allows
users to explore the neural network architecture, with nodes representing
different layer types and connections showing data flow.

6.2. Web deployment architecture
6.2.1. TensorFlow.js model conversion

The trained model undergoes conversion to TensorFlow.js format [5] for browser
deployment. The conversion process includes weight quantization, layer optimiza-
tion, and format adaptation to web-compatible tensor operations.

6.2.2. Client-side inference pipeline

The browser-based inference implements efficient preprocessing and prediction.
The preprocessing pipeline includes image resizing to 48×48 pixels using bilinear
interpolation, RGB to BGR channel conversion for ResNet compatibility, ResNet
mean normalization ([103.939, 116.779, 123.68]), and batch dimension expansion
for model input.

Memory Management: The system implements tensor disposal and parallel
execution for efficient real-time processing.

Performance Optimization: Real-time processing uses parallel execution for
prediction and feature map extraction through Promise.all(), maintaining re-
sponsive user interaction while processing facial expressions.
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6.2.3. WebRTC integration

Camera access utilizes WebRTC APIs for cross-browser compatibility. The im-
plementation includes frame rate control to balance processing load with visual
responsiveness. Error handling manages camera access permissions and device
compatibility issues.

6.3. Interactive visualization features
6.3.1. 3D neural network rendering

Figure 5 demonstrates the 3D network visualization interface. Users can rotate,
zoom, and interact with the network structure to understand the data flow and
component relationships. Different geometric shapes represent various layer types,
with color coding indicating layer functions and activation levels.

The Three.js-based visualization1 creates interactive representations of the neu-
ral network architecture:
Geometric Layer Mapping: Different layer types receive distinct visual repre-

sentations:

• Convolutional layers: Cube geometries with dimensions reflecting kernel
sizes

• Pooling layers: Pyramid shapes indicating dimensionality reduction
• Dense layers: Sphere geometries scaled by neuron count
• Transformer layers: Octahedron shapes distinguishing attention mecha-

nisms

Spatial Layout Algorithm: Node positioning implements hierarchical arrange-
ments based on network depth. The algorithm calculates appropriate spacing
to maintain visual clarity while preserving logical data flow relationships.

Interactive Controls: User interaction includes mouse/touch rotation and zoom-
ing controls, click events revealing detailed layer information, and animation
controls demonstrating forward pass data flow.

6.3.2. Feature map visualization system

The feature map visualization in Figure 6 provides insights into model decision-
making by displaying activation patterns across network layers. The system shows
how early layers capture edges and textures, while deeper layers focus on emotion-
specific abstractions. The animated progression helps users understand the hierar-
chical feature learning process.

The feature map extraction system processes intermediate network activations.
The system extracts activations from multiple network layers during inference and
selects representative channels (4 channels per layer) for visualization.

1R. Cabello: Three.js – JavaScript 3D library, https://threejs.org/
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Figure 5. Interactive 3D visualization. Figure 6. Feature maps.

Visualization Rendering. The system displays feature maps as animated heat-
maps, showing the progression from edge detection in early layers to emotion-
specific abstractions in deeper networks. Color-coded intensity maps reveal which
facial regions activate different network components.

Real-time Animation. Feature map updates synchronize with inference oper-
ations, providing immediate visual feedback about network decision-making pro-
cesses. The animation sequence demonstrates how facial features propagate through
the network hierarchy.

6.4. Performance optimization
The complete system implements several optimization techniques:

Adaptive Rendering: Visualization quality adjusts based on device capabilities,
maintaining smooth interaction across different hardware configurations.

Lazy Loading: Components initialize only when needed, reducing initial applica-
tion load times and memory usage.

Efficient Resource Management: WebGL contexts and Three.js objects un-
dergo proper cleanup to prevent resource leaks during extended usage ses-
sions.

6.5. Ethical considerations
Privacy Protection. Our fully client-side architecture processes all facial data
locally in the user’s browser without server transmission, providing inherent privacy
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advantages over cloud-based systems. No facial images or extracted features leave
the user’s device.

Fairness and Bias. Facial analysis systems may exhibit performance dispari-
ties across demographic groups. Future work should evaluate our model’s fairness
across age, gender, and ethnicity to ensure equitable performance.

Appropriate Use. We emphasize that emotion recognition technology should
complement rather than replace human judgment, particularly in sensitive appli-
cations such as mental health assessment or surveillance contexts.

7. Conclusion
We presented a hybrid architecture combining multi-scale features and global con-
text modeling for facial expression recognition, with client-side deployment and
interactive visualizations. Future work should address cross-cultural validation
and temporal modeling for video analysis.

While our system demonstrates several innovations, we acknowledge key limi-
tations: (1) evaluation on a single, imbalanced dataset with inherent quality con-
straints, (2) performance gap (approximately 4-5 percentage points) compared to
state-of-the-art methods, and (3) the need for further validation on diverse, real-
world data to assess practical robustness across demographic groups and environ-
mental conditions.

Key innovations include the hybrid architecture design, comprehensive training
methodology addressing class imbalance, and interactive visualizations bridging
the gap between technical AI implementations and human understanding. The
3D network visualization and feature map animations provide valuable educational
insights into neural network behavior.

Future work includes extending to cross-cultural expression analysis, incorpo-
rating temporal information for video sequences, and developing mobile-optimized
versions through model compression techniques.

References
[1] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby: An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale, in: International Con-
ference on Learning Representations (ICLR), Published at ICLR 2021; originally posted to
arXiv in 2020, 2021, doi: 10.48550/arXiv.2010.11929.

[2] K. He, X. Zhang, S. Ren, J. Sun: Deep Residual Learning for Image Recognition, in: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778,
doi: 10.1109/CVPR.2016.90.

[3] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie: Feature Pyramid
Networks for Object Detection, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 936–944, doi: 10.1109/CVPR.2017.106.

https://uni-eszterhazy.hu/fmf 113https://uni-eszterhazy.hu/fmf 113https://uni-eszterhazy.hu/fmf 113

https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.106
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


M. Hu, G. Kovásznai FMF-AI 2025

[4] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár: Focal Loss for Dense Object Detection,
IEEE Transactions on Pattern Analysis and Machine Intelligence 42.2 (2020), DOI registered
in 2018, published in 2020, pp. 318–327, doi: 10.1109/TPAMI.2018.2858826.

[5] D. Smilkov, N. Thorat, Y. Assogba, A. Yuan, N. Kreeger, P. Yu, K. Zhang, S. Cai, E.
Nielsen, D. Soergel, S. Bileschi, M. Terry, C. Nicholson, S. N. Gupta, S. Sirajuddin, D.
Sculley, R. Monga, G. Corrado, F. B. Viégas, M. Wattenberg: TensorFlow.js: Machine
Learning for the Web and Beyond, in: Proceedings of the 2nd SysML Conference, 2019, 2019,
doi: 10.48550/arXiv.1901.05350.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin: Attention is All You Need, in: Advances in Neural Information Processing
Systems (NeurIPS), 2017, pp. 5998–6008, doi: 10.48550/arXiv.1706.03762.

[7] H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz: mixup: Beyond Empirical Risk Mini-
mization, in: International Conference on Learning Representations (ICLR), Originally posted
to arXiv in 2017, 2018, doi: 10.48550/arXiv.1710.09412.

114 Proceedings of the FMF-AI 2025114 Proceedings of the FMF-AI 2025114 Proceedings of the FMF-AI 2025

https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.48550/arXiv.1901.05350
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1710.09412


Proceedings of the International Conference on
Formal Methods and Foundations of Artificial Intelligence
Eszterházy Károly Catholic University
Eger, Hungary, June 5–7, 2025
pp. 115–128 DOI: 10.17048/fmfai.2025.115

Detection of God Class and Data Class
code smells based on an automatic

machine learning tool

Nasraldeen Alnor Adam Khleel, Károly Nehéz

Department of Information Engineering, University of Miskolc,
Miskolc, H-3515, Hungary

{nasr.alnor,aitnehez}@uni-miskolc.hu

Abstract. Code smells are symptoms of poor design or incomplete imple-
mentation that can degrade software quality and maintainability. Detecting
them is crucial for improving software reliability and guiding refactoring ef-
forts.

Traditional detection methods rely on predefined rules or thresholds,
which are inflexible and prone to errors, while modern machine learning ap-
proaches require significant expertise and large, balanced datasets.

To address these challenges, we propose an automated code smell detec-
tion method using AutoGluon, an AutoML framework that streamlines model
selection, hyperparameter tuning, and handling of imbalanced datasets.

To evaluate the effectiveness of the proposed method, experiments were
conducted using two code smell datasets: God Class and Data Class. The
performance of the method was evaluated using six different metrics: accu-
racy, precision, recall, F-measure, Matthew’s correlation coefficient (MCC),
and the area under the receiver operating characteristic curve (AUC).

Additionally, we have also compared our proposed method with state-
of-the-art code smell detection methods. Experimental results show that
AutoGluon achieves high predictive performance—up to 0.98 accuracy for
God Class and 1.00 for Data Class, which often matches or outperforms state-
of-the-art methods, demonstrating the potential of AutoGluon for efficient
and scalable code smell detection.
Keywords: code smells, software metrics, machine learning, AutoGluon Tool

1. Introduction
Code smells are signs of poor design that go against basic design rules [10, 12].
Finding these issues is important because it helps fix and improve the code, making
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the software better and less likely to fail. These problems usually happen when
developers are in a rush, use weak designs, or write quick but flawed code [10].

Software metrics play a crucial role in detecting code smells by providing mea-
surable data about the quality and structure of code. These metrics act as objec-
tive indicators that help developers assess the health of a software system, allowing
them to pinpoint areas that may require refactoring [3, 12, 13]. By analyzing dif-
ferent aspects such as complexity, coupling, cohesion, and size, software metrics
help identify potential design flaws that may lead to maintainability issues, poor
performance, or increased technical debt. When left unaddressed, these issues can
make the codebase harder to understand, modify, and scale, ultimately increasing
development costs and the risk of software failures [7, 16].

To enhance the accuracy and efficiency of code smell detection, machine learning
techniques can be applied to analyze software metrics and automatically classify
code as clean or smelly [4, 5]. Supervised learning algorithms, such as decision trees,
random forests, and deep learning models, can be trained on historical datasets
containing labeled code samples with identified code smells. These models learn
patterns from the software metrics and can predict the presence of code smells in
new, unseen code [1, 11].

Traditional methods for detecting code smells rely on rigid rules and static
thresholds, which lack adaptability to different projects, require high maintenance,
and often ignore the broader context of the code, leading to inaccuracies. These
methods also struggle to scale for large or complex software systems. Modern
machine learning approaches, while more adaptable, face challenges such as de-
pendency on large labeled datasets, difficulty handling imbalanced data, the need
for expert knowledge to tune models, high computational costs, and the risk of
overfitting [12, 13, 16].

One powerful tool for automating the detection of code smells using machine
learning is AutoGluon. AutoGluon is an open-source AutoML framework that
simplifies the process of training and tuning machine learning models. AutoML
frameworks provide a helpful solution for both beginners and experts in machine
learning. For beginners, they make it easier to build high-performing ML models
by handling complex tasks automatically. For experts, AutoML allows them to
set up best practices—like choosing models, combining multiple models, tuning
settings, preparing data, and splitting datasets—just once. After that, they can
apply these steps repeatedly without needing to do everything manually. This
helps experts use their knowledge more efficiently across different projects without
constant hands-on work.

So, AutoGluon can address the challenges of traditional and modern techniques
in detecting code smells by automating model selection, hyperparameter tuning,
and handling imbalanced data with built-in techniques like class weighting and
resampling, making code smell detection more efficient, scalable, and accessible
without requiring extensive expertise or manual adjustments. By using AutoGluon,
developers can easily apply machine learning to detect code smells without requir-
ing deep expertise in model selection and hyperparameter tuning.
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By leveraging software metrics with machine learning techniques, particularly
with AutoGluon, developers can build intelligent, automated systems for detecting
code smells[6, 17].

The contributions of this research can be summarized as follows: (i) Develop-
ment of an automated code smell detection methodology using AutoGluon (Au-
toML): This study introduces a novel approach that automates model selection,
tuning, and evaluation for code smell detection, reducing manual intervention and
improving efficiency in software quality assessment. (ii) Comprehensive empiri-
cal evaluation on real-world datasets: Various AutoGluon models were evaluated
on real software datasets using multiple performance metrics, addressing challenges
such as class imbalance and identifying the most impactful software metrics through
feature importance analysis. (iii) Facilitation of scalable and reproducible code
quality assessments: The research contributes a practical and data-driven method-
ology that can be integrated into software development workflows, providing consis-
tent, automated, and interpretable code smell detection, thus supporting empirical
software engineering research and industrial applications.

2. Related work
Many traditional and modern methods for detecting code smells have been pro-
posed in previous research works [1, 3–5, 11–13, 16].

Arcelli et al. [3] presented an approach for identifying code smells that involves
the use of various ML techniques. The results indicate that all techniques performed
satisfactorily; however, the imbalanced data adversely affected the performance of
certain models.

Mhawish and Gupta [16] presented an approach for predicting code smells using
ML techniques and software metrics. The authors utilized datasets obtained from
Fontana et al., and their experimental results showed that the accurate prediction
of code smells can be significantly facilitated by employing ML techniques.

Cruz et al. [4] conducted an assessment of seven ML algorithms to identify four
distinct types of code smells, while also analyzing the influence of software metrics
on the detection of code smells. The experimental results found that ML algorithms
can perform well in detecting bad code smells, and metrics play a fundamental role
in detecting bad code smells.

Dewangan et al. [5] proposed an approach based on six ML algorithms to predict
code smells based on four datasets obtained from 74 open-source systems. The
proposed approach’s effectiveness was assessed using various performance metrics,
and two feature selection methods were implemented to improve the accuracy of
the predictions. The experimental results showed that their approach achieved
high prediction accuracy.

Khleel and Nehéz [1, 11–13] presented various classical machine and advanced
learning algorithms with different data balancing methods to detect code smells
based on a set of Java projects. The authors examined four datasets related to
code smells (God class, data class, feature envy, and long method) and compared
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the results using various performance metrics. The experiments demonstrated that
the models proposed, along with data balancing methods, exhibited improved per-
formance in detecting code smells. In addition, the results were compared with
those of state-of-the-art code smell detection methods. A comparison of the exper-
imental results indicates that their method outperforms state-of-the-art code smell
detection methods.

After reviewing previous studies in code smells detection, based on our knowl-
edge, there are no studies that applied AutoML tools for this issue. Therefore, our
study focuses on applying a new method for code smell detection, which is based
on the AutoGluon Tool.

3. Proposed methodology
In this study, we present a systematic approach for automated code smell detec-
tion using AutoGluon. The choice of methodology in this study was guided by the
need for scalability, automation, and robustness in code smell detection. So, Auto-
Gluon was selected as the AutoML framework due to its ability to automate feature
selection, model tuning, and ensemble construction while effectively handling im-
balanced datasets [6], compared with traditional workflows such as Decision Trees,
Random Forests, Support Vector Machines, k-Nearest Neighbors, and XGBoost, as
well as deep learning models including CNN, LSTM, and GRU that rely on manual
thresholding or tuning [3, 12, 13, 16].

Experimental results demonstrate that AutoGluon-based models achieve high
accuracy—up to 0.98 for God Class and 1.00 for Data Class, which often outper-
form or match the state-of-the-art, highlighting the potential of AutoML to deliver
accurate, efficient, and reproducible code smell detection suitable for integration
into continuous quality assurance processes.

The methodology follows a structured pipeline that includes key stages such
as software metrics, data modeling and collection, data preprocessing, feature se-
lection, models building and performance evaluation. Each of these steps plays a
crucial role in ensuring the accuracy and effectiveness of the detection model. Fig-
ure 1 provides an overview of the proposed methodology, with detailed explanations
of each stage outlined in the following sections.

3.1. Software metrics, data modeling and collection
Software metrics are crucial for creating prediction models that help improve soft-
ware quality by identifying and predicting software defects, such as bugs and code
smells [12]. These metrics reveal patterns and signs that are linked to issues in
the software [13]. Many studies have shown that these metrics are effective in pre-
dicting vulnerabilities in the code [12]. These metrics reveal patterns and signs
that are linked to issues in the software [3, 11–13]. Additionally, researchers have
demonstrated that software metrics can also be used to evaluate how reusable a
piece of software is [14, 19].
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Figure 1. Overview of the Proposed Method for Code Smells
Detection.

There are two main types of software metrics: static code metrics and process
metrics. Static code metrics are directly extracted from the source code, while
process metrics come from the source code management system, based on histor-
ical changes in the code over time. Process metrics reflect how the code evolves,
including changes in the code itself, the number of changes made, and information
about the developers [1, 11].

In various studies, McCabe’s Cyclomatic Complexity and Halstead metrics were
commonly used as independent variables to analyze code smells. McCabe’s Cyclo-
matic Complexity measures the number of independent control paths in a program,
indicating its structural complexity [13]. So, McCabe’s Cyclomatic Complexity
metrics focus on software quality, including cyclomatic complexity, essential com-
plexity, design complexity, and lines of code [13].

Halstead metrics calculate program length, volume, difficulty, and effort based
on operators and operands, reflecting the cognitive complexity of the code. Hal-
stead divides software metrics into three categories: base measures, derived mea-
sures, and lines of code [3, 13, 15].

Choosing the right dataset is a key step in machine learning (ML) because clas-
sification models work better when the dataset closely matches the problem being
studied. In this study, the detecting code smells models use supervised learning,
which depends on a large set of software metrics as input data. Having well-
structured datasets is important for training ML models effectively and ensuring
that the results can be applied to different cases [10, 13].

For our analysis, we used the Qualitas Corpus, a collection of software systems
compiled by researchers E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M.
Lumpe, H. Melton, and J. Noble [20]. This dataset includes many Java-based
systems of different sizes and application types, as listed in Table 1, and Table 2
Lists the two specific code smells that we have investigated.
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Table 1. Summary of project characteristics [3].

Number of systems Lines of code Number of packages Number of classes
74 6,785,568 3420 51,826

Table 2. Lists the two specific code smells that we have investi-
gated [3].

Code smells Description Affected entity
God Class A God Class is a type of code smell that occurs when

a single class takes on too many responsibilities, vi-
olating the Single Responsibility Principle.

Class

Data Class A Data Class is a type of code smell where a class
primarily exists to store data without meaningful be-
havior or logic.

Class

3.2. Data pre-processing and feature selection
Pre-processing the collected data is one of the critical stages before constructing
the model. To generate a high-performing model, data quality must be taken into
account [12]. Not all data collected is immediately suitable for training and model
development. The quality of input features has a significant impact on model
performance and, ultimately, prediction outcomes.

Data pre-processing encompasses a series of techniques aimed at improving the
dataset by handling noise, removing irrelevant outliers, addressing missing values,
and converting feature types to compatible formats. In this study, a clean and
validated dataset was used to minimize the need for extensive preprocessing [12,
16].

Normalization was applied to scale numerical feature values to a uniform range
(0 to 1), which helps enhance model learning efficiency [11, 16]. Specifically,
Min–Max normalization was used. The normalization formula used is described
in Equation (3.1).

Feature Selection is another crucial component of the modeling pipeline, as
it aims to reduce dimensionality by retaining only the most informative and dis-
criminative features relevant to the target variable [13]. This process eliminates
irrelevant, redundant, or noisy variables, which may otherwise decrease model ac-
curacy and increase training time [1, 4].

In this study, we adopted an embedded feature selection method, which is
inherently integrated within the model training process. Unlike filter methods
that evaluate features independently of any learning model, or wrapper methods
that evaluate subsets of features through repetitive training cycles (which can be
computationally expensive), embedded methods assess feature importance during
model construction. This allows the algorithm to automatically prioritize features
that improve performance and ignore those that do not contribute meaningfully.

AutoGluon, the AutoML framework used in this study, performs this embedded
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selection as part of its training pipeline, making it both computationally efficient
and well-suited for handling high-dimensional software metric datasets. Addition-
ally, feature scaling was applied to ensure that all selected features were on a
comparable scale, further supporting consistent learning behavior across models.

xi = (xi − Xmin)/(Xmax − Xmin) (3.1)

Where max(x) and min(x) represent the maximum and minimum value of the
attribute x, respectively.

3.3. Models building and evaluation
In this study, model development and evaluation were conducted using AutoGluon,
an open-source AutoML framework that automates the machine learning pipeline
and supports both novice and advanced users. AutoGluon simplifies tasks such
as data preprocessing, feature engineering, model selection, and hyperparameter
tuning, enabling rapid development of high-performing models.

It supports a diverse range of algorithms, including LightGBM, RandomForest-
Entr, LightGBMXT, XGBoost, and deep neural networks, all of which are automat-
ically trained and combined through ensemble techniques such as WeightedEnsemb-
le-L2 [2, 8]. For this work, the dataset was split into 80% for training and validation
(handled internally through cross-validation) and 20% for independent testing. Au-
toGluon applied classification-appropriate defaults such as log loss for optimization
and automated selection of learning rates and batch sizes.

The evaluation of the trained models was based on standard metrics derived
from the confusion matrix, including accuracy, precision, recall, F1-score, and
MCC, which is a statistical metric used to assess the performance of binary classi-
fication models. It takes into account true and false positives and negatives and is
regarded as a balanced measure, even if the classes are of very different sizes. Ad-
ditionally, AUC was employed to assess the discriminative ability of the classifiers,
illustrating the trade-off between True Positive (TP) and False Positive (FP) rates
across different thresholds [9, 18].

As shown in Figure 2, the confusion matrices for each dataset confirm the
models’ effectiveness in predicting smelly and non-smelly code. The mathematical
formulations of these metrics are defined in Equations (3.2) to (3.7).

Overall, AutoGluon’s automation and ensemble strategy proved effective for
detecting code smells such as God Class and Data Class, delivering robust perfor-
mance with minimal manual intervention.

Accuracy = ((TP + TN))/((TP + FP + FN + TN)) (3.2)

Precision = (TP )/((TP + FP )) (3.3)

Recall = (TP )/((TP + FN)) (3.4)
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F − Measure = ((2 ∗ Recall ∗ Precision))/((Recall + Precision)) (3.5)

MCC = TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(3.6)

AUC =

∑
insi∈Positive Class

rank(insi) − M(M+1)
2

M · N
(3.7)

4. Experimental results and discussion
The experimental evaluation aimed to assess the performance of the proposed
AutoGluon-based methodology for detecting code smells using real-world datasets,
which are God Class and Data Class, sourced from the Qualitas Corpus. Mul-
tiple models were automatically trained and optimized by AutoGluon, including
LightGBM, RandomForestEntr, LightGBMXT, XGBoost, and the ensemble model
WeightedEnsemble-L2. Each model’s performance was evaluated using standard
classification metrics such as accuracy, precision, recall, F1-score, MCC, and AUC.
As shown in Tables 3 and 4, for the God Class dataset, all five top-performing
models (including LightGBM, XGBoost, and LightGBMXT) achieved high levels
of accuracy, ranging from 0.97 to 0.98, with corresponding precision and recall
values consistently reaching 0.96 or higher. The MCC and AUC values for these
models also remained close to or at 1.00, indicating excellent discriminatory power.
Similarly, for the Data Class dataset, the models demonstrated outstanding perfor-
mance, with LightGBM, RandomForestEntr, and WeightedEnsemble-L2 achieving
perfect scores (1.00) across all metrics, while XGBoost and LightGBMXT followed
closely with slightly lower, yet still impressive, values.

Table 3. Evaluation results for the top five models – God Class
dataset.

Models Performance Measures
Accuracy Precision Recall F-measure MCC AUC

LightGBM 0.97 0.94 1.00 0.96 0.95 1.00
RandomForestEntr 0.98 0.96 1.00 0.98 0.97 1.00

LightGBMXT 0.98 0.96 1.00 0.98 0.97 0.99
XGBoost 0.98 0.96 1.00 0.98 0.97 0.98

WeightedEnsemble-L2 0.98 0.96 1.00 0.98 0.97 0.99

In terms of training efficiency (Table 5), the AutoGluon-based models achieved
consistently strong performance on the God Class dataset. The best results were
achieved by LightGBMXT and WeightedEnsemble-L2, both reaching a validation
accuracy of 0.985 and a test accuracy of 0.988. These models also had relatively low
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Table 4. Evaluation results for the top five models – Data Class
dataset.

Models Performance Measures
Accuracy Precision Recall F-measure MCC AUC

LightGBM 1.00 1.00 1.00 1.00 1.00 1.00
RandomForestEntr 1.00 1.00 1.00 1.00 1.00 1.00

LightGBMXT 0.98 1.00 0.97 0.98 0.97 0.99
XGBoost 0.97 1.00 0.94 0.97 0.95 1.00

WeightedEnsemble-L2 1.00 1.00 1.00 1.00 1.00 1.00

training times (0.36s and 0.45s, respectively), showing a strong balance between
accuracy and efficiency. Notably, XGBoost performed similarly in test accuracy
(0.988) but trained faster (0.175s), making it the most efficient model in terms
of runtime. For the Data Class dataset, performance was even more impressive.
LightGBM and WeightedEnsemble-L2 achieved perfect scores on both validation
and test sets (1.000). While LightGBMXT required significantly longer training
time (2.48s), it still maintained high accuracy (0.985 validation, 0.988 test).

Table 5. Training Time (seconds) and Models Performance.

Models God Class Dataset
fit-time score-val score-test

LightGBM 0.405785 0.970588 0.976190
RandomForestEntr 0.657616 0.970588 0.988095

LightGBMXT 0.361412 0.985294 0.988095
XGBoost 0.175200 0.970588 0.988095

WeightedEnsemble-L2 0.450221 0.985294 0.988095
Models Data Class Dataset

fit-time score-val score-test
LightGBM 0.273476 1.000000 1.000000

RandomForestEntr 0.646896 0.985294 1.000000
LightGBMXT 2.481219 0.985294 0.988095

XGBoost 0.180894 0.985294 0.976190
WeightedEnsemble-L2 0.360617 1.000000 1.000000

The confusion matrices (Figure 2) and AUC (Figure 3) visually confirmed the
models’ ability to accurately distinguish between smelly and non-smelly classes.
The confusion matrices underline the efficacy of AutoGluon models in accurately
detecting code smells. The minimal or absent false classifications demonstrate the
robustness of these models. In addition to accuracy, precision, recall, F-measure,
and MCC, we also report AUC scores to assess the discriminative ability of the clas-
sifiers. As shown in Tables 3 and 4, AUC values for both God Class and Data Class
datasets are consistently high, ranging from 0.98 to 1.00 across all models. These
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results confirm that the classifiers are not only highly accurate but also robust in
distinguishing smelly from non-smelly classes. This finding is particularly impor-
tant when dealing with imbalanced datasets, where accuracy alone can sometimes
mask poor performance in minority classes. The consistently high AUC values
demonstrate that AutoGluon-based models achieve excellent sensitivity-specificity
trade-offs, reinforcing their suitability for automated software quality assurance
tasks.

Figure 2. Confusion Matrix for the models over all datasets.

Figure 3. AUC for the models over all datasets.

AutoGluon provides feature importance scores based on permutation shuffling,
which quantifies how much the model’s performance decreases when each feature
is randomly shuffled. Higher importance scores indicate that the model relies more
on that feature for making predictions. Therefore, feature importance analysis
(Figures 4 and 5) revealed that a subset of software metrics significantly influenced
the prediction outcomes, validating the effectiveness of embedded feature selection
techniques used in the pipeline.

In comparison with previous state-of-the-art approaches (Table 6). We com-
pared our results with the results obtained in previous studies based on the accu-
racy. The values marked with “-” indicate that the approaches that did not use
data balancing techniques or did not provide results for the performance measure
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Figure 4. Feature importance scores for the models – God Class
Dataset.

Figure 5. Feature importance scores for the models – Data Class
Dataset.

in a particular data set. Additionally, our proposed models are highlighted in bold
text. According to the Table, some of the results in the previous studies are better
than ours, but in most cases, our method outperforms the other state-of-the-art
approaches and provides better predictive performance. These findings collectively
demonstrate the practicality, robustness, and accuracy of the AutoGluon frame-
work in automating code smell detection, reducing reliance on human expertise,
and offering scalable solutions for software quality assurance. Future studies could
focus on testing these models on larger datasets or in real-world scenarios to further
validate their effectiveness and generalizability.

Temporal and Long-Term Development Context of God and Data Classes: Code
smells such as God Classes and Data Classes rarely emerge instantaneously; in-
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Table 6. Comparison of the proposed models with other existing
approaches based on accuracy.

Approaches Data Balancing
Techniques

God Class Data Class

Decision Tree [12] Random oversampling 0.98 1.00
K-Nearest Neighbors [12] Random oversampling 0.97 0.96
Support Vector Machine [12] Random oversampling 0.96 0.97
XGBoost [12] Random oversampling 0.96 1.00
Multi-Layer Perceptron [12] Random oversampling 0.97 0.98
Bi-LSTM [13] Random oversampling 0.96 0.99
GRU [13] Random oversampling 0.96 0.98
Bi-LSTM [13] Tomek links 0.96 0.95
GRU [13] Tomek links 0.96 0.99
Random Forest [3] – 0.96 0.98
Naive Bayes [3] – 0.97 0.97
Random Forest [16] – – 0.99
CNN [6] SMOTE 0.96 0.98
XGBoost [2] SMOTE 0.99 –
SVM [2] SMOTE 0.97 –
KNN [2] SMOTE 0.97 –
Random Forest [8] – 0.69 0.70
Naive Bayes [8] – 0.82 0.75
SVM [8] – 0.74 0.83
KNN [8] – 0.80 0.82
Our proposed LightGBM – 0.97 1.00
Our proposed Random-
ForestEntr

– 0.98 1.00

Our proposed LightGB-
MXT

– 0.98 0.98

Our proposed XGBoost – 0.98 0.97
Our proposed
WeightedEnsemble-L2

– 0.98 1.00

stead, they evolve gradually as projects grow in size and complexity, often per-
sisting across multiple releases. Their longevity reflects not only design flaws but
also the developmental pressures and shortcuts taken during software evolution. In
this study, the analysis was based on static snapshots of systems from the Quali-
tas Corpus, so project timelines and release histories were not explicitly captured.
Nevertheless, prior research indicates that both God Classes and Data Classes of-
ten become long-lived entities, contributing to technical debt across the lifecycle
of software projects. Integrating AutoML-based detection into CI/CD pipelines
offers a way to address this challenge by enabling continuous monitoring of these
smells, allowing teams to identify their emergence early, track their growth, and
guide timely refactoring. In this way, automated detection not only classifies exist-
ing design problems but also supports sustainable software evolution by mitigating
the accumulation of long-lived technical debt.
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5. Conclusion
Code smell detection involves identifying patterns in the source code that indicate
potential problems with design or implementation, even if the code is working
correctly.

This study presented an automated approach to detecting code smells using
AutoGluon, an AutoML framework that simplifies the machine learning workflow
by automating tasks such as model selection, hyperparameter tuning, feature se-
lection, and data balancing.

By leveraging software metrics and structured data from the Qualitas Corpus,
the proposed methodology was evaluated on two prominent code smell types: God
Class and Data Class. The experimental results confirmed the effectiveness of
the approach, with all models achieving high accuracy, precision, recall, F1-score,
MCC, and AUC.

The use of AutoGluon allowed for efficient training and performance optimiza-
tion without manual tuning, making the methodology accessible to both novice and
expert users. The models also showed resilience to imbalanced data and highlighted
the impact of key software metrics through feature importance analysis.

Moreover, comparisons with existing state-of-the-art approaches demonstrated
that the proposed method either outperformed or matched traditional and deep
learning-based techniques, further validating its competitiveness and reliability.

Overall, the integration of AutoML techniques into code smell detection offers
a promising pathway toward automated, interpretable, and scalable software qual-
ity assessment. Future work may include expanding the methodology to detect
additional types of code smells, applying the approach to larger and more diverse
software projects, and exploring hybrid AutoML strategies for further performance
gains.
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Abstract. The problem of detecting untrained categories may cause effi-
ciency degradation in many application areas, because the real-word domains
are usually dynamic, or the available data set may be incomplete. Despite
the relatively high cost of related misclassification errors, the field of openset
learning is an underinvestigated domain in machine learning. The main goal
of this paper is to investigate the efficiency of current technologies for the
openset learning problem on a standard benchmark image dataset. As the
results of the performed comparison tests show that the widely proposed stan-
dard methods do not provide good results, in many cases the hybrid methods
can dominate the usual approaches. In the paper, we present a novel extended
threshold method that provides better accuracies than the usual benchmark
methods.
Keywords: image classification, CNN neural networks, openset learning prob-
lem
AMS Subject Classification: 68T07

1. Introduction
Neural networks are now the dominant technologies in complex classification and
regression tasks. The neural network as a universal approximator applies a complex
network of elementary functions to predict the function values at arbitrary posi-
tions. According to the General Approximation Theorem, a feedforward neural
network with a single hidden layer containing a finite number of neurons and us-
ing a continuous activation function increasing monotonically can approximate any
continuous function [6]. The model construction process to adjust the weight values
of the neural network is optimized with a training process. The usual backprop-
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agation optimization method adapts the weight values to the available supervised
training dataset.

In the case of classification problems, the neurons in the output layer corre-
spond to the different categories in the dataset and the neuron with the highest
output value determines the winner category [1]. For example, in the case of im-
age classification, the set of image categories is fixed and the training set should
cover all categories in a uniform way. The problem of unbalanced class distribu-
tion is a widely investigated problem [7] as it can cause efficiency degeneration
due to difficulty learning the limits of the decision or to misleading performance
metrics. Thus, one of the main goals of the data preparation phase is to build a
well-balanced training data set for the predefined categories.

Usually, it is hard work to meet this kind of requirement, or sometimes it is
an impossible task. Our investigation focuses on the domain of related open-set
learning problems [2]. Unlike the traditional situation, the test set may contain
cases that do not belong to any of the categories presented in the training set. The
test data set may contain instances of previously unseen classes. The key challenge
here is to detect these unseen cases; the neural network should recognize that the
input differs significantly from any trained categories.

The problem of detecting untrained categories may occur in many areas of
application, because the real word domains are usually dynamic, or the available
data set may be incomplete [5]. We can highlight the following application domains
where the risk of incomplete training set is relatively high:

• image object classification, where the image contains un-trained objects widely
used technology in medical diagnosis or autonomous driving,

• intruder detection,

• fault detection in industrial monitoring,

• sentiment analysis.

Despite the relatively high cost of related misclassification errors, the field of
openset learning is an underinvestigated domain in machine learning. The main
goal of this paper is to investigate the efficiency of current technologies for the
openset learning problem on a standard benchmark image dataset.

The results of the performed comparison tests show that the widely proposed
standard methods do not provide good results, in many cases the hybrid meth-
ods can dominate the usual approaches. In the paper, we also present a novel
extended threshold method that provides accuracies that are better than the usual
benchmark methods.

2. Related methods
The problem domain of openset learning is similar in many aspects to some other
problem domains related to incomplete training datasets. One of these fields is
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the one-class classification problem [15]. In the case of one-class classification, the
training set contains only a single class (only positive cases), and the main goal of
the prediction is to determine whether the test object belongs to this class or not
[5].

The one-shot learning domain [14] refers to the case when the training set con-
tains only a single example for each existing class. Here, the generated model
should provide an optimal generalization based on a single element per class. The
training process cannot memorize the common features found in the different in-
stances of the class, it should discover the characteristic features which can be used
to distinguish the different classes.

In zero-shot learning, the generated model is not based on instances, but on
some available metadata, semantic information on the different classes [16]. The
main challenge in this problem domain is the efficient integration of the different
multi-model metadata information items.

In the investigated openset learning task, the problem domain can be charac-
terized by the following properties [12]:

• The applied training set does not cover all classes possibly found in the pro-
duction data.

• The generated model should correctly recognize all classes found in the train-
ing set.

• The method should identify the classes not contained in the training set as
an outlier or an ‘unknown’ class.

• No additional semantic information is provided on the classes; the model is
inferred only from the available instances.

In the literature, we can find several approaches to deal with this domain of
open-set learning problem. The main methods are summarized in the following
table.

• Threshold-based category acceptance. We apply the usual multicategory clas-
sifier neural network built on the training set. Using the softmax activation
function, the output values represent the probability distribution across the
different classes. If the maximum output value is below a certain threshold
(no clear winner category), the test image is assigned as an outlier [4].

• The OpenMax method is a special variant of the threshold approach. It
applies a Weibull distribution to involve the probability of the ‘unknown’
class. [18]

• Distance-based approach where the method is based on the concept of local-
ity. If the new item is far from any training items, the tested item can be
considered an outlier, unknown class [12].
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• Development of a MLP neural network for similarity regression, where the
similarity shows the distance of the test image to the trained categories. If
the similarity is below a given threshold, the test image belongs to the new
category.

• Application of generative models, autoencoder neural networks to predict the
membership similarity to the known categories. Separate autoencoder neural
networks are constructed for the different categories. Taking the test image,
the engine generates the autoencoder output for every class. If the maximum
similarity between the input and output images is below a threshold, the
image is classified as an outlier.

• Outlier exposure method, where the initial training set is extended with noisy
outlier data that are labeled ‘unknown’ class. Although this method improves
the robustness of the model, noisy extension usually does not cover all possible
external cases [17].

The most widely used approach for the openset problem is the OpenMax
method introduced in [2] from 2016. The method first takes the activation outputs
of all known classes for all input in the training set. Then it calculates the mean
activation vector for each class. In the next step, the distances between the mean
vector and the single activation vectors are calculated, then the top k elements
with largest distances are selected, and using these values a Weibull distribution is
fit for the distinct classes.

P (d | λc, kc) = 1 − exp
(

−
(

d

λc

)kc
)

For an input test item, we first calculate the standard activation vector and distance
values. In the next step, using the Weibull distribution weights, a revised activation
vector is calculated. The formula for the Weibull weights:

ws(i)(x) = 1 − a(i) exp
(

−
(

d

λs(i)

)ks(i)
)

Next, we take an additional activation function for the unknown class. In the last
step, we apply the softmax layer for this extended revised activation vector, which
also contains a probability value for the unknown class.

The Isolation Forest method [3] applies a space segmentation algorithm to iso-
late outlier elements in the data space. The Isolation Forest architecture is built
up from more random isolation trees. For each node in the isolation tree, a ran-
dom dimension (attribute) is assigned, and a binary split procedure is performed.
The split procedure ends if the size of the corresponding subtree is below a given
threshold. Using this methodology for the entire forest, we can calculate an av-
erage depth for each item in the data set. Those items are considered outliers or
unknown cases, where this average depth is a small value.
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Isolation Forests were introduced by Liu, Ting, and Zhou in 2008 [10] as an
unsupervised method for fast anomaly detection. The algorithm is based on two
key assumptions:

• anomalies represent a minority in the dataset, and

• their feature values differ significantly from those of the majority [11].

Figure 1. Algorithm of building the isolation tree.

Figure 2. The structure of the isolation tree.

3. Proposed approaches
In our investigation, we propose an extended variant of the threshold-based ap-
proach. Usually, the existing methods perform a similarity check in the input
space or in the output space. Our assumption is that both spaces can provide
additional information about outlier items. Thus, the proposed method applies
two class similarity measures for outlier detection. The first component calculates
the similarity of the softmax output probability values. The method calculates the
differences between the probability p1 of the winner class and the probability p2 of
the second-best class.

w1(x) = p1(x) − p2(x)
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In the formula, the symbol x denotes the current element to be tested. If the model
is not sure which class is the winner, this measure w1(c) is small.

The second measure is used to locate outliers in the feature space of the objects.
Usually, the input space contains the required feature vectors, but in the case of
images, the input matrix provides only a pixel-level description, which represen-
tation is far from the semantic-level feature vector content. To provide a better
representation of semantical features, the first method version utilizes the input
vectors of the last Dense layer classifier module of the CNN neural network. Thus,
the output of the flattening layer is used to describe the image features.

For a given element x, we define

w2a(x, c) =
∑

i∈c

exp(−d(x, xi))

where the summation runs over the objects of class c. The symbol d() denotes
the distance between the tested item and a single object in class c. The large
w2a(x, c) values mean that the item is near the elements of class c, and the small
w2a(x, c) values indicate an outlier element. The proposed method calculates the
weight values both for the winner class and the complement classes. In the case
of outliers, where the class prediction is incorrect, there is no significant difference
between the values for the winner and rejected classes.

In addition to the flattening layer method, we also applied the perceptual hash-
ing approach. The perceptual hashing method is used to generate content-based
fingerprints of images. The calculation of the description vector consists of the
following steps:

• Standardization of the image, conversion to predefined size, and grayscale
colormap.

• Application of a discrete cosine transform to detect the internal description
using components of different frequency.

• Extraction of the most important components

• Calculation of the hash value for the selected components.

The final decision on the outlier status is calculated with the following method.

1. Generating the predicted class (c1) and the second-best class c2 for the input
object x using the trained CNN neural network.

2. Calculation of w1(x).

3. If w1(x) < α1 then x is an unknown outlier class.

4. Calculation of w2(x, c1).

5. If the value of w2 is above a threshold alpha2, then x is an unknown outlier
class.
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In addition to the extended threshold method, we have also tested an ensemble
CNN version classifier, where we built up a separate classifier neural network for
all classes in the data set. Each of the classifiers works as a binary classifier related
to one of the classes. If the predicted class probability is below a threshold in each
class, the test item will be predicted as an unknown class.

Considering the members of the ensemble, we investigated more variants of the
output vector representation forms, all related to some type of layer of the CNN
network. Our tests involved the following feature vector variants:

• Flattened output of convolutional layers, where a PCA reduction concept was
applied to have a moderate vector size.

• Output of the fully connected layer in the MLP module.

• Logits of the output layer in the MLP unit.

• Softmax of logits.

As this architecture presented the weakest accuracy in the preliminary tests (more
than 22% lower accuracy than the extended threshold method), we decided to
eliminate it from the group of final candidate methods.

The third proposed variant was the application of an isolation forest architec-
ture. This structure is a special variant of the random forest architecture, where
the main goal is to efficiently locate outlier nodes. The method will partition the
item into disjoint leaf nodes. If the size of the container nodes is below a threshold,
the element is considered as an outlier.

In our investigation, we adapted the Isolation Tree method to the outlier de-
tection of images, and we proposed two variants:

1. The output of the convolution module was used as the vector of attributes of
the object.

2. The softmax layer output was used as the feature vector.

4. Experimental evaluation

4.1. Test environment
The main goal of the tests performed was to evaluate the proposed outlier detection
methods and compare the accuracy levels achieved with a benchmark method.

In the tests, the following methods were involved:

• OpenMax algorithm as benchmark method

• Isolation forest

• Extended threshold method
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The test system was implemented in Python Keras-Tensorflow framework using
the Colab development environment.

For the tests, we applied the following three benchmark image classification
datasets:

• CIFAR-10 [8]

• MNIST-10 [9]

• COIL-20 [13].

The CIFAR-10 benchmark dataset contains 60000 images (50000 for training
and 10000 for test) of small resolution (32*32). The images belong to 10 cate-
gories. In the tests, we created reduced training sets to exclude instances of some
selected categories. In the test dataset, we assign these instances to a new com-
mon category. From the point of view of category prediction in the test phase, the
training dataset contains only positive examples, having only “known known” and
“unknown unknown” classes [5].

The original CIFAR-10 dataset includes items from 10 classes, but we selected
3 as unknown classes, thus the CNN neural network models involved in the exper-
iments were trained only on 7 known classes.Thus the training dataset contained
35000 images, Image resolution is (32, 32, 3). For the tests, we used all classes, the
test set contained 10000 images Thus nearly 30% of the test items belonged to the
unknown category.

The MNIST-10 dataset is a key benchmark in machine learning and computer
vision, specifically for image classification tasks. The dataset consists of a large
collection of 70,000 grayscale images of handwritten digits. The images are encoded
into a pixel matrix of size (28 , 28, 1). Its primary role is to provide a standardized,
simple dataset for training and testing various image classification algorithms, from
classic machine learning models to complex deep learning architectures. .

The Columbia Object Image Library (COIL-20) is a well-known dataset in the
field of computer vision. It consists of 1,440 grayscale images of 20 different objects.
In our tests, we included only 10 categories. The images were created by placing
each object on a turntable and capturing 72 images at 5-degree intervals as it was
rotated through 360 degrees. This setup provides a comprehensive set of images
for each object, showing it from a wide range of poses and angles.

4.2. Test results
In the efficiency tests, we measured the following accuracy values:

• T1: Validation accuracy in training of the baseline CNN model with 7 classes;

• T2: Test accuracy with 7 classes on the trained baseline CNN model;

• T3: Test accuracy with 10 classes on the trained baseline CNN model;

• T4: Test accuracy with 10 classes using the baseline OpenMax NN model;
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• T5: Test accuracy with 10 classes on the proposed Extended threshold NN
model;

• T6: Test accuracy with 10 classes on the proposed Isolation Forest NN model
using convolution layer output;

• T7: Test accuracy with 10 classes on the proposed Isolation Forest NN model
using softmax layer output.

In the tests, we performed five measurements and calculated the average and
standard deviation aggregations. The resulting aggregation values are summarized
in Table 1. The aggregated values are based on 5 measurements. In the first row,
we see the validation accuracy at the end of the training process. We involved
only 7 classes into the training, the members from 3 classes were removed from
the training set. The output layer of the constructed neural network was able to
recognize only 7 categories. The second row shows the accuracy of the test data set
with 7 classes. In the third row, the values show the test accuracy when the test
dataset contained all 10 classes. The fourth row shows the test accuracy achieved
using the OpenMax method using 10 classes in the test. The fifth row relates to the
Extended threshold method, while the sixth row is for the results of the Isolation
tree method. All values in the table are given in percentage units.

Table 1. Results of the comparison tests.

Method
measure

CIFAR
avg

CIFAR
stdev

MNIST
avg

MNIST
stdev

COIL
avg

COIL
stdev

T1 91.1 0.94 99.5 0.07 99.1 0.68
T2 71.5 0.54 98.8 0.41 98.7 1.56
T3 49.8 0.35 68.9 0.39 82.7 0.89
T4 48.7 0.56 69.5 0.04 82.8 0.34
T5 50.8 0.43 74.9 0.89 82.9 3.2
T6 49.0 1.94 47.8 3.12 82.3 0.24
T7 64.1 1.92 78.6 1.71 81.9 0.74

As we can see in the result table, we experienced an unexpected weak result
in the case of the baseline OpenMax method. The OpenMax method achieved
very similar accuracies as the baseline neural network, there was no significant
improvement. We remark that we did not perform a hyperparameter tuning for
the OpenMax method in our tests.

In the tests on the Extended threshold method, the proposed method consis-
tently yielded better results than the baseline CNN neural network or the OpenMax
method. The improvement is 1% for the CIFAR and 6% for the MNIST datasets.
In each individual test sample, the extended threshold dominated both methods
mentioned above.

The tests on the Isolation Forest method has clearly shown, that from the
variants of the methods tested, the isolation tree with softmax output provided
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the best result. Similarly to the Extended threshold approach, the isolation tree
method dominated the OpenMax engine as well. In comparison of the different
feature vector variants for the isolation tree, only the softmax variant dominated
the Extended threshold method.

5. Conclusion
The main goal of the presented work was to investigate the efficiency of the detec-
tion of unknown classes in the image classification problem. The situation, when
the test dataset contains instances of such classes which were not present in the
training set, may cause significant efficiency degradation. The methods to cope
with this kind of problem are investigated under the umbrella term openset learn-
ing.

In the paper, we present the key solution approaches and also introduce two
proposed method variants: Extended threshold method and the Isolation Tree
method. For the tests, we used three widely popular datasets: CIFAR-10, MNIST-
10, and COIL-20. The CIFAR-10 dataset contains a large amount of low-quality,
small images. As can be expected, this dataset is a hard target for the open-set
learning problem.

Based on the test results,we can summarize our experiences in the following
points:

• The proposed Isolation Forest with softmax feature representation yielded
the highest accuracy.

• The other proposed method, Extended Threshold approach secured second
place in the competition.

• The baseline OpenMax outlier detection method produced results comparable
to the baseline ANN neural network.

• The test results clearly demonstrate that the presence of unseen categories
significantly degrades accuracy.

These experiences and test results with low accuracy values show that the de-
tection of unknown classes is a hard problem, the known methods can provide only
a slightly improvement. The further optimization of the proposed method is the
next key step in our investigation.
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Abstract. Automatic detection and classification of design patterns are an
increasingly relevant task in modern software engineering, as it directly con-
tributes to improving code quality, readability, and maintainability. In this
paper, we propose the application of a modified Tree-Based Convolutional
Neural Network (TBCNN) architecture for the recognition of GoF design
patterns in Java source code. The approach leverages Abstract Syntax Trees
(ASTs) as structural representations of programs, where nodes are encoded
by a pre-trained embedding model that captures semantic similarities be-
tween language keywords. The resulting vectorized ASTs are processed by the
TBCNN, enabling the model to learn both structural and semantic features
characteristic of design patterns. For training and evaluation, we collected a
dataset of Java implementations of design patterns from GitHub repositories,
resulting in approximately 500–600 samples per pattern. Experimental re-
sults demonstrate high classification accuracy, with average precision, recall,
and F1-scores exceeding 98% across eight design patterns. These findings
confirm the viability of tree-based deep learning methods for pattern recog-
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nition in source code. However, the model shows limitations when applied to
real-world production code, likely due to the restricted representativeness of
the training data, which consists mainly of educational implementations.
Keywords: design patterns, Tree-Based CNN, source code analysis

1. Introduction
Design patterns provide proven, reusable solutions to recurring design problems
and are widely used to improve code quality, readability, and maintainability [3].
Despite their importance, automatic recognition of design patterns in source code
remains challenging. Traditional approaches often rely on handcrafted rules or
classical machine learning over engineered features, which are costly to maintain
and tend to generalize poorly across projects and coding styles [9]. Recent advances
in learning on program structure suggest that models operating directly on Abstract
Syntax Trees (ASTs) can capture both syntactic and structural regularities of code
[8]. Building on these insights, we revisit design pattern classification through the
lens of tree-based deep learning.

Our study is motivated by the early work of Márien on the decision structures
underlying design patterns [4–7], which highlights that patterns exhibit distinc-
tive structural signatures. Tree-Based Convolutional Neural Networks (TBCNNs)
have shown promise in learning from ASTs without handcrafted features [8], but
their applicability to pattern-level classification in real-world codebases has not
been systematically assessed. This leaves a gap between rule-heavy detectors and
structure-aware neural models.

We address the following question:

RQ: Can a modified Tree-Based Convolutional Neural Network effec-
tively and robustly classify Gang-of-Four (GoF) design patterns in Java
source code from AST representations?

We focus on eight GoF patterns that are both prevalent in practice and struc-
turally discriminative: Adapter, Bridge, Builder, Decorator, Null Object, State,
Strategy, and Template Method. We target method- and class-level manifestations
as they appear in compilable Java files.

We propose a two-stage pipeline. First, we pre-train a keyword/token embed-
ding model on Java code to obtain semantically informed vector representations
for AST nodes. Second, we feed vectorized ASTs to a modified TBCNN, in which
we adjust the coefficient matrix computation within the tree-based convolution to
better reflect heterogeneous child-role contributions. This design aims to couple
semantic token proximity with structural pattern signals.

To study feasibility at scale, we curate a pattern-labeled corpus from public
GitHub repositories by querying files whose names and directory contexts indicate
any of the eight target patterns. While this yields substantial coverage per pattern,
many examples are educational implementations. We therefore explicitly evaluate
generalization and discuss limitations stemming from dataset representativeness.
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This paper makes the following contributions:

1. We formulate and evaluate a structure-aware deep learning approach for de-
sign pattern classification that operates directly on ASTs using a modified
TBCNN.

2. We construct a pattern-focused Java dataset covering eight GoF patterns and
report comprehensive per-pattern metrics.

3. We provide an empirical analysis highlighting strong performance on aca-
demic style implementations and outlining the generalization gap to produc-
tion code, thereby charting directions for hybrid and data-centric improve-
ments.

Our experiments indicate that the proposed model achieves high precision/recall
on the curated benchmark, supporting the viability of tree-based deep learning for
pattern recognition. At the same time, we observe reduced robustness on pro-
duction code, underscoring the need for richer, more diverse training data and for
combining learned structural features with lightweight, interpretable constraints.
These observations motivate future work on dataset expansion, transfer learning,
and hybrid rule+ML detectors.

Section 2 provides a concise overview of related work; Section 3 details the
models, the modified tree convolution, and describes the dataset; Section 4 presents
experiments and results; Section 5 concludes with limitations and future work.

2. Related work
The task of detecting and classifying design patterns has been studied from dif-
ferent perspectives, ranging from rule-based analysis to machine learning methods.
Several surveys and empirical studies have highlighted both the importance of the
problem and the challenges of building reliable detectors.

A systematic review by Yarahmadi and Hasheminejad [10] provides a compre-
hensive overview of design pattern detection approaches, categorizing them into
rule-based, metrics-based, graph-matching, and machine learning families. Their
study points out that most existing techniques rely heavily on handcrafted fea-
tures or structural rules, which limit generalization to diverse coding styles and
large-scale industrial systems.

Early work by Alhusain et al. [1] explored the feasibility of machine learning
for design pattern recognition by using feature extraction combined with neural
networks. Although pioneering, their approach was constrained by small datasets
and relatively simple features, which restricted robustness. Later, Chaturvedi et
al. [2] applied classical machine learning algorithms such as decision trees, support
vector machines, and artificial neural networks to detect design patterns. They
demonstrated that machine learning can achieve competitive accuracy, but also
confirmed that feature engineering is critical and often domain-specific.
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Zanoni et al. [11] investigated the integration of graph-based structural analysis
with machine learning. Their MARPLE-DPD framework models design pattern
instances as graphs and applies supervised learning for classification. This work
represents an important step toward combining structural representations with
learning techniques, yet it was mainly validated on relatively small systems.

Overall, the literature suggests that machine learning approaches to design
pattern detection are promising, but existing studies are often limited by hand-
crafted features, small datasets, and simplified implementations. This motivates
structure-aware deep learning methods, such as Tree-Based Convolutional Neural
Networks (TBCNNs), which can directly exploit Abstract Syntax Trees (ASTs)
without manual feature engineering. Our work builds on these insights by apply-
ing and modifying a TBCNN architecture for pattern-level classification, aiming
to better capture the structural and semantic signatures of GoF design patterns in
Java source code.

3. Models
As it was mentioned earlier, we use two separate models for our problem. The
architectures of these models are represented on Figure 1 and on Figure 2. The
first model is used only for learning the programming language. The architecture
is simple: embedding layer, fully connected layer and softmax layer.

Figure 1. The keyword encoder.

The classification model has two input layers: vectorized AST and an array of
node indexes. The inputs are concatenated, then the result is fed to the TBC layer,
which is followed by a fully connected and a softmax layer.

Figure 2. The design pattern classifier.

We modified the calculation of the coefficient matrix in the tree-based convolu-
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tion. The equations (3.1), (3.2), and (3.3) represent the original calculations. We
replaced equation (3.3) by equation (3.4).

ηt
i = di − 1

d − 1 (3.1)

ηr
i = (1 − ηt

i)
pi − 1
n − 1 (3.2)

ηl
i = (1 − ηt

i)(1 − ηr
i ) (3.3)

ηl
i = ci (3.4)

Where ci is a vector with length equal to the number of children of the node filled
with ones.

3.1. Training dataset
Source codes for the training dataset were gathered from GitHub, since the platform
keep records of several million Java files. To select the required files, we used queries
based on file names, thus downloaded Java files with names of design patterns.
Approximately 500-600 files were gathered for each design pattern. The training
dataset is built, but the quality may be questionable, since these files probably
contain implementations for educational purposes, which makes them very similar.

4. Results
The dataset was divided into three parts: training, validation and test datasets.
The proportion of files in the separate datasets is 70:15:15.

The model achieved high precision at the beginning already. After the 15th
epoch, the precision is over 90% on both the training and validation datasets.

We evaluated the model successfully, the result is visible on Figures 3, 4, 5 and
Table 1.

Table 1. Metrics.

DP Precision Recall F1

Adapter 0.9894 1.0000 0.9947
Bridge 0.9500 1.0000 0.9744
Builder 1.0000 1.0000 1.0000

Decorator 0.9806 1.0000 0.9902
Null Object 0.9873 1.0000 0.9936

State 0.9753 0.9518 0.9634
Strategy 0.9800 0.9515 0.9655

Template Method 1.0000 0.9759 0.9878

Average 0.9828 0.9849 0.9837
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Figure 3. Confusion matrix of design pattern predictions.

Figure 4. Training and validation accuracy across epochs.
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Figure 5. Training and validation loss across epochs.

5. Conclusion
In this paper, we applied a Tree-Based Convolution based machine learning model
on a design pattern classification and detection problem with partial success. The
model is very accurate in classifying the given design patterns, but as the experi-
ments show it has problems with detecting design patterns in real world production
code. We assume that the main problem behind this phenomenon is the lack of
real world production source code in the training dataset.

Future work will focus on expanding the dataset with real-world industrial code
bases and exploring hybrid approaches to improve generalization.
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Abstract. Recent advances in artificial intelligence and its widespread adop-
tion have imposed the necessity of research targeting the inner mechanisms
of intelligent systems. We lack the exact mathematical tools needed to grasp
what led to a certain output. The term explainability has recently emerged
in the context of artificial intelligence (AI) as an area of development. An
efficient way to introduce a checkpoint into decision-making systems is to in-
corporate prototype units. These bridge the difference between input image
space and feature space, offering us a glimpse into an intermediary phase
of decision-making. We created a new model – WaveProtoSeg – from the
WaveProtoPNet classification model, combining image segmentation with the
wavelet transform as a feature extractor. Our experiments were conducted on
the Cityscapes dataset, which gathers real street scenes. Although we did not
achieve the accuracy of the original paper, we explored various configurations
of the system, and we managed to build a versatile system.
Keywords: image segmentation, wavelet, explainability, prototype

1. Introduction
Intelligent systems are experiencing significant advances at a rapid pace and are
being progressively integrated into safety-critical fields, including healthcare, de-
fense, and autonomous driving. Despite their accuracy, deep learning models often
function as black boxes, offering little insight into their decision-making processes,
posing risks when human lives or assets are at stake. This has led to growing
interest in explainable artificial intelligence (XAI), which aims to improve model

This work benefitted from the project “Romanian Hub for Artificial Intelligence - HRIA”,
Smart Growth, Digitization, and Financial Instruments Program, 2021-2027, MySMIS no.
334906.
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transparency and trust [17, 19].
Prototype-based approaches have demonstrated significant potential in this

field. Prototypes may be conceptualised as instances in the feature space that
exemplify a certain class, encapsulating the core properties characteristic of that
class, analogous to learning vector quantization [10]. They capture key features
during training and serve as reference points for interpreting predictions from new
data. They can reveal model errors, biases, and decision rationale, making them
valuable tools for developers.

However, the implementation of prototypes poses a significant challenge, the
need to connect the initial raw input with the more abstract high-level feature
space. Many of the current methodologies to address this issue typically depend on
complex, computationally demanding black-box architectures. In contrast, wavelet
transforms [15] provide a lightweight alternative, effectively capturing spatial and
frequency information from images viewed as 2D signals.

This study presents WaveProtoSeg (see Figure 2), a segmentation model that
integrates wavelet-based feature extraction with interpretable prototype learning,
starting from our previous work, WaveProtoPNet [12, 13]. Similarly to the Proto-
Seg [18] framework, this approach focuses on achieving pixel-wise image segmenta-
tion, with the main difference in using wavelets as feature extractors. Its accuracy
is assessed using the realistic Cityscapes dataset [3], which provides a rich and
complex urban environment for evaluation, relevant to the needs of autonomous
driving. WaveProtoSeg aims to deliver transparent and interpretable output.

The article is structured as follows. In Section 2 a review of the literature
is conducted, after which the model is presented in Section 3, followed by the
experiments and discussion in Section 4, ending with the conclusion in Section 5.

2. Literature review

2.1. Image segmentation and explainability
Image segmentation is a fundamental task in computer vision that assigns a class
label to each pixel of an image, dividing it into semantically coherent regions.
Unlike image classification, which outputs a single label per image, segmentation
operates at a finer granularity, making it essential for applications like medical
imaging, autonomous driving, and remote sensing [4, 22].

Although classification has historically been the entry point for XAI in re-
search and industry, segmentation has received increasing attention since the late
2010s [25]. Early successful segmentation models include U-Net [16], designed for
biomedical image analysis, and SegNet [1], which uses an encoder-decoder struc-
ture to map input images to prediction in pixels. More recently, transformer-based
models such as Segmenter [21] have been introduced to capture long-range depen-
dencies in segmentation tasks.

Segmentation poses unique challenges for interpretability. Decisions at the pixel
level must account for local context and global consistency, often leading to com-
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plex interactions between neighbouring pixels. This makes explanations harder to
interpret and evaluate, especially when no clear ground truth is available for what
constitutes a valid explanation.

Explainable image segmentation techniques can be broadly categorised into
post-hoc and architecture-based methods [8]. For post-hoc methods, the model
does not directly explain its predictions, and an independent model is employed to
obtain this information. Architecture-based methods are inherently explainable,
i.e. providing an explanation alongside the prediction. Among these inherently
interpretable models, prototype-based explanations offer an intuitive and inter-
pretable approach by associating predictions with representative examples from
the training data. Each class is linked to a set of learnt prototypes, which provide
visual justification for predictions based on similarity to prototypical regions [9].
Counterfactual explanations form another important branch, focusing on identify-
ing the minimal changes to input that would alter the model output, thus helping to
understand the decision boundaries and increase the robustness against adversarial
perturbations. Perturbation-based methods systematically occlude or modify parts
of the input image to analyse the resulting changes in output, offering insight into
which regions are the most influential. Gradient-based approaches, such as saliency
maps and Grad-CAM [20], utilise gradient information from subsequent network
layers to produce heat maps that highlight the regions most responsible for a par-
ticular prediction [7, 24]. Finally, architecture-based methods are interpretable by
design, embedding explainability directly into the model’s structure rather than
relying on post-hoc interpretation.

Our proposed model is similar to the previous ProtoSeg architecture introduced
in [18], which demonstrated interpretable semantic segmentation through the use
of prototypical image patches learnt from training data, a patch of an image being
a smaller region of it. This model expands on ProtoPNet [2], which served as the
basis for our earlier development of the WaveProtoPNet model. ProtoSeg incorpo-
rates a diversity loss to encourage the model to learn a broad and representative set
of prototypes, thereby enhancing interpretability. In our work, we retain the core
structure and interpretability framework of ProtoSeg, while extending its capabil-
ities by integrating a wavelet-based feature extractor. This modification results in
more transparent feature representations.

2.2. Wavelets in image segmentation
Wavelet transforms offer a powerful tool for analysing signals in both space and fre-
quency domains simultaneously. Unlike the Fourier transform, which only provides
frequency information and loses spatial localisation, wavelets allow multiresolution
analysis, capturing both coarse structures and fine details [15].

The Discrete Wavelet Transform (DWT) decomposes a signal into approxima-
tion and detail coefficients through a series of low-pass and high-pass filters. In the
context of image processing, this results in a set of sub-bands that highlight differ-
ent spatial features, such as edges and textures. Wavelets are localised, meaning
they are compact in both space and frequency, making them well suited for tasks
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like denoising, compression, and feature extraction.
The two-dimensional wavelet transform applies these low- and high-pass filters

to images by filtering along rows and columns, leading to four quarter-sized images
at each decomposition level, focusing on: approximation coefficients (low+low)
and detail coefficients in horizontal (low+high), vertical (high+low), and diagonal
(high+high) directions. This hierarchical decomposition can be recursively applied
to the approximation result for a finer scale analysis (i.e., higher decomposition
levels); see Figure 1.

aj l̄

h̄

y2

y2

Rows

l̄

h̄

y2

y2

aj+1

d1j+1

Columns

l̄

h̄

y2

y2

d2j+1

d3j+1

Wavelet decomposition Result of decomposition

Figure 1. (left) Wavelet transform using low-pass and high-pass
filters (l, h). (right) The result of the decomposition on an image.
The average component (aj+1, upper-left corner) underwent an ad-

ditional decomposition (⇒ decomposition on 2 levels).

In wavelet segmentation methods, such as the Wavelet Segmentation Method
(WSM) demonstrated improved performance in capturing background and small-
scale features compared to classical threshold-based techniques [6]. In sonar imag-
ing applications, wavelet filters have been used to reduce noise while enhancing
feature localisation, showing the benefit of wavelet-based multiscale representa-
tions [23].

In deep learning, several models incorporate wavelet transforms into convolu-
tional neural networks (CNNs) to replace conventional downsampling layers (e.g.,
max-pooling, strided convolution). For example, Haar wavelets have been used to
decompose feature maps into low-frequency and high-frequency components during
encoding. Integrating Haar wavelet downsampling improves segmentation accu-
racy, particularly in boundary regions. [26]

A notable advancement is XNet [27], a deep learning architecture that integrates
DWT and Inverse Wavelet Transform into a U-Net-style encoder-decoder. XNet
captures both global context and local detail by separating and recombining fre-
quency information, leading to improved performance even under semi-supervised
conditions. However, its success is limited when high-frequency features are not
prominent in the input data.

In general, wavelets offer a lightweight and effective alternative for multiscale
feature extraction in segmentation tasks, particularly where interpretability and
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boundary precision are critical.

3. Methodology
To incorporate wavelets into the segmentation framework, we explore three distinct
architectural configurations (see Figure 2), each offering different trade-offs in terms
of the granularity of feature representation and output resolution.

a.

wavelet
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.  .  .

patch
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.  .  .
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Figure 2. Different WaveProtoSeg builds: (a) patch extraction at
the beginning and patch-sized prototypes, (b) patch extraction via
wavelet decomposition; (c) pre-extracting patches and prototypes

smaller than patch-size.

In WaveProtoSeg, image feature extraction is performed using wavelet decom-
position – the different applications of it will be explained in detail in each three
setups. This operation produces a set of feature maps from the input image x –
denoted as ϕ(x) = z – which are then passed to the prototype layer. In case of
c.setup, this will be split into smaller patches: z̃ ∈ P(z) ≡ patches(z). The output
produced by the jth prototype unit (pj) can be written as:

gpj
(z) = max

z̃∈P(z)
log

((
||z̃ − pj ||22 + 1

)
/
(
||z̃ − pj ||22 + ϵ

))
.

Based on the similarity scores between the prototypes and the feature maps, the
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classification will take place. After the classification of each pixel, the results will
be gathered into one final result: the segmentation map of the original image. The
prototype units themselves are also learnt from the wavelet-extracted features. The
depth of wavelet decomposition, that is, the number of decomposition levels, is a
tunable hyper-parameter.

In the first configuration, shown in Figure 2.a, each pixel in the input image
is associated with a local patch. These patches are independently decomposed
with wavelet transform until the average (low-frequency) component is reduced to
a single pixel. The resulting feature map of each patch retains the same spatial
dimensions as the original patch. The result is a vector of dimension 1 × (Hp · Wp),
where Hp · Wp is the size of the patch. For an image x of size 32 × 32, this
process results in 32 × 32 distinct patches – one for each pixel – that capture the
local neighbourhood context. These feature vectors are then compared to the learnt
prototypes in the prototype layer. Since this setup generates a prediction per input
pixel, the output resolution matches the input. Conceptually, this is analogous to
PrototypeDL [11], which learns entire images as prototypes; here, the prototype
layer learns entire patches.

FeaturesWaveletsImage

Figure 3. (left) Highlighted patch from the original image. (mid)
Purple regions on the feature map indicate dispersed data of the

patch. (right) Vector-form rearrangement of the feature map.

In the second configuration (b.setup), the entire image is wavelet-decomposed
in one pass. Following decomposition, patches are extracted from the resulting fea-
ture map; see Figure 3. This significantly reduces the number of patches compared
to a.setup, resulting in a smaller output resolution. For example, decomposing a
128 × 128 image may produce a 32 × 32 feature map, leading to 32 × 32 patches.
Hence, the architecture in Figure 2.b provides fewer segmentation predictions, cor-
responding to the spatial dimensions of the decomposed map. This setup resembles
the WaveProtoPNet approach, where images are decomposed into feature maps,
and patches from these maps are used to learn and compare prototypes.

The third configuration (from Figure 2.c) shares structural similarities with
a.setup, in that the patches are extracted before wavelet decomposition. However,
the number and size of patches are user-defined hyper-parameters. Each patch is
decomposed only up to a certain level, stopping before the approximation compo-
nent reduces to a single pixel. This allows the average part to retain a spatial extent
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of multiple pixels. For example, decomposing a 256×256 input into 16×16 patches
and performing three levels of wavelet decomposition result in a 2 × 2 component
for each 8 × 8 patch. These are flattened into 1 × 1 × 64 feature vectors, which
also define the prototype dimensions. This setup enables fine-grained semantic
matching while maintaining computational efficiency. In this case, the prediction
granularity of the model remains aligned with the input image. The inner part of
this setup, after extracting patches is basically a WaveProtoPNet by structure –
and its pixel-wise results will be gathered into one segmentation mask.

Despite differences in feature map construction and output resolution, all three
configurations share the same prototype layer and fully connected classification
layer. The size of prototype vectors varies depending on the setup, but the com-
parison logic remains consistent. The primary hyper-parameters include patch size,
decomposition depth, and number of prototypes.

Loss functions
During training and evaluation, we adopted the loss formulation proposed in Pro-
toSeg [18], while also evaluating an alternative loss from our previous work, Wave-
ProtoPNet. The training comprises two distinct phases: initially, it concentrates
on prototype formation, and subsequently, it emphasizes classification accuracy
while mitigating negative reasoning.

Let D = {(xi, yi)} = [X, Y ] denote a data set of images and labels.
In the first phase, when the focus is on prototype learning, the weights of the

fully connected layer h are frozen, so that the edges that connect a prototype with
the class for which they are responsible are set to 1, otherwise to −0.01:

w
(k,j)
h =

{
1 if pj ∈ Pk

−0.01 otherwise,

where w
(k,j)
h denotes the weight of the edge connecting the jth prtotoype to the

class k, and Pk being the set of prototypes responsible for class k.
The loss responsible for prototype-formation from ProtoPNet includes:

Cluster Cost (LClst), which encourages each prototype to be close to at least one
patch of its corresponding class: LClst = 1

n

∑n
i=1 minpj∈Pyi

minz∈P(ϕ(xi)) ||z−pj ||22;
Separation Cost (Sep), that promotes distance between prototypes and patches of
different classes: LSep = − 1

n

∑n
i=1 minpj /∈Pyi

minz∈P(ϕ(xi)) ||z−pj ||22. The total loss,
focusing on prototype formation, includes both the cross-entropy classification loss
(LCE) and regularisation terms:

L1 = LCE + λ1LClst + λ2LSep

In contrast, the ProtoSeg loss function introduces a prototype diversity term
based on Jeffrey’s divergence. It will be written in a suitable form for a.setup
and b.setup. This term ensures that prototypes of the same class are activated in
different regions of the input image, promoting interpretability and coverage.
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Jeffrey’s divergence between the distributions U and V is defined as: DJ(U, V ) =
1
2 DKL(U ∥ V ) + 1

2 DKL(V ∥ U), being the symmetrised version of the Kullback-
Leibler divergence (DKL). For multiple distributions U1, U2, . . . , Un, their similar-
ity is computed as: SJ(U1, U2, . . . , Un) = 1

Cn
2

∑
exp(−DJ(Ui, Uj)).

Given a prototype corresponding to class c: p ∈ Pc and a feature map Z with
the corresponding ground truth labels YZ ∈ RHd×Wd , the prototype-class-image
activation vector is: v(Z, p) = softmax(∥ zij − p ∥2| zij ∈ Z, Yij = c). The diversity
loss for prototypes of class c is then: LJ(Z, Pc) = SJ(v(Z, p1), . . . , v(Z, pk)).

The overall prototype diversity loss, averaged over all classes, is:

LJ = 1
C

C∑

c=1
LJ(Z, Pc),

Finally, the total prototype-formation loss used during training combines the
cross-entropy loss with the diversity term:

L1J = LCE + λJ · LJ ,

where LCE is the pixel-wise classification loss, and λJ controls the weight of the
diversity regularization.

The second loss in both cases is to focus on avoiding negative reasoning. They
are mostly the same, with the difference that in the ProtoSeg loss, the prototype-
formation loss is also included. In case of ProtoPNet loss, it looks as follows:

L2 = LCE + λ
K∑

k=1

∑

j,pj /∈Pk

|w(k,j)
h |.

In the ProtoSeg type, instead of the LCE term, L1J occurs.

4. Results and discussion
To evaluate the performance of the WaveProtoSeg model, we used a preprocessed
version of the Cityscapes dataset [3], including 5000 images relevant to understand-
ing the urban scene [14]. This data set provides high-resolution RGB street view
images from various cities of size 128 × 256, annotated at the pixel level of the 20
classes. These fine annotations allow for a detailed analysis of semantic segmenta-
tion performance. The ProtoSeg model achieved 67% mIoU with this dataset.

We tested several variants of the model using different types of wavelets, de-
composition levels, prototype numbers, and loss functions. Across all setups, we
adopted the mean Intersection over Union (mIoU) metric to evaluate segmentation
performance. The training included two phases. The first phase (responsible for
prototype learning) has additional three learning components: first with a learning
rate of 0.01 for 8 epochs, then a learning rate of 0.005 for 4 epochs, and finally with
a learning rate of 0.001 for 4 epochs. The second phase (focusing on accuracy and
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avoiding of negative reasoning) has also three sub-phases, with the same learning
rates as in the first phase, just with different epoch numbers per each: it runs pri-
mary for 8 epochs, then for 6, then again for 8 epochs. As loss hyper-parameters
the following values were used: λ1 = 1.25, λ2 = 0.4, λ = 0.001, λj = 0.25.

In the following, we present a summary of the most successful configurations of
each, illustrated in Table 1. The best overall result was achieved with the c.setup,
where dilation of convolutional filters was employed at the initial patch extraction.
This led to a mIoU of 39.21% in the test set and 41.19% on the train set. Here,
the loss from WaveProtoPNet was used. The second most successful setup was the
a.setup, which is similar to the c.setup, with the difference that here the patches are
not decomposed into smaller patches. More prototypes were needed to achieve the
above 38% mIoU, using the loss of ProtoSeg, and as a consequence, training was
much more time consuming. The model with the worst performance was b.setup,
achieving the maximum test mIoU of 33.86%, applying the loss of ProtoPNet during
training.

Table 1. Summary of the best results for each setup.

Setup
Receptive
field
of a pixel

Decomp Wavelet Proto/
Class

Test
mIoU

a.setup 8 × 8 3 db2 20 38.2
b.setup 10 × 10 1 db4 20 33.86
c.setup 16 × 16 1 db4 5 39.21

Despite the architectural novelty, the WaveProtoSeg model underperformed
compared to state-of-the-art semantic segmentation models. Figure 4 shows a
visual comparison of input images, ground truth annotations, and predictions from
the WaveProtoSeg model. It is evident that some classes such as building, sky or
vegetation were learnt better, while others like traffic light or human suffered from
inconsistent predictions and object-level confusion.

There are several potential causes that could contribute to the observed lower
mIoU level. One potential explanation for this phenomenon is that certain classes
are significantly under-represented when compared to others. The majority of im-
ages are covered with road, building, sky and vegetation, while the rest of the classes
occur just occasionally, sometimes just in a really small part of the image. Another
reason should be the low quality of the prototypes. As shown in Figure 5, the
learnt prototypes lack semantic structure and often do not represent the meaning-
ful features of the training data. This can be the result of the previously mentioned
problem of class-imbalance. The features extracted by wavelet decomposition can
also be a problem. The wavelets may not be suitable for extracting the most rel-
evant information from this type of data. Finally, an essential drawback can be
the small receptive field that is used to classify a pixel. By expanding the area
considered around a single pixel, the amount of contextual semantic information
increases, which can significantly enhance the precision of its classification process.
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Figure 4. Top to bottom: original images, ground-truth annota-
tions, predicted segmentation.

20 prototype/class 5 proto/class

Figure 5. Visualization of learned prototypes: their low quality
and poor discriminative power directly affect the model’s accuracy.

5. Conclusion
In our previous research, we demonstrated that wavelets are as powerful in fea-
ture extraction as any classical backbone. Our experiments provided a thorough
basis for including wavelet decomposition into prototype-based explainable sys-
tems. However, after several trials and experiments, we arrived at the conclusion
that wavelet-based image segmentation remains backward compared to traditional
backbone systems in terms of accuracy and interpretability.

Although the WaveProtoSeg model offers an explainable approach to seman-
tic segmentation by combining prototype learning with wavelet-based feature ex-
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traction, its performance fell significantly short of expectations on the Cityscapes
dataset. The best test mIoU achieved was only 39.21%, suggesting that the cur-
rent architecture and training methodology require refinement before it can be
considered competitive.

The small receptive field of the model hinders its ability to make context-aware
decisions. Since a pixel is classified based on features extracted from a relatively
narrow patch, it lacks the broader contextual information that is often crucial in
distinguishing between semantically similar regions (e.g., distinguishing a car from
a bus, or a road from a sidewalk). Enlarging the receptive field may help mitigate
this problem; however, this could prove to be prohibitive with respect to the number
of prototypes that would be required, making the training process too expensive.

To thoroughly investigate if the model’s architectural constraints are influenced
by particular datasets, we intend to conduct experiments across various datasets.
This includes testing on a more balanced dataset with a smaller number of distinct
classes. Another direction would be to test it on a medical data set. The prior
model we developed, WaveProtoPNet, demonstrated strong performance in the
classification of human tissues. Inspired by these results, a worthwhile endeavour
would be to investigate whether good segmentation capabilities can be achieved
for medical data sets, such as the histology data set for nuclei segmentation [5].
We think that the “simpler” images – which can be converted to gray-scale with-
out information loss – from the medical domain of the cellular level can be more
convenient for prototype-based segmentation. Using these simpler data, one could
experiment with the possibility of making the prototypes rotation-invariant by
manually generating the rotated versions of the prototypes for every single learnt
prototype.

In conclusion, while the model promotes explainability and novelty, substantial
architectural and algorithmic improvements are necessary for it to be a viable tool
for semantic segmentation in the natural or medical imaging domains.
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Abstract. In conventional supervised learning of neural networks, training
samples are selected either randomly or in a predefined order, assuming inde-
pendence across samples. This paper diverges from that setting by embedding
the learning process within a dynamic control system. Specifically, we con-
sider a discrete-time control system where the output is given by a nonlinear
mapping, that dynamically adjusts the number of virtual machines (VMs)
based on workload characteristics such as CPU, memory, and network usage.
The system’s output is determined by a neural network that estimates the
deviation from a target utilization profile.

In online supervised learning embedded in feedback control, data genera-
tion is shaped by model performance, leading to a narrowing of the observed
input distribution over time. This self-induced sampling bias may reduce
model robustness, stability and adaptability. We demonstrate that simple
periodic perturbations to the VM allocation process act as an effective form
of regularization, improving learning robustness without relying on exter-
nal reward or replay mechanisms. Unlike traditional approaches using fixed
training sets, in our formulation the system operates online where at each
time step, multiple candidate control inputs u[k] ∈ U are evaluated continu-
ously and each yielding a predicted output y[k] = f(x[k]). At each step, the
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controller selects the action that minimizes the predicted deviation from the
desired reference, which then determines the next state x[k + 1] and yields
the next training sample for the neural network. As a result the learning tra-
jectory is not predetermined but is dynamically created by the controller’s
actions, which depend on the network’s current predictions. We present how
this closed-loop interaction between prediction and sample selection influ-
ences learning stability, convergence, and input space coverage in an online
setting.

Keywords: online learning, closed-loop control, neural networks, cloud re-
source allocation, distributional shift, adaptive systems

1. Introduction
In real-time control systems, the quality of a neural network’s predictions depends
not only on its internal structure and learning parameters, but also on the data
it receives during training - by the trajectory of data it encounters - a trajectory
shaped dynamically by its own predictions.

Control decisions are made by evaluating future system states using the current
neural network model, thereby creating a prediction-driven data generation pro-
cess. This feedback loop between learning and decision-making creates a unique
situation where the data used for learning is not independent from the learning
itself. As the model improves and control stabilizes, the diversity of training sam-
ples naturally decreases. The learning agent spends more time in well-regulated
regimes, causing the network to adapt to a narrow region of the state space. This
effect, which we refer to as distributional narrowing, can reduce generalization and
lead the model fragile to noise, drift, or unexpected dynamics when conditions
change. This phenomenon can also be viewed as a case of closed-loop covariate
shift: predictions influence actions, actions influence state transitions, and the re-
sulting data distribution becomes endogenously biased by the controller’s current
policy. We adopt this term to emphasize that sample selection is not external, but
induced by the model-in-the-loop.

To illustrate this, we use a simulation where a system dynamically adjusts
the number of active virtual machines (VMs) in response to changing workload
conditions. The system receives inputs such as CPU utilization, RAM usage, and
network load, and uses a neural network to predict how many VMs are needed
to maintain balanced resource usage. Control decisions based on these predictions
directly influence future input states, thereby closing the loop between learning
and decision-making.

Our key observation is that this learning loop can be both a strength and a
weakness. On one hand, the model adapts to the system behavior it helps reg-
ulate. On the other hand, it may overfit to narrow workload patterns, leading
to unstable decisions under unexpected load changes. To address this, we test a
simple idea: periodically apply artificial perturbations to the VM allocation deci-
sions. These forced adjustments expose the system to underrepresented operating
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regimes, increasing data diversity and improving learning robustness.
To validate these ideas, we implement a simulated resource management task

in which a neural network regulates the number of virtual machines under time-
varying load conditions. The task involves tracking target utilization ranges while
adapting to workload dynamics. We evaluate how combinations of model complex-
ity and artificial exploration affect learning performance. Even in a fully determin-
istic environment, the system’s behavior varies widely depending on the diversity
of training experiences encountered during learning.

In adaptive control systems, the learning process and the controller’s decision-
making are often interdependent. While classical supervised models assume fixed
training data and offline learning, real-time systems operate under evolving con-
ditions that require continuous adaptation. In this study, we integrate online su-
pervised learning into a feedback-controlled system in which the learning model
directly influences, and is influenced by, system behavior. Specifically, we con-
sider a discrete-time nonlinear state-space system of the form: y[k] = f(x[k], u[k]),
where f(·) is a neural network approximator trained online. Unlike classical linear
systems expressed as y[k] = Cx[k] + Du[k], the output here is determined by a
learned nonlinear function of the current system state x[k]. At each time step, a
finite set of candidate control actions u ∈ U is evaluated. These candidates yield
different state transitions and predicted outputs. The controller selects the action
that minimizes the deviation from a predefined target yref[k]:

u∗[k] = arg min
u∈U
∥f(x[k]; u[k])− yref[k]∥.

This feedback mechanism works as the model’s current performance affects
which training data will be observed next, closing the loop between prediction and
future training input. The system is thus self-organizing in terms of data generation
and the network continuously adapts to the evolving input-output trajectory.

Through extensive simulations, we show that periodically forcing the agent into
previously unseen and suboptimal regions of the state space-rather than allowing
it to self-regulate exclusively based on its current policy can improve the learn-
ing process. This artificial perturbation mechanism cause greater sample diversity
which leads to more robust and generalizable neural network predictions in VM al-
location. We demonstrate that the same system, exposed to the same environment,
may yield lower cumulative tracking errors depending on the external perturbation
and exhibit more stable learning behavior compared to purely autonomous learn-
ing mechanism. As we later demonstrate, these results point to the importance
of actively managing the learning process state space exploration during learning.
In contrast to traditional approaches that focus on dynamic or adaptive hyperpa-
rameter optimization, we emphasize the role of sample diversity and input space
coverage as one of the key determinant of control performance.

2. Related work
Much prior work in supervised learning has investigated the effect of sample selec-
tion and ordering on convergence. Curriculum learning, hard negative mining, and
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stratified sampling methods are some well-known examples for these. But these
typically rely on predefined sampling strategies to improve convergence speed or
model robustness [1, 15]. Bouchard et al. introduce an online approach to dy-
namically select training examples based on the current model state, improving
learning efficiency in evolving data contexts [2], which is conceptually related to
our closed-loop sample selection.

General surveys such as Soviany et al. [11] provide a taxonomy of curriculum
learning methods, including self-paced and RL-guided curricula, while Narvekar et
al. [10] frame curriculum generation in reinforcement learning domains as a formal,
adaptive process suitable for sequential decision-making settings. The curriculum
learning paradigm itself has been more deeply explored in recent work. Hacohen
and Weinshall (2019) systematically examine how scoring and pacing strategies
affect deep network convergence, showing substantial gains in both accuracy and
training speed via curriculum schedules [6]. Graves et al. (2017) propose an auto-
mated curriculum learning framework where a multi-armed bandit selects training
samples to maximize learning progress, significantly accelerating learning in se-
quence modeling tasks [5]. Parallels our perturbation-based approach to diversify
training trajectories Liu et al. actively controls the sample order to improve con-
vergence of learning [8].

In online learning and streaming data settings, concept drift adaptation has
been extensively studied. Gama et al. presented a comprehensive survey on concept
drift adaptation methodologies, including ensemble and drift detection techniques
[4]. Elwell and Polikar proposed incremental ensemble methods for nonstationary
environments that dynamically adapt to drift [3]. Wang et al. explored mining
ensemble classifiers for evolving data streams in KDD-2003 [12]. Losing et al.
introduced a dual-memory architecture to manage diverse drift types in real-time
systems [9].

While reinforcement learning naturally addresses closed-loop feedback dynamics
and curriculum generation in RL domains has been formally framed as an adaptive
process suitable for sequential decision-making [10], fewer studies [11] consider
purely supervised settings where the training data distribution is influenced by
the model’s own predictions. Our work focuses on these feedback-coupled systems
without relying on reward signals or repeated training episodes. It aligns with
adaptive control and online learning under concept drift, but prioritizes one-pass
supervised updates in continuous feedback systems. These works support the view
that careful ordering of training examples can act as a powerful regularizer in
dynamic systems.

3. Motivation
Traditional supervised learning often assumes that samples are drawn i.i.d. from
a static distribution. However, in real-time systems where a model is embedded
within a controller, this assumption no longer holds. Here, the learning process
affects the system’s state evolution, and in turn, the system determines which
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samples the model sees next. In contrast, when a model is used within a control
loop, the input data becomes dependent on the model’s predictions. Each decision
influences the system’s next state, which in turn determines the next input to the
model.

This feedback-induced data generation process creates both a challenge and
an opportunity: model predictions directly influence control actions and resource
allocation, which in turn shapes future input observations such as CPU, RAM, and
network utilization. In other words, the model does not only passively receive and
learns from data but also actively contributes to generating it.

This feedback structure creates a coupling between the model’s estimation and
the trajectory of training samples. A sequence of high-error predictions can move
the system into rarely visited regions of the state space, where the model has
limited prior exposure. On the other hand, consistently low-error predictions may
constrain the system’s behavior to a limited subset of states. In both cases, the
data distribution becomes non-representative of the broader task space.

Over time, this interaction may cause the learning process to become biased
toward a narrow region of the state space, making the model fragile to sensor
drift, unexpected conditions, or shifts in workload dynamics. Since online learning
systems typically process each sample only once and offer no opportunity to reset
or rebalance the training sequence, such distributional biases cannot be corrected
retrospectively.

We propose to investigate whether artificially introducing diversity during train-
ing improves performance. By occasionally overriding the model’s predicted control
decision with a random alternative, the system is exposed to unfamiliar states that
would otherwise remain unvisited. This forced control input changes the system’s
trajectory and results in exposure to input regions that would otherwise be ex-
cluded. This forced exploration is expected to increase input coverage, potentially
improving stability and generalization, particularly in higher-capacity models. Our
goal is to evaluate how such a modification affects the convergence, generalization,
and stability of the learning process under different model capacities.

The central motivation of this work is to understand how this coupling influ-
ences: (1) the speed and stability of convergence, (2) the diversity of encountered
workload regimes, and (3) the robustness of learning under dynamically shifting
data distributions. Unlike curriculum learning or sample-weighting strategies that
assume external control over data order, our method embeds sampling decisions
within the system dynamics and controller behavior. This fully endogenous sample
selection process also presented by [14] illustrating the value of dynamic sampling
policies under evolving data distributions.

4. System model
To explore the learning dynamics discussed above, we employ a simplified sim-
ulation model which captures the essential features of real-time online learning
in control systems. We consider a discrete-time control system (in which) where
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an agent (e.g., a simplified autoscaler) dynamically adjusts the number of virtual
machines (VMs) in response to synthetic workload signals generated along a time-
varying pattern with increasing frequency and amplitude. The system dynamics
are modeled in two parts: a linear state transition model and a nonlinear output
approximation via a neural network. This workload stresses the spectral resolution
of the estimator. The smaller MLP (5, 3) tends to underfit higher-frequency com-
ponents, while the larger MLP (10, 5) has sufficient capacity to fit them but, in
autonomous mode, may over-specialize to frequently visited regimes. Periodic per-
turbation exposes rarer, high-frequency regions, improving coverage and stabilizing
learning, consistent with our capacity proxy 1012 vs. 422.

Let the state vector at time k be denoted as x[k] ∈ Rn, which consists of
the current sensor readings (e.g., CPU usage, RAM usage, Network usage). The
control input u[k] ∈ {−10,−9, . . . , 10} represents the agent’s discrete VM number
adjustment at each time step. The state transition is modeled by the linear system:

x[k + 1] = Ax[k] + Bu[k], (4.1)

where A ∈ Rn×n and B ∈ Rn are system matrices that approximate how the state
evolves based on previous measurements and applied input.

The output variable y[k] ∈ R represents the deviation of the current system load
state from the desired utilization target (e.g., balanced CPU and network usage),
it is estimated through a neural network mapping the predicted state to a scalar
value:

y[k] = f(x[k]; θ), (4.2)

where f(·; θ) is a fully connected feedforward neural network with parameters θ,
trained online using incoming sensor data and revealed ground truth offsets. The
primary goal of the control system is to maintain resource usage close to a pre-
defined reference profile, minimizing deviations from the target CPU and network
utilization levels. Both the neural network parameters θ as well as the linear tran-
sition matrices A and B are adapted continuously during execution. The matrices
A and B are estimated online using least-squares regression over observed pairs of
consecutive system states and applied control inputs.

At each time step, all possible control inputs u ∈ U = {−10, . . . , 10} are evalu-
ated by simulating the next state and passed through the neural network to predict
the resulting deviation. At each step, all possible actions are simulated using the
previously defined dynamics in equations (4.1) and (4.2), to evaluate the predicted
next state and output deviation. The control input u∗[k] is selected to minimize
the distance from the reference:

u∗[k] = arg min
u∈U
∥ỹ[k; u]− yref[k]∥. (4.3)

This makes the data-generating process dependent on the model’s own predic-
tions, creating a self-reinforcing learning trajectory. After each control decision,
the system also transitions to a new state x[k + 1], determined by the internal
dynamics (which is approximated), and a new data pair (x[k], y[k]) is added to the
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training set. After executing u∗[k], the true output error is revealed as the actual
deviation of the system from the target utilization, computed based on workload
indicators such as CPU or network saturation, denoted ytrue[k]. This value is used
to update the neural network via online stochastic gradient descent:

θ ← θ − η∇θL(f(x[k]; θ), ytrue[k]),
where θ are the neural network parameters, η is the learning rate set to 0.01, and
L is the loss function (in this case mean squared error).

As we can see this procedure sequence creates a unique learning loop. Model
predictions influence control actions, which influence state transitions, which then
determine future training data. The interplay of learning and control thus forms
an implicit curriculum, driven not by external design but by internal performance.

In this setup, the learning rate η is not tuned during operation and is fixed
throughout the entire run. Its value strongly affects both the convergence speed and
stability of the prediction model and indirectly, the control behavior of the agent.
Since no replay buffer or offline tuning is available, the system’s learning trajectory
is entirely shaped by the chosen hyperparameters at initialization. But this study
does not aim to optimize learning rate dynamics. Once a suitable learning rate was
empirically selected, it remained fixed throughout all training runs, allowing us to
isolate the effect of perturbations and model capacity on learning behavior.

We investigate: 1. How this learning process converges toward an optimal
solution over time. 2. Whether it enables more efficient exploration of the state
space. 3. The trade-offs between control accuracy and learning robustness under
online adaptation. 4. Whether the learning process becomes more stable when the
agent is periodically forced into previously unseen states. For example by artificially
perturbing the VM scaling decisions at regular intervals to improve generalization

5. Methods

5.1. Simulation environment
To investigate the online learning behavior of a closed-loop neural controller, we
developed a simulation environment in Python using the Pytorch framework. The
environment models a simplified cloud infrastructure where a controller dynami-
cally adjusts the number of active virtual machines (VMs) in response to changing
resource demands. The simulated system operates under a synthetic workload pat-
tern that varies over time, mimicking real-world fluctuations in service usage. At
each discrete time step k, the agent observes current resource utilization and selects
a control input u[k] ∈ {−10, ..., 10}, which corresponds to scaling the VM pool up
or down by discrete steps. At every time step, the agent receives three resource
utilization metrics: CPU utilization percentage, RAM (memory) utilization per-
centage and Network bandwidth usage. These readings are normalized and form
the input state vector:

x[k] =
[
CPU[k] RAM[k] NET[k]

]⊤
,
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which serves as input both for the control dynamics (see Equation (4.1)) and the
neural network output estimation (see Equation (4.2)).

5.2. Training procedure
At each time step, the control loop proceeds as follows:

1. The current state vector x[k] is recorded from system metrics.
2. For each candidate scaling action u ∈ U :

(a) Simulate the next system state x̃[k + 1; u] = Ax[k] + Bu, reflecting how
scaling the VM pool affects resource usage.

(b) Estimate the deviation from the target operational balance via y =
f(x̃[k + 1; u]).

3. Choose u∗[k] that minimizes the deviation from the desired output yref = 0.
4. Apply u∗[k], observe the resulting true deviation ytrue[k], and transition to

the next state x[k + 1].
5. Update the neural network via online stochastic gradient descent. The linear

dynamics matrices A and B are also updated using least-squares regression
to approximate the effect of control actions on future state transitions.

The neural network function f(·) is modeled as a fully connected feedforward
neural network with hyperbolic tangent activations. It maps the current three-
dimensional system state x[k] to a scalar estimate of the deviation from balanced
resource usage y. For a two-hidden-layer MLP with hidden sizes (h1, h2), input
dimension d = 3, and scalar output m = 1, the number of trainable parameters is
W = dh1+h1 + h1h2 + h2 + h2m + m. In our two configurations this gives: (10,
5) → W = 101; (5, 3) → W = 42. For smooth activations such as tanh, classical
VC/pseudodimension bounds scale polynomially in W ; in practice we report W 2 as
a coarse capacity proxy: 1012 =10,201 vs. 422 =1,764. We use these values only to
compare relative capacity between settings and capacity alone does not guarantee
online generalization in closed-loop learning. The loss is defined as the squared error
between predicted and true deviation: L(f(x[k]), ytrue[k]) = (f(x[k])− ytrue[k])2.

Learning occurs online – one sample at a time – without replay buffers or mini-
batching. The system operates under a one-pass constraint, reflecting real-world
adaptive control environments where replay is infeasible.

6. Experiments
As defined in Equation (4.3) in our simulated environment, the system adjusts
the number of active virtual machines (VMs) based on current workload indica-
tors: CPU utilization, RAM usage, and network traffic. At each time step, several
candidate VM counts u[k] ∈ U are evaluated using the neural network model
f(x[k], u[k]), which predicts the deviation from a target utilization profile. The
system selects the VM count that minimizes this predicted deviation (see Equa-
tion (4.3)).
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To investigate the role of extra perturbation, we conduct multiple simulation
runs with different random seeds across identical environments. The primary con-
trol objective is to maintain a balanced utilization profile across CPU and network
resources. The true deviation from this balance is denoted by ytrue[k], which reflects
the difference between observed and target utilization ratios. To evaluate learning
performance, we conducted multiple simulation runs under each experimental con-
dition and measured cumulative tracking error, the sum of absolute deviations from
the target resource utilization profile over time. At each timestep k, the agent’s
distance from the optimal trajectory is measured and added to the total error. We
report both the mean and standard deviation of this metric across runs. Formally,
this is defined as E

(i)
track = sumT

k=1

∣∣∣y(i)
true[k]− yref[k]

∣∣∣, and the summary statistics
are computed as

µtrack = 1
N

N∑

i=1
E

(i)
track and σtrack =

√√√√ 1
N − 1

N∑

i=1

(
E

(i)
track − µtrack

)2
.

These metrics provide insight into both the control accuracy (via tracking error)
and the learning performance of the model (via prediction error), enabling a robust
comparison between the perturbed and non-perturbed training regimes.

7. Results
To further investigate the interplay between model complexity and input space di-
versity in online neural control, we conducted a set of four experiments combining
two architectural settings and two training modes. The neural network used to
estimate the system’s deviation from target resource balance was configured with
either a smaller MLP (5, 3) or a larger MLP (10, 5) structure. Each configuration
was trained under one of two regimes. (A.) Autonomous control, where the agent al-
ways selected the action predicted to be optimal. (B.) Artificially disturbed control,
where every third decision step (from time 0 to 1500) was randomly overridden with
a uniformly sampled control value from [-10, +10], while all other steps followed the
prediction-based policy. We study pre/during/post phases to assess degradation
after perturbation removal. Beyond "every 3 steps (0–1500)", we evaluate schedules
with periods {2, 5} and truncated windows [0, T0] with T0 ∈ {800, 1200}. Denser
schedules increase coverage but may introduce short-term bias; sparser schedules
yield smaller bias but less variance reduction. We report median/mean cumulative
error and failure rate across seeds to locate a practical trade-off.

This 2×2 setup allowed us to test the following hypotheses: (1.) The smaller
network (5,3) will underperform in tracking accuracy regardless of disturbance,
due to limited expressive power. (2.) The larger model (10,5) will achieve better
accuracy but may exhibit instability and divergence during training. (3.) Artifi-
cial perturbation will not help the smaller network due to its limited capacity, and
might degrade convergence. (4.) Larger models would benefit from exploration,
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improving stability and generalization. Each experimental condition was evaluated
over 100 independent simulation runs, with only the random initialization of net-
work weights varied. The results summarize the cumulative tracking error during
the test sequence. For better understanding first we present the comparision of
Configuration 3 and Configuration 4 results. Instead of visualizing each trajectory
individually of each run, we show the mean resource adjustment trajectory along
with one standard deviation over time, providing an aggregated view of tracking
performance and learning stability.

Figure 1 shows the agent’s deviation from the desired operational target across
multiple independent simulation runs. The results demonstrate that artificial ex-
ploration reduces variance and improves stability, especially for larger models. In
contrast, autonomous learning without perturbation leads to greater performance
divergence. Smaller networks show capacity limitations in all scenarios.

Figure 1. Error Deviation over Time for Configurations 3 and 4.

Figure 2 shows the cumulative tracking error over time on a log-scale for all four
configurations. The curves are plotted on a log scale due to the large variance be-
tween successful and failed runs. In each subplot, individual runs are represented
as light blue lines, with bold lines indicating the median and average trajecto-
ries. The left subplots show the cases where the agent learned and operated fully
autonomously, always selecting the action deemed optimal by the model at that
moment. The right subplots show the outcomes when the agent was artificially
perturbed every 3 steps by forcing it into a less familiar region of the state space.

We can interpret our results as follows: Without perturbation in Configura-
tion 1. (5,3 no perturbation) high error variance, frequent failure cases, unstable
convergence occured. The network quickly overfits to a narrow input regime and
fails to recover from errors. The same has happened in Configuration 3. when
perturbation was not applied. Configuration 2. (5,3 + perturbation): Slight im-
provement in median performance, but lower failure rate even during the training.
Configuration 4. (10,5 + perturbation): The larger network benefited the most
from the perturbation showed better performance right after the training phase,
but the performace graudally degrade again if perturbation is not applied further-
more as it can see on the bottom right plot after the 400th timestep. Cumulative
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Figure 2. Cumulative error over test sequence under two type of
training. Left: autonomous control with no intervention. Right:

periodic perturbation to increase state-space diversity.

tracking error was recorded over time for all runs. Additionally, we defined a simple
failure condition: a run was considered failed if, by the final timestep, the agent’s
deviation from the operational target exceeded a critical threshold. A run was
classified as a failure if its final cumulative tracking error exceeded 20 000. This
threshold was chosen empirically by observing that successful runs typically re-
mained below 10 000 at the final timestep, while unstable runs accumulated errors
an order of magnitude larger. Thus, the threshold reliably separates stable from
divergent trajectories. This indicated that the agent entered an unstable resource
state from which it could not recover. This indicated that the agent entered an
unstable resource state from which it could not recover. The following failure rates
were observed: Configuration 1 (5, 3, no perturbation): 21 / 100, Configuration 2
(5, 3, with perturbation): 8 / 100, Configuration 3 (10, 5, no perturbation): 26 /
100, Configuration 4 (10, 5, with perturbation): 13 / 100. The comparison shows
that the perturbation strategy led to more consistent behavior and reduced the
variance in deviations across different runs. These results indicate that the per-
turbed learning process achieved more robust generalization and improved stability
over time.
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8. Discussion and conclusion
This paper examines the effect of this self-induced sampling bias on learning ro-
bustness and looks into a simple but useful countermeasure, which is periodic
artificial perturbation of the control decisions. By occasionally forcing the system
into suboptimal or rarely visited states, we aim to reintroduce input diversity and
stabilize the learning trajectory. Our hypothesis just as suggested by [7] is that
such artificial exploration acts as an implicit regularizer, particularly beneficial in
high-capacity models prone to overfitting and instability. Intuitively, the pertur-
bations enlarge the effective sample size in the relevant regions of the state space,
counteracting endogenous sampling bias and delaying premature consolidation to
a narrow operating regime. Based on our experiments, models trained with this
perturbation approach reach more stable convergence and show lower long-term
variance in prediction and control error. This supports the idea that periodic and
focused exploration, even in supervised control systems, can work as a regularizer
that helps with generalization and stability.

In this study, we have identified a structural limitation of online supervised
learning when embedded in closed-loop control systems. As the model gets better at
keeping the system near optimal state, the diversity of its training data inherently
shrinks. Over time, this feedback loop causes the input data to become more
uniform, leading to self-induced overfitting to a narrow and stable operating regime.
This distributional narrowing reduces the model’s ability to generalize, and makes
it more vulnerable to unexpected changes or unmodeled noise, a challenge also
observed in semi-supervised one-pass learning under distribution shift [13].

We showed through extensive simulations that periodic artificial perturbation,
without reward, curriculum design, or replay, improves the stability of the learning
trajectory. This intervention can act as a form of implicit regularization, main-
taining diversity in the input space and reducing run-to-run variance in control
performance, including improved stability in VM allocation tasks. These findings
suggest that in feedback-coupled supervised systems, where the learner influences
its own data stream, exploration could be valuable and advantageous.

As a next step, we consider that such a control mechanism would be worth
studying and applying not only in simulation but also in real-world cloud infras-
tructure, where incoming workload and task profiles change continuously, requiring
adaptive strategies that preserve robustness and optimize energy efficiency under
nonstationary conditions.
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Abstract. Acoustic wave propagation plays a fundamental role in various
scientific and engineering disciplines, including medical imaging, seismology,
and acoustics. Traditional numerical methods such as the Finite Element
Method (FEM) and Finite Difference Method (FDM) are widely used to
model these waves [5, 24], but they often suffer from computational inef-
ficiencies, especially for high-dimensional problems or complex geometries.
This work explores the application of Physics-Informed Neural Networks
(PINNs) as an alternative approach, leveraging deep learning to solve wave
equations efficiently [14]. PINNs integrate physical laws directly into the
neural network’s loss function, enabling solutions that adhere to the gov-
erning differential equations. We present a comparative analysis of PINNs
with traditional numerical solvers, highlighting advantages, limitations, and
potential improvements. Our experiments demonstrate that PINNs can ef-
fectively model wave propagation with comparable accuracy while reducing
computational cost in certain scenarios.

1. Introduction and related work
Acoustic waves play a crucial role in various fields, including engineering, medicine,
geology, and many others [2]. Predicting their propagation is an important task
that aids in solving diverse practical problems. However, this task is challenging

The research was partially supported by the Slovak Academy of Sciences under Grant VEGA
1/0685/23, and partly by the Slovak Research and Development Agency under the project APVV
SK-CZ-RD-21-0028.

174 Proceedings of the FMF-AI 2025174 Proceedings of the FMF-AI 2025174 Proceedings of the FMF-AI 2025

https://doi.org/10.17048/fmfai.2025.174
mailto:{marek.ruzicka,martin.stancel,miroslav.imrich}@tuke.sk
mailto:dmytro.havrysh@student.tuke.sk


FMF-AI 2025 Physics-informed neural networks for acoustic wave propagation

due to the large number of factors influencing acoustic wave propagation.
PINNs [14] represent a recent direction in artificial intelligence that combines

physics principles with machine learning to tackle complex problems. While tra-
ditional neural networks excel at uncovering complex data relationships, they of-
ten require extensive empirical data and may disregard the inherent physical con-
straints of the systems being studied. This can lead to inaccuracies or even incorrect
predictions, especially where physical adherence is critical. PINNs address this by
integrating physical laws as constraints directly into the network architecture and
loss function, allowing the model to learn from data while respecting fundamental
physics. They are particularly effective for problems described by partial differen-
tial equations (PDEs) or ordinary differential equations (ODEs).

Key benefits of PINNs include the integration of physical laws, such as con-
servation of mass, energy, or momentum, ensuring the correctness and reliability
of predictions in physical tasks. They possess the ability to model physical pro-
cesses with limited data by leveraging built-in physical principles, compensating
for information scarcity. Furthermore, PINNs can be used for solving both forward
and inverse problems, where unknown system parameters can be determined based
on observed data. PINNs merge the statistical power of neural networks with the
credibility of physical principles, providing results that are accurate and physically
consistent, which is exceptionally important for scientific and engineering tasks,
including the modeling of acoustic processes [11].

Acoustic wave propagation is characterized by parameters such as speed, fre-
quency, and amplitude [28]. Key phenomena include non-linear distortion, which
generates harmonics (e.g., in ultrasound), and dispersion, where wave speed varies
with frequency. Dispersion is minor in gases and liquids but significant in solids
due to frequency and directional dependencies. Wave interactions with obstacles
involve diffraction and scattering, which are critical for modeling wave behavior in
complex environments.

The use of PINNs for acoustic wave propagation prediction is still an insuffi-
ciently explored area. This work aims to investigate the possibilities of utilizing
PINNs for this task. The objective is to first understand the domain of acoustic
waves and analyze the current state of PINNs. Subsequently, a suitable neural net-
work architecture and geometry will be implemented using the NVIDIA Modulus
Sym environment for one-, two-, and three-dimensional problems. Experimental
comparisons of various neural networks and differential operators will be conducted
to identify the most effective configurations. Finally, the results will be evaluated
and compared with classical numerical methods and analytical solutions. Research
utilizing methods like FEM for acoustic processes, such as solving the Helmholtz
equation using PINNs, has shown effectiveness in reproducing complex wave behav-
ior in heterogeneous media and enclosed spaces with obstacles, even with minimal
data and complex geometries. It has been already shown that the PINNs can
improve simulation efficiency and accuracy, reducing reliance on extensive mesh
generation and computational resources for wave propagation [15]. Our research
specifically analyzes acoustic waves.
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Recent work has begun to apply PINNs specifically to acoustic wave propaga-
tion and related audio or vibration-field problems. Yokota et al. [27] developed a
PINN framework for acoustic resonance analysis in one-dimensional acoustic tubes,
handling both forward and inverse cases to estimate energy loss terms. Schoder
and Kraxberger [16] demonstrated the feasibility of solving the 3D Helmholtz equa-
tion using PINNs and benchmarked against FEM and analytic solutions, showing
promise for forward acoustic modeling in spatially complex domains. Wang et al.
[21] addressed scattered acoustic fields around complex structures via PINNs, which
relates closely to modeling diffraction and obstacle interactions. Other applications
include acoustic field reconstruction from limited or noisy measurements, such as
in ducts or tube geometries [10], and ultrasound-based inverse problems to detect
defects in media using PINNs informed by the acoustic wave equation [18]. These
works illustrate both the potential and current limitations of PINNs: handling
high-frequency components, enforcing absorbing or reflecting boundary conditions,
computational cost in 3D, and robustness under noisy or partial observation.

2. Definition of PINN

PINNs are deep learning models that integrate known physical laws, typically ex-
pressed as PDEs or ODEs, into the training process to ensure that the model’s
predictions adhere to the underlying physics [14]. PINNs consist of three primary
components: a neural network that approximates the solution of a physical system,
a set of differential equations representing the physical laws governing the system,
and a loss function that penalizes deviations from both observed data and physical
consistency. The neural network, commonly implemented as a multilayer percep-
tron (MLP), approximates a target function u(x) with uθ(x), where θ denotes the
model parameters such as weights and biases [4]. These networks typically employ
activation functions like tanh or ReLU, with a preference for differentiable functions
to facilitate effective gradient-based optimization.

To embed physical principles into the model, PINNs include the governing equa-
tions directly into the loss function. Instead of relying on numerical solvers, the
network learns to satisfy physical constraints by minimizing the error induced by
these equations [14]. This approach enables PINNs to generalize from limited data
while maintaining physical plausibility.

Physical constraints can be introduced in two main ways. First, physical pa-
rameters, such as wave speed, pressure, or medium density, can be included as
additional features in the input. This helps the network better model spatial or
temporal dependencies, particularly in dynamic systems like acoustic waves [7].
Second, the physical equations themselves can be encoded into the loss function,
ensuring that the learned solution remains consistent with the physics throughout
the domain. The total loss function L(θ) used to train a PINN is composed of
two parts: a data loss term Ldata(θ) that measures the discrepancy between model
predictions and available measurements, and a physics loss term Lphysics(θ) that
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penalizes violations of the governing physical laws [14]:

L(θ) = Ldata(θ) + Lphysics(θ)

3. Theorem
Let N(u) represent a differential operator derived from the physical law such that
the governing equation is N(u) = 0. The physics loss term can then be defined as
the mean squared error of the residual evaluated at M collocation points {xj}Mj=1
[14]:

Lphysics(θ) = 1
M

M∑

j=1
|N(uθ(xj))|2

This term ensures that the network’s outputs not only fit the data but also
satisfy the physical constraints within the problem domain [3, 6]. The relative
weight between the data and physics losses can be adjusted adaptively to improve
training stability and accuracy.

Training involves minimizing the total loss function using optimization algo-
rithms such as gradient descent, Adam, or L-BFGS. Additionally, techniques such
as adaptive sampling, weighting strategies, and residual-based refinement can im-
prove convergence, especially when solving stiff or ill-posed problems [11].

Beyond forward modeling, PINNs can also solve inverse problems, such as
identifying unknown parameters or reconstructing missing input data from lim-
ited measurements [14]. Regularization strategies, including activation function
tuning and weighted residuals, can enhance accuracy. The spatial distribution
of training points, whether uniform, random, or adaptive, also influences model
performance [23].

To evaluate a PINN’s accuracy and physical validity, standard metrics such as
Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and the L2 norm are commonly used [14, 22]. Adherence to con-
servation laws, like mass or energy conservation, further confirms the reliability of
the model [6, 20, 23].

While traditional PINNs rely on fully connected MLPs, alternative architectures
such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) have been employed to better handle spatial and temporal dependencies [3,
4, 17]. Recently, Bayesian extensions of PINNs (B-PINNs) have emerged as a
promising approach for uncertainty quantification in scenarios where prediction
reliability is critical [25].

4. Application of PINNs to wave problems
The wave equation is a fundamental equation in mathematical physics, describing a
wide range of wave processes from 1D string vibrations to 2D membrane oscillations
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and 3D acoustic waves. The core idea remains the same regardless of dimension:
examining the dynamics of a wave propagating through a medium, reflecting from
boundaries, or interacting with them. PINNs were applied to wave problems of
different dimensions within the NVIDIA Modulus Sym environment.

The NVIDIA Modulus Sym framework is a specialized tool designed for mod-
eling physical processes using PINNs. It supports GPU optimization for high com-
putational efficiency, crucial for large-scale simulations [12]. Modulus offers built-in
support for physical equations like the Helmholtz equation for acoustics and pro-
vides tools for creating and training PINNs by including physical constraints in
the loss functions. While general frameworks like TensorFlow and PyTorch can
implement PINNs, Modulus provides specialized tools for handling physical equa-
tions, which might require manual configuration in the others [1, 13]. Modulus
allows control over simulations via configuration files, specifying training parame-
ters, network architecture, equations, domains, and constraints.

Key advantages of NVIDIA Modulus include its optimization for NVIDIA
GPUs, enabling significantly faster model training for large-scale physical simula-
tions [12]. It features integrated tools for working with physical laws and equations,
simplifying the creation of complex models with physical constraints, including the
Helmholtz equation for acoustics. Modulus also provides ready-made templates
and examples for various physical tasks. Disadvantages include its dependence on
NVIDIA GPU hardware and the requirement for prior experience with GPUs and
physical process modeling for setup and use.

We have applied PINNs to three wave problems. 1D Wave Equation with Fixed
Boundaries is defined as:

∂2u

∂t2
= c2 ∂

2u

∂x2

The PINN was trained to simultaneously satisfy the initial conditions u(x, 0)
and ∂u/∂t at t = 0, boundary conditions u = 0 at x = 0 and x = L, and the
differential equation itself via a residual term [14]. c represents the wave speed.
A fully connected MLP was used, taking (x, t) as input and outputting u(x, t).
Parameters like layer count and size were configurable. An example comparison
with an analytical solution is shown in Figure 1.

2D equation extends to two spatial dimensions (x, y):

∂2u

∂t2
= c2

(
∂2u

∂x2 + ∂2u

∂y2

)

This equation can describe, for example, membrane oscillations or other 2D
wave processes. The same overall PINN scheme was used as in the 1D case, but
network parameters were adjusted for increased complexity. A fully connected
architecture was retained, with an increased layer size (256 neurons) to accommo-
date the 2D task’s complexity. Optimizer details (Adam, learning rate, exponential
decay) were specified.
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Figure 1. Comparison of PINN prediction with analytical solution.

Finally, 3D equation includes a third spatial dimension (z):

∂2u

∂t2
= c2

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)

The simulation area was a cube. Initial conditions defined a harmonic function
dependent on all three spatial coordinates, starting from rest. Zero displacement
boundary conditions were applied on all six faces, simulating a fixed membrane.
This configuration creates a complex interference pattern [12]. The same network
architecture and hyperparameters as the 2D case were used for direct comparison
of convergence and solution accuracy. A static cross-section visualizing the dis-
placement field at a specific time slice showed solution symmetry and reflections
from fixed walls, as seen in Figure 2.

Figure 2. Visualization the three-dimensional wave equation.

Additionally, 2D wave equation with Perfectly Matched Layers (PML) and Ob-
stacle was implemented. This complex case involved a 2D area with a circular
obstacle and surrounding PML [28]. PML is a numerical technique to absorb
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waves and simulate open boundaries, preventing unwanted reflections in wave pro-
cess simulations like acoustic, electromagnetic, or elastic waves. It absorbs wave
energy before it reaches the outer edge, simulating open space. The governing
equations become a system involving the acoustic pressure and auxiliary fields to
ensure absorption. A Neumann boundary condition ∂u/∂n = 0 was applied on
the obstacle’s surface, simulating a perfectly rigid body reflecting waves [8]. Nu-
merically, this condition is evaluated using components of the normal vector. The
PINN formulation uses symbolic description of geometry, allowing precise appli-
cation of boundary conditions on the curved surface by computing the normal
using symbolic expressions [12]. An initial Gaussian pulse was defined. The net-
work predicted the primary field (u), auxiliary PML fields (ψx, ψy), and additional
quantities for normal derivatives. Due to the high complexity (multiple unknown
functions, geometry, PML), optimizing the training process was necessary. An ini-
tial issue with GPU memory exceeding limits was resolved by halving the batch
size, allowing training to complete with sufficient accuracy. Figure 3 shows the
time evolution of the wave in this scenario.

Figure 3. Time evolution of the acoustic wave in an area with an
obstacle and absorbing PML.

Implementing these models in Modulus Sym involves defining the physics equa-
tions, specifying the geometry and boundary/initial conditions, configuring the
neural network architecture and training parameters using YAML files, and setting
up constraints and inferencers.

To model the underlying physical system, we employed a fully connected neural
network using the Modulus Sym framework. The network architecture is designed
to approximate the solution to a spatiotemporal problem by taking spatial co-
ordinates (x, y) and time t as input variables, and producing a scalar output p,
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representing the target physical quantity (e.g., pressure).
The network consists of five hidden layers, each containing 128 neurons. The

activation function used across all layers is the hyperbolic tangent (tanh), which
is commonly chosen for its smooth differentiability and favorable gradient proper-
ties when solving differential equations. The architecture is implemented using the
FullyConnectedArch module in Modulus Sym, and is parameterized with appropri-
ately defined symbolic input and output keys to facilitate automatic differentiation
and integration with physics-informed loss functions.

To evaluate the predictive performance of the trained model, several error met-
rics were computed by comparing the predicted values ppred with the reference data
pref [22]. The element-wise difference between predicted and true values was first
computed as ∆p = ppred − pref. Based on this difference, the following statistical
indicators were calculated:

MSE: Computed as the average of the squared differences, it quantifies the
mean magnitude of the prediction errors,

MSE = 1
N

N∑

i=1
(∆pi)2

.

RMSE: Defined as the square root of the MSE, providing an interpretable error
magnitude in the same units as the output variable,

RMSE =
√

MSE.

Mean Error: The average of the raw differences between predicted and reference
values,

ME = 1
N

N∑

i=1
(p∆pi

).

These metrics provide a comprehensive evaluation of model accuracy, consis-
tency, and the nature of deviations from the true solution.

The quality of the obtained solutions was evaluated for all analyzed cases, from
the basic 1D model to the most complex task with an obstacle and absorbing PML.
The main objective was to verify the physical correctness of PINN predictions, com-
pare results with reference solutions (analytical or numerical), and assess PINNs’
ability to solve problems with complicated geometries and absorbing boundaries.

5. Results
Comparisons with analytical and FDM solutions for the 1D case showed very good
agreement. Heat maps and wave profiles demonstrated minimal deviations. Quan-
titative metrics (MSE, L2-norm) were low (e.g., MSE of 1 × 10−6 vs. analytical,
6.7×10−5 vs. FDM for 1D; MSE of 5.437×10−7 vs. analytical, 5.347×10−7 vs. FDM
for 2D; MSE of 6.256 × 10−6 vs. analytical, 6.253 × 10−6 vs. FDM for 3D). PINNs
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successfully captured the dynamics of wave propagation with fixed boundaries in
all dimensions. This confirmed PINNs’ suitability for these academic examples
and their ability to provide accurate solutions comparable to traditional methods
like FDM. A key advantage highlighted was that PINNs do not require explicit
mesh discretization [14]. In practical terms, the reported errors correspond to sub-
percent deviations in wave amplitude, which are sufficient for engineering analysis
where qualitative propagation patterns dominate. The accuracy achieved in 3D
was sufficient for practical applications in complex configurations. As can be seen
in the visualization in Figure 4, in the 3D wave case, the difference between the
prediction and the analytical solution is minimal. In 1D and 2D cases, the error is
so low that it can’t be spotted visually. These results illustrate the robustness of
PINNs for lower-dimensional problems and their potential as mesh-free solvers for
higher dimensions, although the computational effort increases significantly com-
pared to FDM. From the theoretical standpoint, the small residuals confirm that
the physics loss term effectively constrained the solution across collocation points.

Figure 4. Comparison of FDM, PINN output and analytical solu-
tion for 3D wave at z ≈ 0.

2D Acoustic Wave with Object and PML case was analyzed in parts: initial
Gaussian pulse propagation, interaction with an obstacle, and absorption by PML.

Comparison of Gaussian Pulse in 2D without obstacle/PML with FDM showed
acceptable accuracy. Visual differences were observed, particularly on the wave
front. Quantitative metrics like relative L2 error were higher (8.2712 × 10−1) com-
pared to the simpler 1D/2D/3D cases. The relatively high error indicates that while
PINNs can capture the main wave structure, sharp gradients and high-frequency
components remain challenging, especially in higher-dimensional problems. In-
creasing network parameters improved accuracy but also slightly increased wave
amplitude, indicating sensitivity to hyperparameters. Such behavior highlights a
limitation of PINNs: their performance is strongly tied to architecture choices and
may require extensive tuning, unlike FDM which has more predictable convergence
behavior. Finding a closed-form analytical solution for a Gaussian pulse in 2D is
challenging due to non-linearity and the need for complex functions like Bessel
functions. The difficulty in this case reflects the challenge of minimizing N(uθ(xj))
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near steep gradients, where the residual term dominates the loss.
PINNs utilize a precise symbolic description of the circular obstacle geometry

and boundary condition application [26]. Differences observed when comparing
PINN results with FDM/FEM solutions are attributed primarily to the PINN’s
precise handling of the curved boundary condition via symbolic computation of the
normal, contrasting with the approximate nature of this condition in FDM/FEM
[3]. Such accuracy is particularly relevant in scenarios where faithful represen-
tation of curved or irregular boundaries is critical, such as biomedical or seismic
wave simulations. Other sources of difference include numerical approximations in
classical methods and potential discrepancies in initial impulse definition or time
parameters. Aligning results requires more accurate boundary condition methods
in classical techniques (e.g., immersed boundary, body-fitted mesh) and careful
matching of initial and boundary conditions and discretization. A fundamental
difference remains in how the solution is obtained: PINN optimizes a functional
with analytical geometry, while FDM/FEM solve a discretized equation with preci-
sion limited by the discrete mesh [14]. The functional approach also enables PINNs
to generalize solutions at arbitrary collocation points, whereas traditional methods
are tied to predefined meshes. This observation directly illustrates the theoretical
advantage of embedding the operator N(u) in the loss: boundary conditions are
enforced analytically rather than approximated numerically.

Comparison of PINN and FDM solutions of absorption in PML showed good
overall approximation by PINN, but minor artifacts appeared in the upper region.
These artifacts could potentially be due to imprecise PML boundary conditions
in the PINN model. FDM showed clearer wave propagation. Quantitative errors;
MSE=0.00321, RMSE=0.00545, with maximum error for a single collocation point
0.0213; indicated a small average deviation but significant local deviations on the
wave front, suggesting PINNs’ sensitivity to steep gradients. Such sensitivity lim-
its their use in problems where sharp wavefront accuracy is critical (e.g., shock
waves), unless specialized loss functions or adaptive sampling strategies are em-
ployed. The PML implementation in PINN showed artifacts, indicating it did not
perfectly absorb waves, possibly due to suboptimal boundary condition setup in
the loss function or architecture limitations. Further optimization was limited by
computational resources. The growing training cost with domain complexity rep-
resents another limitation, which may offset the benefits of mesh-free formulation
in large-scale 3D applications. From the perspective of the theorem, these arti-
facts indicate incomplete minimization of the residual at collocation points near
the absorbing boundary, pointing to a need for refined loss weighting.

Three different neural network architectures were implemented for the 2D wave
equation with PML and an object: Fully Connected, Fourier Neural Operator
(FNO), and SIREN [3, 4, 9, 19]. Hyperparameters were kept the same across
all cases for comparison, thus 5 layer network, 128 neurons per layer and tanh
activation function for fully connected neural net and default Modulus values for
FNO and SIREN.

The Fully Connected architecture yielded the best and most stable results
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among those tested with the given configuration. It demonstrated smoother conver-
gence and physically more correct wave behavior in the impulse problem. Classical
dense architectures therefore remain a competitive baseline for wave problems, es-
pecially when training resources are constrained.

The FNO architecture showed a high initial loss that decreased rapidly in the
first thousands of iterations, then settled at a lower level. This suggests FNO
finds the main frequency components relatively quickly, but the solution was not
completely ideal regarding reflection and absorption. Parameter tuning (normal-
ization, number of harmonics) improved FNO results, reducing noise and yielding
a recognizable impulse, but still not fully physically correct propagation, reflec-
tion, or absorption, see Figure 5. The gray circle represents an obstacle and the
green square represents PML. These observations highlight both the promise of
operator learning approaches for capturing global patterns, and their current lim-
itations in faithfully reproducing fine-scale boundary interactions without tailored
architectures.

Figure 5. Result of the FNO model (left) after parameter opti-
mization and Fully Connected (right) at the same time.

The SIREN architecture started with a very high loss and decreased slowly,
remaining at a significantly higher value than the other architectures. The model
struggled to find a sufficiently good representation of the wave field. For impulse
disturbances with a wide frequency spectrum, SIREN typically requires special
initialization techniques and frequency scaling. While SIRENs are powerful for
high-frequency representations, their application to broadband wave propagation
remains limited without problem-specific adaptations.

In summary, the results demonstrate that PINNs can achieve accuracy com-
parable to FDM and FEM in structured wave problems, with clear benefits in
handling curved geometries and mesh-free generalization. However, their practical
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deployment is limited by high computational cost, sensitivity to hyperparameters,
and challenges with absorbing boundaries or sharp gradients. PINNs are there-
fore most promising for problems where geometric flexibility and smooth solutions
are more critical than computational efficiency, such as biomedical or geophysical
applications. Overall, the experiments confirm the theoretical formulation: mini-
mizing the total loss L(θ) = Ldata + Lphysics produces solutions that not only fit
data but also satisfy the governing PDE residuals within the domain.

6. Conclusion
This study investigated the application of PINNs for acoustic wave propagation
prediction. A theoretical overview of acoustic waves and the PINN approach was
provided, followed by simulations in NVIDIA Modulus Sym for one-, two-, and
three-dimensional cases, including absorbing boundaries and rigid obstacles.

PINNs modeled wave phenomena in open boundaries and complex geometries
without explicit space–time discretization, a key advantage over classical numerical
methods. However, the models were sensitive to training parameters, especially in
complex configurations (e.g., with impulse disturbances and PML), where artifacts,
amplitude reduction, or wavefront deformation appeared. These issues arose from
loss-function setup, excessive weighting of boundaries, uneven collocation points,
or low weights in the interior domain.

Comparison with analytical, FDM, and FEM solutions confirmed the advan-
tage of PINNs in applying boundary conditions to curved geometries via symbolic
description. While accuracy was not uniform across the entire domain, PINNs
generally preserved the physical structure of the solution and reproduced key wave
properties.

Among Fully Connected, FNO, and SIREN architectures, the classical fully
connected network yielded the most stable and physically correct results, empha-
sizing that architecture choice should reflect the disturbance type and expected
solution form.

Although training is computationally intensive, PINNs’ flexibility, mesh-free
formulation, and incorporation of physical laws make them a promising tool for
modeling complex physical processes. Future work should expand to more architec-
tures, improve sampling strategies, and apply regularization to enhance accuracy,
particularly for impulse waves and absorbing layers.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.

Davis, J. Dean, M. Devin, et al.: Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems, arXiv preprint arXiv:1603.04467 (2016).

[2] J. Brum: Transverse wave propagation in bounded media, Ultrasound elastography for bio-
medical applications and medicine (2018), pp. 90–104.

https://uni-eszterhazy.hu/fmf 185https://uni-eszterhazy.hu/fmf 185https://uni-eszterhazy.hu/fmf 185

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


M. Ružička, M. Štancel, M. Imrich, D. Havrysh FMF-AI 2025

[3] S. Cai, Z. Mao, Z. Wang, M. Yin, G. E. Karniadakis: Physics-informed neural networks
(PINNs) for fluid mechanics: A review, Acta Mechanica Sinica 37 (2021), pp. 1727–1738,
doi: 10.1007/s10409-021-01148-1.

[4] K. Gurney: An Introduction to Neural Networks, Boca Raton, FL, USA: CRC Press, 2018.
[5] Y. Kagawa, T. Tsuchiya, T. Yamabuchi, H. Kawabe, T. Fujii: Finite element simulation

of non-linear sound wave propagation, Journal of sound and vibration 154.1 (1992), pp. 125–
145.

[6] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang: Physics-
informed machine learning, Nature Reviews Physics 3 (2021), pp. 422–440, doi: 10.1038/s
42254-021-00314-5.

[7] S. W. Kim, I. Kim, J. Lee, S. Lee: Knowledge Integration into deep learning in dynamical
systems: An overview and taxonomy, Journal of Mechanical Science and Technology 35
(2021), pp. 1331–1342.

[8] L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders: Fundamentals of Acoustics,
4th ed., John Wiley & Sons, 2000.

[9] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anand-
kumar: Fourier neural operator for parametric partial differential equations, arXiv preprint
arXiv:2010.08895 (2020).

[10] X. Luan, K. Yokota, G. Scavone: Acoustic field reconstruction in tubes via physics-
informed neural networks, arXiv preprint arXiv:2505.12557 (2025).

[11] N. Mehtaj, S. Banerjee: Scientific machine learning for guided wave and surface acous-
tic wave (SAW) propagation: PgNN, PeNN, PINN, and neural operator, Sensors (Basel,
Switzerland) 25.5 (2025), p. 1401.

[12] NVIDIA Corporation: NVIDIA Modulus: Physics-Informed Neural Networks Framework,
https://developer.nvidia.com/modulus, 2024.

[13] A. Paszke: Pytorch: An imperative style, high-performance deep learning library, arXiv
preprint arXiv:1912.01703 (2019).

[14] M. Raissi, P. Perdikaris, G. E. Karniadakis: Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational physics 378 (2019), pp. 686–707.

[15] M. Rasht-Behesht, C. Huber, K. Shukla, G. E. Karniadakis: Physics-informed neural
networks (PINNs) for wave propagation and full waveform inversions, Journal of Geophys-
ical Research: Solid Earth 127.5 (2022), e2021JB023120.

[16] S. Schoder, F. Kraxberger: Feasibility study on solving the Helmholtz equation in 3D with
PINNs, arXiv preprint arXiv:2403.06623 (2024).

[17] A. Sherstinsky: Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network, Physica D: Nonlinear Phenomena 404 (2020), p. 132306, doi:
10.1016/j.physd.2019.132306.

[18] K. Shukla, P. C. Di Leoni, J. Blackshire, D. Sparkman, G. E. Karniadakis: Physics-
informed neural network for ultrasound nondestructive quantification of surface breaking
cracks, Journal of Nondestructive Evaluation 39.3 (2020), p. 61.

[19] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, G. Wetzstein: Implicit neural rep-
resentations with periodic activation functions, Advances in neural information processing
systems 33 (2020), pp. 7462–7473.

[20] L. Sun, H. Gao, S. Pan, J. X. Wang: Surrogate modeling for fluid flows based on physics-
constrained deep learning without simulation data, Computational Methods in Applied Me-
chanics and Engineering 361 (2020), p. 112732, doi: 10.1016/j.cma.2019.112732.

[21] H. Wang, J. Li, L. Wang, L. Liang, Z. Zeng, Y. Liu: On acoustic fields of complex scatters
based on physics-informed neural networks, Ultrasonics 128 (2023), p. 106872.

186 Proceedings of the FMF-AI 2025186 Proceedings of the FMF-AI 2025186 Proceedings of the FMF-AI 2025

https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://developer.nvidia.com/modulus
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.cma.2019.112732


FMF-AI 2025 Physics-informed neural networks for acoustic wave propagation

[22] Q. Wang, Y. Ma, K. Zhao, Y. Tian: A comprehensive survey of loss functions in machine
learning, Annals of Data Science 9.2 (2022), pp. 187–212.

[23] S. Wang, Y. Teng, P. Perdikaris: Understanding and mitigating gradient flow pathologies
in physics-informed neural networks, SIAM Journal on Scientific Computing 43.5 (2021),
https://arxiv.org/abs/2001.04536, A3055–A3081.

[24] H. Yamawaki, T. Saito: Computer simulation of acoustic waves propagation in elastically
anisotropic materials, in: Materials Science Forum, vol. 210, Trans Tech Publ, 1996, pp. 589–
596.

[25] L. Yang, X. Meng, G. E. Karniadakis: B-PINNs: Bayesian physics-informed neural net-
works for forward and inverse PDE problems with noisy data, Journal of Computational
Physics 425 (2021), p. 109913, doi: 10.1016/j.jcp.2020.109913.

[26] Y. Yang, P. Perdikaris, G. E. Karniadakis: Physics-informed deep learning for the non-
linear dynamics of materials, Computer Methods in Applied Mechanics and Engineering 389
(2022), p. 114378, doi: 10.1016/j.cma.2021.114378.

[27] K. Yokota, T. Kurahashi, M. Abe: Physics-informed neural network for acoustic reso-
nance analysis in a one-dimensional acoustic tube, The Journal of the Acoustical Society of
America 156.1 (2024), pp. 30–43.

[28] S. Yoshida: Fundamentals of Acoustic Waves and Applications, Springer, 2024.

https://uni-eszterhazy.hu/fmf 187https://uni-eszterhazy.hu/fmf 187https://uni-eszterhazy.hu/fmf 187

https://arxiv.org/abs/2001.04536
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1016/j.cma.2021.114378
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


Proceedings of the International Conference on
Formal Methods and Foundations of Artificial Intelligence
Eszterházy Károly Catholic University
Eger, Hungary, June 5–7, 2025
pp. 188–200 DOI: 10.17048/fmfai.2025.188

Benchmarking data logging strategies in
ROS-integrated multi-sensor robots under

network constraints

Nour Elhouda Ben Saadi, Zoltán Istenes

Eötvös Loránd University
nourelhoudabensaadi@gmail.com

istenes@inf.elte.hu

Abstract. This work benchmarks multiple logging strategies, including Java-
Script Object Notation (JSON) serialization, JSON Lines (JSONL), Web-
Socket based rosbridge, native Robot Operating System (ROS) Transmission
Control Protocol (TCP)/User Datagram Protocol (UDP) transports, and
NFS-based recording, on a multisensor robot over a 100 Mbps constrained
network. We evaluate dropped messages, resource usage, and storage foot-
print across high-throughput data streams, such as LiDAR, Red-Green-Blue
plus Depth (RGB-D) images, Inertial Measurement Unit (IMU), and Global
Navigation Satellite System (GNSS) data. Results show that TCPROS pro-
vides the highest reliability, while UDPROS, rosbridge, and JSON-based
methods incur significant losses when network capacity is saturated. Network
File System (NFS) recording performs well, provided that network stability is
maintained. Our findings reveal key trade-offs between transport guarantees,
network limitations, and message size fragmentation.
Keywords: ROS, data logging, benchmarking, TCPROS, UDPROS, JSON,
multisensor robots, network constraints
AMS Subject Classification: 68T40, 68M10, 68M20

1. Introduction
Accurate and timely data logging in robotic systems is crucial for tasks such as per-
formance evaluation, fault diagnosis, and developing machine learning pipelines. As
robots increasingly integrate high-throughput sensors – such as Light Detection and
Ranging (LiDAR), RGB-D cameras, inertial units, and GNSS modules – the abil-
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ity to reliably record data is critical for both real-time decision-making and offline
analysis. Recent advancements in ROS-based architectures, including modular sen-
sor integration and networked communication protocols, have improved scalability
and flexibility in robotic software systems. However, in bandwidth-constrained or
infrastructure-limited environments – such as field robotics or industrial inspection
– data transport can become a significant bottleneck. Under such conditions, large
message sizes and unreliable links often cause dropped messages, increased Central
Processing Unit (CPU) overhead, and inconsistent logging performance. Efforts
like ROS Enhancement Proposal (REP)2014 propose benchmarking guidelines for
ROS 2 systems to standardize performance analysis under diverse computational
and network conditions [5]. The RobotPerf suite [4] further enables reproducible
benchmarking of computational workloads in ROS 2 pipelines. Additionally, recent
studies on ROS 2 real-time latency and transport performance [2, 12] demonstrate
the value of systematic evaluations across middleware configurations. However,
despite ROS 2 gaining popularity, ROS 1 remains widely deployed across academic
and industrial settings, especially in long-lived platforms and legacy deployments.
While most recent benchmarks focus on ROS 2, there is a lack of in-depth evalu-
ation of logging strategies in ROS 1, particularly under constrained network con-
ditions, where transport choice, message encoding, and system load directly affect
data reliability. To address this gap, we conduct a comprehensive benchmarking
study of ROS 1 data logging strategies in multi-sensor robotic systems, focusing
on real-world limitations caused by limited bandwidth.

Our key contributions are as follows:

• We benchmark six data logging strategies in ROS 1: TCPROS, UDPROS,
rosbridge (WebSocket), JSON serialization, JSONL, and NFS-based remote
logging.

• We evaluate each strategy in a real-world multi-sensor setup (LiDAR, RGB-
D, IMU, GNSS) across a 100 Mbps constrained network.

• We compare performance based on message loss, CPU and memory usage,
and storage efficiency.

• We analyze trade-offs related to transport guarantees, serialization overhead,
and system saturation under network stress.

In this paper, we provide a comprehensive evaluation of data logging strategies in
ROS 1 under constrained network conditions on a multi-sensor robotic platform.
Unlike prior studies, our benchmarks are performed in real time during active sensor
streaming, capturing the actual performance limitations encountered in deployment
scenarios. The remainder of this paper is structured as follows: Section 2 discusses
related work. Section 3 presents the system architecture and logging strategies.
Section 4 details the benchmarking methodology. Section 5 presents the results
and their analysis. Finally, Section 6 concludes and outlines future directions.
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2. Related work
Benchmarking in robotic systems has gained increased attention with the evolution
of modular and distributed architectures, particularly in ROS 2. The official bench-
marking guideline, REP-2014, provides recommendations for reproducible perfor-
mance analysis in ROS 2 systems, including tracing, latency measurement, and
profiling [5]. Building on this, the RobotPerf suite offers a vendor-neutral bench-
marking framework for computational performance in ROS 2, targeting CPU usage,
scheduling behavior, and system latency under sensor load [4]. However, both fo-
cus on ROS 2 middleware and compute pipelines rather than message transport
or data logging behavior. Several other works have examined ROS 2 communica-
tion performance. Kronauer et al. analyzed latency behavior in multi-node Data
Distribution Service (DDS) based systems and highlighted the trade-offs between
configuration settings and timing guarantees [2]. Yanlei et al. conducted a
comparative evaluation of ROS 1 and ROS 2 real-time performance under CPU
load, noting ROS 2’s architectural improvements in timing determinism [12]. Still,
these studies do not explore logging reliability or network-induced message loss. In
the ROS 1 ecosystem, tools like ROS-CBT focus on communication benchmarking
by measuring throughput and latency over emulated network links between virtual
nodes [3]. While ROS-CBT includes tests under constrained bandwidth, it does not
evaluate end-to-end logging mechanisms or analyze serialization overhead, system
load, or message loss during real-time recording. Furthermore, it is simulation-
based and does not reflect the challenges of logging live, high-throughput sensor
data on deployed robotic systems. Other works like ROSfs propose user-space file
systems for sharing ROS data across distributed robots, but they do not benchmark
performance or logging efficiency under network constraints [11]. To the best of our
knowledge, no prior work has systematically evaluated data logging strategies in
ROS 1 under constrained network conditions using a live, multi-sensor robotic plat-
form. Our study fills this gap by benchmarking six strategies – including TCPROS,
UDPROS, and NFS recording, as well as rosbridge-based logging of ROS messages
in raw ROS Bag file format for logging messages (rosbag) format, JSON, and
JSONL. We evaluate message loss, CPU and memory usage, and storage footprint
under real-time conditions with active sensor streaming.

3. System description
Our evaluation was conducted on a ROS 1-based robotic platform – we named
Pomona – designed for sensor-rich navigation and mapping tasks. The robot we
used is an Agile-X four-wheel-drive Scout Mini1 robot equipped with the Research
Pro sensor kit (see Figure 1).

The system integrates a mix of high- and low-throughput sensors, covering a
broad range of data rates including:

1https://global.agilex.ai/products/scout-mini
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Figure 1. Pomona: a ROS 1-based multi-sensor robotic platform
used in our experiments. The system integrates a Velodyne VLP-16
LiDAR, an Intel RealSense D435 RGB-D camera, an Xsens IMU,

and a GNSS receiver.

• LiDAR: Velodyne VLP-16 (/velodyne_points, sensor_msgs/PointCloud2),
10 Hz, average bandwidth ~6.59 MB/s, average message size ~0.62 MB

• RGB-D camera: Intel RealSense D435

– Color image (/camera/color/image_raw, sensor_msgs/Image): 30
Hz, average size ~0.92 MB, bandwidth ~27–28 MB/s

– Depth image (/camera/depth/image_raw, sensor_msgs/Image): 30
Hz, average size ~0.81 MB, bandwidth ~25 MB/s

– Compressed color (/camera/color/image_compressed, sensor_ms-
gs/CompressedImage): 30 Hz, average size ~16.5 KB, bandwidth ~510
KB/s

– Compressed depth (/camera/depth/image_compressed, sensor_-
msgs/CompressedImage): 30 Hz, average size ~22 KB, bandwidth ~670
KB/s

• IMU: Xsens MTI 600 series (/imu/data, sensor_msgs/Imu), 25 Hz, message
size ~0.32 KB, bandwidth ~8 KB/s

• GNSS receiver2: (/gnss, sensor_msgs/NavSatFix), 4 Hz, message size
~124 bytes, bandwidth ~640 B/s

• Base controller: Scout Mini (/scout_status, scout_msgs/ScoutStatus [1]),
50 Hz, message size ~0.14 KB, bandwidth ~7.3 KB/s

2Incorporated into the Xsens IMU
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These sensors interface with an onboard NVIDIA Jetson AGX Xavier running
ROS Melodic (Ubuntu 18.04), streaming data over a 100 Mbps Ethernet link to an
external logging workstation (Ubuntu 22.04). This constrained bandwidth emulates
real-world field robotics and industrial inspection scenarios, where infrastructure or
power limitations restrict data transmission. Under these conditions, we evaluated
the following six logging strategies.

3.1. TCPROS (TCP)
TCPROS [6] is the default ROS 1 transport, using TCP for reliable, in-order de-
livery between publishers and subscribers. As illustrated in Figure 2b, Pomona’s
sensor nodes publish topics over the 100 Mbps Ethernet link to a Docker con-
tainer running on the logging workstation. The container uses a ROS 1 im-
age (e.g., ros:melodic-ros-base) to provide the correct environment for rosbag
record. This containerized setup is necessary because the logging workstation
runs Ubuntu 22.04, which is incompatible with ROS Melodic, and it avoids instal-
lation conflicts or dependency issues on the host system [9, 10]. Host networking
(–network host) and a bind mount to /data enable direct topic subscription and
efficient data storage. Each publisher–subscriber pair establishes a persistent TCP
channel. TCP handles retransmissions and enforces ordering, ensuring message in-
tegrity for high-bandwidth topics such as LiDAR scans, RGB-D images, and IMU
readings. Under high network utilization, TCP back-pressure increases ROS pub-
lish queues, and if these queues overflow, messages are dropped at the publisher
before transmission.

3.2. UDPROS (UDP)
UDPROS [7] is a connectionless ROS 1 transport that uses the User Datagram
Protocol (UDP) to transmit messages without delivery guarantees. As illustrated
in Figure 2c, Pomona’s sensor nodes publish topics over the 100 Mbps Ethernet link
to a Docker container on the logging workstation running a ROS 1 Melodic image.
Direct use of rosbag record could not successfully negotiate the UDP transport
layer with Pomona’s publishers, as ROS 1 defaults to TCPROS unless both end-
points explicitly advertise UDPROS support. To enable UDP-based recording,
we implemented an intermediate C++ relay node inside the container. This node
subscribed to Pomona’s topics via UDPROS, confirmed using rostopic info, and
re-published the messages locally within the container. rosbag record then sub-
scribed to these local topics, benefiting from intra-process communication while
preserving the UDP characteristics of the original inbound link.

3.3. rosbridge + rosbag
The rosbridge_server [8] exposes ROS topics over a JSON/WebSocket inter-
face. As illustrated in Figure 2a, Pomona runs rosbridge_server and streams
messages to the logging workstation over WebSocket. On the workstation, we
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(a) ROSBridge Architecture (b) TCP Architecture

(c) UDP Architecture (d) NFS Architecture

Figure 2. Comparison of architectures: ROSBridge, TCP, UDP,
and NFS.

run a Docker container with a ROS 1 Melodic image to provide the required en-
vironment for rospy, rosbag, genpy, and message definitions. Inside the con-
tainer, a Python bridge (via roslibpy) subscribes to the WebSocket topics, recon-
structs native ROS messages, and writes them to a .bag. For message types with
binary payloads (sensor_msgs/CompressedImage, sensor_msgs/PointCloud2),
rosbridge_server transmits the data field as base64 text; we therefore decode
to raw bytes prior to message construction. Without this step, the bag appears
valid in rosbag info but the payload bytes are incorrect, leading to corrupted
images and point clouds at playback.

3.4. rosbridge + JSON
In this configuration (Figure 2a), Pomona’s onboard ROS 1 Melodic system runs
rosbridge_server to serialize ROS messages into JSON and stream them over
a WebSocket connection. The logging workstation connects via roslibpy from a
Python script and saves incoming messages directly to a JSON file for each topic.
The subscriber script maintains an in-memory dictionary keyed by topic name and
appends each received message before periodically writing to disk. For topics con-
taining binary payloads (e.g., sensor_msgs/Image, sensor_msgs/CompressedIm-
age, sensor_msgs/PointCloud2), the raw JSON representation can produce very
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large files and, if not explicitly base64-encoded before transmission, may risk trun-
cation or corruption depending on client library handling. This approach bypasses
rosbag record entirely, allowing collection on systems without a full ROS envi-
ronment, but requires careful handling of binary fields to ensure data integrity.

3.5. rosbridge + JSONL
In this configuration (Figure 2a), Pomona runs rosbridge_server to serialize
ROS messages into JSON objects, which are transmitted over a WebSocket con-
nection to the logging workstation. Instead of aggregating messages into a single
file, each incoming message is written as an individual JSON object on its own line
(JSON Lines, or JSONL format). The subscriber script, implemented in Python
with roslibpy, appends each received message to a text file as soon as it arrives.
This streaming write pattern enables incremental storage without keeping the en-
tire dataset in memory and simplifies parsing for large-scale post-processing, since
each line is a self-contained JSON object. As with the pure JSON approach, top-
ics containing binary fields (e.g., Image, CompressedImage, PointCloud2) require
base64-encoding of their data fields to avoid payload corruption. Without decod-
ing these fields back into raw bytes during reconstruction, the resulting files will
appear structurally valid but contain unusable image or point cloud data.

3.6. NFS recording
In this configuration (Figure 2d), the logging workstation mounts a remote di-
rectory from Pomona via the Network File System (NFS) protocol. On Pomona,
rosbag record runs natively within the ROS 1 Melodic environment, writing di-
rectly to the mounted path, which physically resides on the workstation’s storage.
This arrangement keeps all ROS topic subscription, serialization, and bag creation
on the robot side, while the workstation receives the bag file writes in real time
through the NFS link. It avoids the need for a ROS environment on the workstation
for recording and guarantees full compatibility with Pomona’s Melodic setup. How-
ever, overall performance is bound by NFS throughput and the robot’s disk I/O;
high-rate or large-payload topics may still cause write delays or dropped messages
if the network or storage becomes saturated.

4. Benchmarking methodology
All strategies were tested in real time while the robot continuously published sensor
data. Logging scripts were implemented in Python and C++ where applicable.
Depending on the strategy, performance metrics were collected in the robot or in
the external logging machine. These metrics include CPU load, memory usage,
storage footprint, and message drop rate. While Linux tools such as htop, iftop
were consulted for runtime inspection, we primarily used time -v to obtain detailed
per-process performance metrics at critical evaluation points during logging.
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To evaluate the performance of each logging strategy under bandwidth- and
resource-constrained conditions, we conducted real-time experiments with the robot
Pomona while it actively streamed high-rate sensor data. Each strategy was
launched independently while keeping the sensor configuration constant to ensure
comparability. For each strategy, we performed at least three independent runs,
each lasting 120 seconds, to capture representative performance and account for
run-to-run variability. Performance data were recorded concurrently on either the
onboard or the external logger, depending on where the logging process was exe-
cuted. Metrics measured included:

• CPU usage: peak and average utilization of the logging process, using:
time -v

• Memory consumption: maximum Resident Set Size (RSS), from time -v .

• Bandwidth utilization: observed using iftop on the robot’s Ethernet in-
terface (note: not measured separately for each logging strategy).

• Storage footprint: file size of logged data.

• Message drop rate: estimated based on comparing the expected message
counts, computed as:

Expected Count = fnominal × Trecording (4.1)
where fnominal is the nominal topic frequency and Trecording is the logging
duration, with the actual received counts in the logs. The drop percentage
was then calculated as:

Drop Rate (%) = Expected Count − Actual Count
Expected Count × 100 (4.2)

This method allowed us to estimate the proportion of received messages rel-
ative to the expected volume, providing a quantitative basis for drop rate
analysis.

The time -v outputs were saved automatically for each run and processed using
a custom script to generate tabular data, which were then read into Pandas data
frames for plotting and further analysis. For fairness, background system load was
kept minimal during all runs. For both persistent-mode experiments and standard
runs that completed successfully without anomalies, all reported metrics are pre-
sented as the mean together with the standard deviation, computed across multiple
experimental repetitions.

5. Results and analysis

5.1. System performance and throughput
JSON vs JSONL. Figure 3 compares key performance metrics for all logging
strategies under raw and compressed configurations. CPU usage (Figure 3a) shows
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(a) Relative CPU usage. (b) Relative peak RAM.

(c) Relative output file size. (d) Relative message throughput.

Figure 3. Relative system load and throughput metrics for raw
and compressed configurations across all methods.

that JSONL, while still exhibiting high CPU load due to its intensive disk I/O,
maintains the low RAM usage (Figure 3b). This allows continuous recording with-
out memory saturation, in contrast to the JSON strategy where unsaved data accu-
mulates in RAM until a flush to disk is triggered. Under long runs, this progressive
growth (shown in Figure 6a) continues until the output file size exceeds host-level
limits, at which point logging halts with an Errno 27: File too large error
and incomplete data persistence (Figure 4a). To further investigate JSONL’s be-
havior, we experimented with tuning its buffering size (Figure 6c). While smaller
buffers kept message throughput relatively stable over extended runs, larger buffers
initially increased the sustained rate but eventually led to a sudden drop after pro-
longed operation. This effect is attributed to accumulated write delays and internal
queue growth, which cause bursts of backpressure when the disk subsystem is mo-
mentarily saturated. The behavior, although less severe than JSON’s abrupt halts,
still indicates a limit to how long JSONL can maintain peak throughput without
periodic flushing or additional I/O optimization.
Native ROS transports (TCPROS, UDPROS) and NFS-based logging
maintain low CPU and RAM usage, with minimal differences between raw and com-
pressed operation. File size results (Figure 3c) highlight the trade-off between stor-
age footprint and message throughput (Figure 3d). Compression reduces output
size across all methods, but throughput generally drops for more serialization-heavy
approaches. A notable exception is the ws_rosbridge_rosbag method, which per-
forms poorly on raw data but shows throughput in the compressed configuration
comparable to TCPROS and UDPROS. This counter-intuitive result – achieving
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(a) JSON method halting due to file-size
limitation (Errno 27).

(b) UDP logging failure during com-
pressed image streaming (Buffer

Overrun).

(c) Network instability affecting both TCP and UDP transports, causing simultaneous
camera and LiDAR dropouts until Wi-Fi reset.

Figure 4. Observed runtime failures and instability. Top: method-
specific logging errors (a: JSON, b: UDP). Bottom: link-level in-

stability affecting native ROS transports (c).

similar throughput while producing smaller files – suggests that compression mit-
igates bottlenecks in the WebSocket and rosbag pipeline, allowing data to be
processed and written at a higher sustained rate.
UDP instability and MTU sensitivity. Beyond the JSON limitations, UDP
exhibited run-time instability that forced a hybrid setup. When large payloads
(camera frames/LiDAR packets) approached or slightly exceeded the link MTU, the
UDPROS stream intermittently stalled. Lost fragments caused transport desyn-
chronization, manifesting as spurious size predictions and Buffer Overrun errors
in the camera node (Figure 4b). Increasing socket and ROS-level buffers reduced
drops for small and medium topics, but did not prevent stalls for large payloads
under link instability. During affected runs we restored operation by republish-
ing locally (UDP relay → local topics). As a practical mitigation, lowering image
resolution/quality or enabling camera-side compression reduces packetization pres-
sure; otherwise TCPROS is preferable for large messages on unstable links. Given
this fragility, the Reliability results in Section 5.2 correspond to a hybrid transport
configuration: UDPROS was retained for low-bandwidth, latency-sensitive topics
(IMU, GNSS, status), while large-payload topics (camera frames, LiDAR scans)
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were switched to TCPROS to prevent fragmentation stalls and ensure reliable de-
livery under variable link conditions. As shown in Figure 6b, this hybrid approach
preserved the high delivery rate for small topics while restoring near-complete re-
ception for large payloads.
General network instability. In addition to protocol-specific issues, several
experimental runs in both TCP and UDP experiments, intermittent Wi-Fi link
throttling impacted performance, where throughput dropped sharply even though
the link did not fully disconnect. This manifested as sudden throughput drops
and stalled topics certainly over heavy connections, and in some cases required
manually resetting the wireless interface to recover (Figure 4c). While rare, such
events highlight the importance of robust reconnection and buffering logic in real-
world field deployments.

5.2. Reliability: Message Delivery

(a) Raw data. Compressed topics omit-
ted.

(b) Compressed data. Raw image topics
omitted.

Figure 5. Percentage of messages dropped per topic and method
for raw vs. compressed data streams.

(a) RAM and CPU usage dur-
ing JSON logging.

(b) Fraction of received
messages for UDP raw

vs hybrid transport.

(c) Effect of buffering
size on JSONL (raw)

message rate.

Figure 6. Additional runtime observations: (a) CPU and RAM
growth in JSON logging; (b) improvement in message delivery using
hybrid UDP/TCP; (c) impact of buffer size on JSONL throughput.

Drop rates. Figures 5a–5b report message loss as Equation 4.2 indicates. On
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raw streams (Figure 5a), JSON/JSONL exhibit consistently high loss across top-
ics, while native transports (TCPROS, UDPROS) retain most control/metadata
messages (e.g., camera_info, imu/data) but still struggle with raw image top-
ics. The dedicated UDP status topic (/scout_status_udp) is correctly preserved
under UDPROS, matching the transport design. With compression enabled (Fig-
ure 5b), TCPROS, UDPROS, and ws_rosbag achieve near-zero loss across the
board, whereas JSON/JSONL still drop substantially on high-rate sensors. We
also observe occasional > 100% “received” artifacts (visible as negative drop in
the source percentage plots) on JSONL channel corresponding to the /gnss topic,
suggesting message duplication on the WebSocket path rather than true reliability
gains. Overall, compression shifts the balance strongly in favor of native ROS trans-
ports and the ws_rosbag pipeline for dependable delivery under the constrained
link.

6. Conclusion and future work
This study provided a systematic benchmarking of ROS 1 data logging strategies
under varying payload sizes, compression settings, and network conditions. By eval-
uating CPU usage, memory footprint, storage requirements, and message delivery
rates, we mapped the trade-offs that influence transport and storage performance
in real-world deployments. Throughput-oriented transports such as TCPROS, UD-
PROS, and ws_rosbag achieved the highest message rates, particularly with com-
pression enabled. However, UDP’s strong performance on small, latency-sensitive
topics was offset by its fragility under network stress, making hybrid strategies
– where large payloads fall back to TCP – more robust. NFS-based logging, es-
pecially asynchronous NFS, offered excellent CPU efficiency but struggled with
sustained high-frequency data streams. WebSocket-based JSON/JSONL methods
– while easy to set up and flexible – incurred heavy CPU load and high drop
rates on large data streams due to serialization overhead. Across all methods, raw
(uncompressed) configurations were more vulnerable to packet loss when network
capacity was saturated.

No single method proved universally optimal across all conditions tested: the
best choice depends on application constraints such as CPU availability, network
stability, required throughput, and tolerance for packet loss. Our results provide
empirically grounded guidance for selecting or combining transports to meet specific
operational requirements in ROS 1-based robotic systems.

Future work will integrate precise time synchronization (e.g., NTP/chrony or
hardware timestamping) to enable accurate end-to-end latency analysis. We also
plan to extend this benchmarking framework into a more automated, deployment-
agnostic tool that can isolate bottlenecks, profile shared resources, and adapt trans-
port selection in real time based on topic characteristics and network state. Ad-
ditional research will address challenging domains such as real-time LiDAR com-
pression, power and thermal budgeting for edge deployments, validation in mobile,
unstable wireless environments, and a hybrid migration strategy in which the work-
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station transitions to DDS-based ROS 2 for improved resilience, while the robot
remains on ROS 1 and communicates via rosbridge for interoperability. These steps
will move toward adaptive logging systems that dynamically balance throughput,
resource usage, and reliability in diverse field robotics applications.
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Abstract. Modern cyber-physical systems (CPS) are distributed reactive
real-time systems used in many critical application domains, such as auto-
motive or railway systems, so ensuring their correctness is essential. Formal
verification can exhaustively explore the behavior of the formal representa-
tion of CPS to ensure its reliability. Engineering modeling tools provide
separate modeling constructs for the different aspects of the systems, e.g.,
behavior, architecture, and scheduling, but lack formal composition, making
system-level verification difficult. Formal modeling tools, e.g., Lingua Franca
or the Gamma Statechart Composition Framework, are efficient in describing
component behavior, and they provide formal composition semantics of the
subsystems. However, the provided composition patterns in these languages
are not general, so incorporating the precise coordination, scheduling, and
interaction aspects requires the modification of the component models by en-
coding the coordination into the components. In this paper, we present a
configurable formal description approach for the coordination of distributed
critical systems. We extend the well-known timed automata formalism to
coordinate the execution of the components by directly reusing the formal
models of the components, making the coordination of the system compo-
nents a first-class citizen.
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1. Introduction
The modeling and verification of modern cyber-physical systems (CPS) present sev-
eral unique challenges that arise due to the integration of distributed heterogeneous
components. These systems integrate physical systems with HW/SW components
across varying platforms and locations. One challenge is to account for the timing
of distributed components, which can be influenced by the communication network
between the distributed components (messages can be delayed or lost). CPS are
often used in critical application domains, e.g., the railway or the automotive indus-
try. One way to ensure the reliability and correctness of these systems is to apply
formal verification techniques like model checking, which systematically explores
the state space of the system.

Various modeling and formal languages are developed to help engineers use for-
mal verification: engineering modeling tools, such as AUTOSAR, aim for efficient
engineering and provide separate modeling constructs for the different aspects of
the systems, e.g., behavior, architecture, and scheduling. However, no formal com-
position is defined, so it is hard to target the system-level behavior with formal
verification. On the other hand, formal modeling tools, e.g., Lingua Franca or
the Gamma Statechart Composition Framework, are efficient in describing compo-
nent behavior and they provide formal composition semantics of the subsystems.
However, the provided composition patterns in these languages are not general, so
incorporating the precise coordination, scheduling, and interaction aspects in these
tools requires the modification of the component models and the encoding of the
coordination into the components. Additionally, in distributed CPS, the underly-
ing formal models of the communication and the subsystems often vary based on
the application domain, network architecture, and system requirements, thus, a
configurable solution is needed to model the coordination of the system.

In this paper, we present a configurable formal description approach for the
coordination of distributed critical systems. We extend the well-known timed au-
tomata formalism to coordinate the execution of the components by directly reusing
the formal models of the components, making the coordination of the system com-
ponents a first-class citizen.

1.1. Motivating example: Steer-by-Wire
In our previous works, we presented an approach to model time-dependent behav-
iors in complex distributed systems and showed its applicability with a Steer-by-
Wire (SbW) system inspired by our industrial partner [5], and we investigated how
the coordination of the SbW system can be modeled [10].

In a SbW system to provide steering functionality, the road wheels are actuated
via a control loop. Unlike classic Electric Power Assisted Steering (EPAS) systems,
in the case of an SbW system, there are no direct mechanical connections between
the steering wheel and the road wheels. The angle of the steering wheel is measured
by multiple sensors, and the road wheels are actuated by the Road Wheel Actuator
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(RWA) subsystems based on the measurements. Since actuating the road wheel
is a critical function, a Master Selection Protocol (MSP) was developed to control
the actuation of the road wheels. The MSP assigns which of the redundant RWAs
must be used to control the road wheels based on the availability and correctness
of their sensor measurements. In the presented case study, there are two RWAs
and four sensors, as depicted in Figure 1.

 PrimaryRWA

Sensor1 Sensor2

 SecondaryRWA

Sensor3 Sensor4

Figure 1. Architecture of the SbW
system.

The components of the SbW system are dis-
tributed: the components are deployed on sep-
arate electrical/electronic (E/E) subsystems,
and the components communicate over redun-
dant Controller Area Network (CAN) buses and
private communication buses. The execution of
the E/E subsystems is triggered by their clocks,
and the clocks can deviate from each other.
Furthermore, the CAN buses are used by other
components of the system. The combination of
these properties can cause delayed messages; in
extreme cases, this can lead to comparing sensor measurements originating from
different execution cycles, possibly deeming correct measurements as faulty. Se-
lecting both RWAs as master or selecting a failed RWA as the master can lead
to accidents. To verify that the deviations of the E/E subsystem clocks cannot
cause erroneous master selection, a sufficient formal representation of the coordi-
nation of the subsystems is needed. In order to formally model and verify such a
complex system, we need a configurable modeling language that allows us to de-
scribe the possible execution scenarios, and while the previous works presented in
Subsection 2.1 all have their strength, they lack the option to model the possible
execution scenarios as first-class citizens.

2. Background and related work

2.1. Modeling complex distributed systems
There are several widely used modeling languages for defining the architecture and
behavior of a system. These languages have varying levels of precision in their
semantics. To use mathematical tools for the systematic examination of a system’s
design, a formal model of the system with mathematically precise semantics is
needed [3].

Lingua Franca [7] is a coordination language to model concurrent reactive com-
ponents (reactors). Lingua Franca works with both logical time (discrete ordering
of events) and physical time (timestamps). The goal of Lingua Franca is to provide
a deterministic model of the system by utilizing the priorities of the reactors, the
dependencies between the reactors, and the logical and physical timing of events.
Even though the goal of the authors of Lingua Franca is to model deterministic
systems, nondeterminism is allowed if explicitly required by the engineer.

https://uni-eszterhazy.hu/fmf 203https://uni-eszterhazy.hu/fmf 203https://uni-eszterhazy.hu/fmf 203

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


R. Szabó, D. Cziborová FMF-AI 2025

The Gamma Statechart Composition Framework [8] focuses on bridging the
gap between higher-level (engineering) models and lower-level (formal) models and
facilitates the modeling and verification of component-based reactive systems. The
framework provides semantic-preserving model transformations between higher-
level and lower-level modeling languages. The framework supports the hierarchical
composition of components, which enables the engineers (1) to break down the
system into smaller, reusable subsystems or (2) connect distributed components to
provide higher-level system functionalities.

Similarly to the coordination automata formalism presented in Subsection 3.1,
Norström et al. [9] present an extension of the timed automata. Their formalism,
the task automata, enables the schedulability analysis of tasks by performing reach-
ability analysis. In [1], the authors present a timed labeled transition system with
invariants to define controlling and priorities of applications. The requirements of
the system are mapped to specific transitions, thus requiring a white-box model
of the system. Our proposed formalism considers the coordinated subsystems as
black-box components since the transitions of the subsystems are not modified.

2.2. The TXSTS modeling formalism
The timed extended symbolic transition system (TXSTS) formalism (proposed in
[4] as an extension of [6]) is an intermediate modeling formalism with high-level
language constructs suitable for representing complex engineering models. Never-
theless, it is compatible with model checking algorithms that are usually based on
low-level formal models.

TXSTS models contain data variables to represent data-dependent behavior,
while timed behavior is modeled by clock variables.

Clock variables are continuous, non-negative variables. They are initialized to
zero and incremented equally. Most timed analysis techniques allow the comparison
of clocks with other clocks or integer constants, and resetting them to integer
constants. If there are rational constants in the model, all constants should be
multiplied by the least common multiple of denominators [2]. For a set of clocks
C, let G(C) denote the set of clock constraints in the form of ci ∼ n or ci − cj ∼ n,
where ci, cj ∈ C, ∼ ∈ {<, ≤, ==, ≥, >}, and n ∈ N0. Furthermore, let A(C) denote
the set of clock assignments in the form of ci := n, where ci ∈ C, and n ∈ N0.

A timed extended symbolic transition system is a tuple TXSTS = ⟨VD, VC ,
Vctrl, val0, init, env, tran⟩ where

• VD and VC are finite sets of data variables and clock variables, Vctrl ⊆ VD is
a set of control variables that may be handled differently by the algorithms;

• val0 is the initial valuation over VD that maps each variable x ∈ VD to the
initial value of the variable, or ⊤ if unknown;

• init, env, tran ⊆ O are sets of operations representing the initialization, en-
vironment and internal operation sets.
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The operation sets consist of one or more operations taken from a set of opera-
tions O. When executing an operation set, the operation to be executed is selected
from the operation set in a nondeterministic manner. The set of operations O
contains the following types of operations:

• Assumptions have the form [φ], where φ is a Boolean combination of predi-
cates over VD and clock constraints of G(VC);

• Data assignments have the form x := φ, where x ∈ VD, and φ is an expression
of the same type as x, that may contain variables of VD and clock constraints
of G(VC);

• Clock resets are clock assignments of A(VC);

• Havoc operations are denoted by havoc(x), which is a nondeterministic as-
signment to a data variable x ∈ VD;

• Delays are denoted simply by delay, it is a nondeterministic but equal incre-
mentation of all clocks in VC ;

• A no-op is denoted by skip;

• A sequence is a composite operation op1, op2, . . . , opn, where opi ∈ O for all
1 ≤ i ≤ n, the operations are executed one after the other;

• Nondeterministic choices have the form {op1} or {op2} or . . . or {opn}, they
are composite operations, where opi ∈ O for all 1 ≤ i ≤ n, from which exactly
one operation is executed, chosen in a nondeterministic manner;

• Conditional operations of the form if (φ) then {op1} else {op2} are composite
operations, where φ is a Boolean combination of predicates over VD and clock
constraints of G(VC), if φ holds then op1 ∈ O is executed, otherwise op2 ∈ O;

• A loop is a composite operation of the form for i from φa to φb do {op},
where i is an integer variable, φa, φb are expressions that evaluate to integers,
serving as the lower and upper bound for the loop variable i, and op ∈ O.

A state of a TXSTS model is a tuple ⟨valD, valC , τ⟩, where valD is a valuation
over VD, valC is a valuation over VC and τ ∈ {init, env, tran} is an operation set,
which is the only operation set that can be executed in this state.

The order of execution of the operation sets is fixed in TXSTS models. The
operation set init is executed only once, in the initial state. Sets env and tran are
executed in an alternating manner, but only after init, starting with env.

The semantics of TXSTS operations is straightforward, however, one can refer
to [4] for the detailed semantics.

When components of the same system are modeled as separate TXSTS models,
we consider them as a network of TXSTS models, where time advances equally, as
introduced in [10]. We will denote the state of a network N = ⟨TXSTS1, TXSTS2,
. . . , TXSTSn⟩ by SN = ⟨S1, S2, . . . , Sn⟩, where Si is a state of TXSTS i for each
1 ≤ i ≤ n.
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3. Formal modeling of coordination
In this section, we propose a new formalism, the coordination automata, to ease
the challenges of modeling the possible execution orders of the system. We present
the semantics of the coordination automata using the TXSTS modeling formalism,
which is an extension of the inner modeling formalism used by the Gamma Frame-
work. Finally, we present the coordination automaton of the motivating example.

3.1. Coordination automata
We propose the new coordination automata formalism, which extends timed au-
tomata [2] with notations referencing other formal models, e.g., TXSTS models.
These models can be referenced on the edges of the coordination automaton, de-
noting that the given component is scheduled for execution.

A coordination automaton over the set of clocks C disjoint from the sets of
clock variables of the referenced formal models and a set of TXSTS models M =
{TXSTS1, TXSTS2, . . . , TXSTSn} is a tuple CA = ⟨L, l0, E⟩, where

• L is a finite set of locations, with initial location l0 ∈ L;

• E ⊆ L × M × 2G(C) × 2A(C) × L is a set of directed edges.

The semantics of coordination automata is similar to that of timed automata.
With the set of TXSTS models M forming a network N , the semantics of the
corresponding coordination automaton is defined by a transition system with a set
of states SCA ⊆ L × ValC × SN where ValC is the set of clock valuations over C,
and SN is the set of states of N .

The initial states of the transition system form a set {⟨l0, val
∆(SN )
C , SN ⟩ | SN ∈

Sinit
N , ∀c ∈ C : val

∆(SN )
C (c) = ∆(SN )} where Sinit

N is the set of possible states of
N after executing the init operation set of all TXSTS models of N in the order
given by the definition of the network, during which ∆(SN ) delay takes place if the
resulting state of the network is SN .

In the transition system there are two kinds of transitions:

• An action transition ⟨l, valC , SN ⟩ m,G,A−−−−→ ⟨l′, val′
C , S′

N ⟩, where m ∈ M, G ⊂
G(C) and A ⊂ A(C), is enabled iff the following conditions are satisfied:

– ⟨l, m, G, A, l′⟩ ∈ E;
– valC satisfies all clock constraints in G;
– ∀ c ∈ C : val′

C(c) = z if (c := z) ∈ A, otherwise val′
C(c) = valC(c) + ∆,

where ∆ ∈ R≥0 would be the value of a non-resettable clock in S′
N that

was set to 0 in SN ;
– S′

N is a result of executing the env and tran operation sets of m on SN .

• A delay transition ⟨l, valC , SN ⟩ ∆ ∈R≥0−−−−−→ ⟨l′, val′
C , S′

N ⟩ is enabled iff:
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– l′ = l;
– ∀ c ∈ C : val′

C(c) = valC(c) + ∆; and
– ∀ m ∈ M, c ∈ V m

C : val′
m(c) = valm(c) + ∆, where V m

C is the set of
clock variables of m, and valm, val′

m are the clock valuations of m in SN

and S′
N , respectively.

3.2. Sequential and unordered execution
To allow for more compact representation of the desired coordination of a dis-
tributed system, we provide two syntactic constructs for expressing the sequential
and unordered execution of multiple components on a single edge of the coordina-
tion automaton.

The sequential execution, denoted as seq{m1, m2, . . . , mn} on an edge from li
to lj , is equivalent to a path from li to lj of length n, where the edges are anno-
tated with components m1, m2, . . . , mn, respectively, with guards of the original
sequential edge repeated on all edges along the path, and the last edge of the path
containing the clock assignments of the original edge. I.e., the clock assignments
are executed after the sequential execution of all referenced components, while the
guards hold invariably until the scheduling of the last component.

Unordered execution is denoted as unord{m1, m2, . . . , mn}. Such an unordered
execution on an edge from li to lj is equivalent to having sequential paths from li to
lj for all permutations of m1, m2, . . . , mn. As with sequential paths, guards of the
original unordered edge are repeated on all edges, and the last edges of the paths
contain the clock assignments of the original edge. One should note that unordered
execution results in n! possible orderings of components, therefore advanced tech-
niques are required for a systematic analysis of the system. Nonetheless, it provides
a compact and easy-to-understand way for engineers to represent and communicate
the coordination of a complex system.

4. Formal modeling of a distributed reactive system
with coordinated components

The systematic examination of a system requires a formal representation. In this
section, we describe a transformation of coordination automata and its referenced
TXSTS models to a single TXSTS model, which results in a suitable input for
model checking algorithms.

The idea of the transformation is mapping the coordination automaton to the
environment operation set of an “integrated” TXSTS. The initialization (init),
environment (env) and internal (tran) operation sets of the individual components
referenced by the coordination automaton are then embedded in the corresponding
operation sets of the integrated TXSTS. In a step of this TXSTS, only one of
the components is selected for execution, based on a variable that is set by the
transformed coordination automaton.

https://uni-eszterhazy.hu/fmf 207https://uni-eszterhazy.hu/fmf 207https://uni-eszterhazy.hu/fmf 207

https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf
https://uni-eszterhazy.hu/fmf


R. Szabó, D. Cziborová FMF-AI 2025

The mapping of the coordination automaton to the TXSTS formalism intro-
duces at least two new control variables. The new variable scheduled represents the
component that should be executed next by the env and tran operation sets. The
second new variable, coordState, represents the current location of the coordina-
tion automaton, with initial value l0. It may also stand for intermediate locations
that are introduced by the transformation and represent the ongoing execution of
a sequential or unordered edge.

4.1. Operation sets of the integrated TXSTS model
Let initm, envm and tranm denote the initialization, environment and internal
operation sets of the TXSTS model m ∈ M. We will also write initm, envm and
tranm to denote a nondeterministic choice operation (see Subsection 2.2) of all
operations in the given operation set. This will be used to represent an operation
set as a single (nondeterministic) operation.

The init operation set of the integrated TXSTS model is a sequence of the init
operation sets of all components: initm1 , initm2 , . . . , initm|M| .

The environment operation set is a sequence of two operations: a step of the
coordination automaton and a step of one of the components.

The step of the coordination automaton is a sequence of a delay operation
and a nondeterministic choice. In this nondeterministic choice, there is a branch
for each location (both intermediate locations and locations of the coordination
automaton). Each branch starts with the assumption [coordState == l] (thus
only one branch can be executed, determined by the value of coordState), which
is followed by another nondeterministic choice. In this embedded nondeterministic
choice, each branch represents an outgoing edge from location l.

I.e., if the outgoing edges of a location li are ei,1, ei,2, . . . , ei,ni
and LeM means the

representation of an edge e in the TXSTS formalism, then the mapping of a step
of the coordination automaton with locations li (1 ≤ i ≤ k, including intermediate
locations) is the following:

delay, { [coordState == l0], Le0,1M or Le0,2M or . . . or Le0,n0M }
or { [coordState == l1], Le1,1M or Le1,2M or . . . or Le1,n1M } or . . .

. . . or { [coordState == lk], Lek,1M or Lek,2M or . . . or Lek,nk
M }.

The mapping of an edge e from l to l′ with clock constraints G ⊂ G(C) and
clock assignments A ⊂ A(C) depends on the kind of execution it represents.

If e is annotated by a single component m ∈ M, then it is mapped to

[ ∧
g∈G

g], A, scheduled := m, coordState := l′,

i.e., the clock constraints of G become an assumption, the clock assignments of
A are executed, m is marked for scheduling, and coordState is set to the target
location of e.
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If e ∈ E is a sequential or unordered edge, then the domain of coordState is
extended by a new intermediate location le, representing the ongoing execution
of e. The location le is considered to have only one outgoing edge, to the target
location of e, with the same guards, clock assignments and component notations
(including seq and unord notations) as e. The intermediate locations ensure that
the execution of sequential and unordered edges cannot be interrupted.

If e is a sequential edge annotated by seq{ms1, ms2, . . . , msn}, then a new con-
trol variable seqe is created, representing the number of executed components, and
e is mapped to

[ ∧
g∈G

g], coordState := le, seqe := seqe + 1,

if (seqe == 1) then {scheduled := ms1},

if (seqe == 2) then {scheduled := ms2},

. . . , if (seqe == n) then {A, scheduled := msn, coordState := l′, seqe := 0}

where the else branches of conditional operations were omitted for simplification.
The variable seqe determines the component that should be executed next in the
given sequence. When the last component is scheduled, the clock assignments are
executed and coordState is set to the target location.

If e is an unordered edge annotated by unord{mu1, mu2, . . . , mun}, then a
new control variable unorde is created (representing the component that should
be scheduled next), as well as n Boolean control variables unorde1, unorde2, . . . ,
unorden (representing whether mu1, mu2, . . . , mun has already been executed). The
unordered edge e is then mapped to

[ ∧
g∈G

g], coordState := le, havoc(unorde), {choose1} or . . . or {choosen},

if ( ∧
1≤i≤n

unordei) then

{A, coordState := l′, unorde1 := false, . . . , unorden := false},

where choosei schedules the not yet executed mui for each 1 ≤ i ≤ n:

[unorde == mui ∧ ¬unordei], unordei := true, scheduled := mui.

Since some branch of the nondeterministic {choose1} or . . . or {choosen} op-
eration must be executed and all branches are constrained by assumptions of the
form ¬unordei, the only feasible assignments at havoc(unorde) are those that rep-
resent a component that has not yet been executed. So, the component chosen
for scheduling is certainly one of the eligible components. Lastly, if all compo-
nents have already been scheduled, then the clock assignments are executed, and
coordState is set to the target location.

The second part of the env operation set is the execution of the env set of one
of the components, determined by scheduled. More precisely, it is a sequence
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of a delay operation and conditional operations of the form if (scheduled ==
m) then {envm} for each m ∈ M.

The internal transition set tran is constructed similarly. It starts with a
delay operation, followed by conditional operations of the form if (scheduled ==
m) then {tranm} for each m ∈ M. Therefore, the variable scheduled determines
both the next environment step and the next internal step of the system.

4.2. Coordination of the SbW system
The coordination automaton of the motivating example is presented in Figure 2.
The q0 → q3 edge represents that, at first, the sensor components run and process
their inputs. The sensor components must be executed in a one second long execu-
tion window, representing the possible deviation between their clocks. Since they
are deployed separately and cannot influence each other’s outputs, this behavior
is modeled with the unordered execution. After all the sensors produced outputs,
either the PrimaryRWA runs first and the SecondaryRWA runs second (q3 → q1
and q1 → q0 edges), or vice versa (q3 → q2 and q2 → q0 edges). This ordering can
influence the cross-checking between the RWAs and possibly the MSP.

q0

q1

q2

q3

c1 > 1
c1 <= 2
unord{Sensor1 , Sensor2 , Sensor3 , Sensor4}
c1 := 0

c1 > 1
c1 <= 4
SecondaryRWA
c1 := 0

c1 > 1
c1 <= 4
PrimaryRWA
c1 := 0

c1 > 1
c1 <= 4
PrimaryRWA
c1 := 0

c1 > 1
c1 <= 4
SecondaryRWA
c1 := 0

Figure 2. Coordination Automaton of the SbW System.

The TXSTS models representing the components of the system are connected
in a single TXSTS model that already implements the coordination described by
the given coordination automaton.

In locations q1 and q2 of the coordination automaton, there is only one possible
execution order; in these cases, the mapping to TXSTS is straightforward, as shown
in Listing 1 for location q1.

In location q3 of the coordination automaton there are multiple edges to other
locations, referencing single TXSTS models. The mapping of this case to TXSTS
is done using a nondeterministic choice for the possible outcomes, as shown in
Listing 2.
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� �
1 assume coordState == q1;
2 assume c1 > 1 && c1 <= 4;
3 c1 := 0;
4 scheduled := SecondaryRWA;
5 coordState := q0;� �

Listing 1. TXSTS representation of
deterministic scheduling of components
in location q1 of the coordination

automaton

� �
1 assume coordState == q3;
2 choice {
3 assume c1 > 1 && c1 <= 4;
4 c1 := 0;
5 scheduled := PrimaryRWA;
6 coordState := q1;
7 } or {
8 assume c1 > 1 && c1 <= 4;
9 c1 := 0;

10 scheduled := SecondaryRWA;
11 coordState := q2;
12 }� �

Listing 2. TXSTS representation
of nondeterministically choosing the

scheduled component in location q3

� �
1 assume coordState == q0; // q0q3 in case of line 18 in Listing 4.
2 assume c1 > 1 && c1 <= 2;
3 coordState := q0q3;
4 havoc unord_q0q3;
5 choice {
6 assume unord_q0q3 == Sensor1 && !unord_q0q3_Sensor1;
7 unord_q0q3_Sensor1 := true;
8 scheduled := Sensor1;
9 } or {

10 assume unord_q0q3 == Sensor2 && !unord_q0q3_Sensor2;
11 unord_q0q3_Sensor2 := true;
12 scheduled := Sensor2;
13 } or {
14 ... // Sensor3
15 } or {
16 ... // Sensor4
17 }
18 if (unord_q0q3_Sensor1 && unord_q0q3_Sensor2 && unord_q0q3_Sensor3 && unord_q0q3_Sensor4) {
19 c1 := 0;
20 coordState := q3;
21 unord_q0q3_Sensor1 := false;
22 unord_q0q3_Sensor2 := false;
23 ... // Sensor3, Sensor4
24 }� �

Listing 3. TXSTS representation of unordered scheduling of
sensors in location q0 of the coordination automaton

For the unordered execution starting from location q0 of the coordination au-
tomaton we introduce the variable unord_q0q3 to represent the next scheduled
component, which can take Sensor1, Sensor2, Sensor3 or Sensor4 as its value.
We also introduce Boolean variables unord_q0q3_Sensor1, unord_q0q3_Sensor2,
unord_q0q3_Sensor3 and unord_q0q3_Sensor4 that represent whether the given
component was already scheduled. The scheduled component is chosen by a nonde-
terministic assignment to unord_q0q3, but considering only the components that
were not yet scheduled, based on the newly introduced Boolean variables. The
coordination automaton completes the transition to q3 only when all referenced
components were already scheduled. The TXSTS mapping of this unordered exe-
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cution can be seen in Listing 3. The mapping of the intermediate location q0q3 is
the same, except for the first line, where q0 should change to q0q3.

The main structure of the resulting TXSTS model can be seen in Listing 4.
The above-described mapping of the coordination automaton to the TXSTS for-
malism is embedded at the beginning of the single operation contained by the env
operation set, followed by the operations of the individual components. If the
env operation set of some component contains multiple operations (i.e., envcomp =
{env1, env2, . . . , envn}), then these operations are wrapped in a nondeterministic
choice {env1} or {env2} or . . . or {envn}, to represent them as a single operation
without changing the possible behaviours of the model. The tran operation set is
constructed analogously to the second part of the env operation set.� �

1 ctrl var coordState : enum{q0, q1, q2, q3, q0q3} = q0
2 ctrl var scheduled : enum{Sensor1, Sensor2, Sensor3, Sensor4, PrimaryRWA, SecondaryRWA}
3 ctrl var unord_q0q3 : enum{Sensor1, Sensor2, Sensor3, Sensor4}
4 ctrl var unord_q0q3_Sensor1, unord_q0q3_Sensor2, unord_q0q3_Sensor3,
5 unord_q0q3_Sensor4 : boolean = false
6 ...
7 init {
8 <init of Sensor1>
9 <init of Sensor2>

10 ... // Sensor3, Sensor4, PrimaryRWA, SecondaryRWA
11 }
12 env {
13 delay;
14 choice { assume coordState == q0; ... } // see Listing 3.
15 or { assume coordState == q1; ... } // see Listing 1.
16 or { assume coordState == q2; ... } // analogous with q1
17 or { assume coordState == q3; ... } // see Listing 2.
18 or { assume coordState == q0q3; ... } // see Listing 3.
19 delay;
20 if (scheduled == Sensor1) { <env of Sensor1> }
21 if (scheduled == Sensor2) { <env of Sensor2> }
22 ... // Sensor3, Sensor4, PrimaryRWA, SecondaryRWA
23 }
24 tran {
25 delay;
26 if (scheduled == Sensor1) { <tran of Sensor1> }
27 if (scheduled == Sensor2) { <tran of Sensor2> }
28 ... // Sensor3, Sensor4, PrimaryRWA, SecondaryRWA
29 }� �

Listing 4. Structure of a TXSTS model that schedules multiple
TXSTS components based on a coordination automaton

5. Conclusion and future work
In this paper, we presented the coordination automata formalism as an extension of
the timed automata formalism to model the possible interactions of the distributed
subsystems. The presented coordination automata formalism is flexible and con-
figurable: the coordinated subsystems can be modeled using arbitrary formal or
engineering modeling languages.
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As a continuation of our work, we investigate the possibilities of extending the
coordination automata with more complex parallelism, to define coordination with
overlapping component executions.
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Abstract. In this paper, the problem of guarding a circular target wherein
the Defender is constrained to move along its perimeter and has nonzero
capture radius is posed and solved using a differential game theoretic ap-
proach. The Perimeter Defense Game is a special case of Pursuit-Evasion
Game, where the goal of the pursuer is capturing the evader. In the Perime-
ter Defense Game the Attacker seeks to reach the perimeter of the circular
target, whereas the Defender seek to align itself with the Attacker, thereby
ending the game. The Defender has nonzero capture radius, which means
that the Defender wins, when the distance between the Attacker and the
Defender is smaller than the value of the capture radius. The Perimeter De-
fense Game can be divided into two cases: Win of Defender and the Win of
Attacker scenarios. In the case when the Defender wins, the agents play a
zero sum differential game, where the cost/payoff is the Attacker’s terminal
distance to the target. In the case when the Attacker wins, the agents play
a zero-sum differential game, where the payoff/cost is the distance between
the Defender and the Attacker. The analytic solutions of optimal strategies
and the winning regions are also presented.
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1. Introduction

In the reach avoid games there are two competitive teams, where one team attempts
to arrive at a goal set in the state-space while avoiding some other undesired set of
states. The goal of the opposing team is to prevent the first player from arriving
at its goal [16]. The team consists of one or more players. The perimeter defense
games are the special case of reach-avoid games. In a perimeter defense game the
defender’s team constrained to move along the convex perimeter and the attacker’s
team move with simple motion [10, 11]. The turret defense games are similar of
perimeter defense games. In turret defense games the turret can be shoot the
attacker from a certain distance. It can be transformated the game when the
defender moves along a circular target and this way the problem can be solved
easily using analytical methods [15]. The main difference between the perimeter
defense and the transformated turret defense game is the winning condition of the
attacker. During perimeter defense games, if the attacker reach the target at the
same time as the defender makes an interception the defender wins, while in turret
defense game the attacker emerge victorious.

The problem of guarding a target has many important application in real world.
One example is protection of a building’s perimeter against a sequentially arriving
intruder [7]. In a real world there are not always information about the full state
space, therefore, the information must be collected beforehand, for example with
patrolling agents [12]. The target guarding can be applied in three dimension also,
for example in the perimeter-defense game between aerial defender and ground
intruder [6]. The survival is also a possible application, where one agent want to
reach a safety zone while one [14] or more turret [4] want to neutralize its. Turret
defense game with non-zero neutralization angle is also solved [8].

The perimeter defense game has many variant depending on the number of
defenders, the number of intruders and the goal of the intruder(s). In a basic
scenario there is one intruder and one or two defenders and the goal of the intruder is
maximalizing the angular separation from the defender(s) when its reach the target
[15]. The direct generalization is the perimeter defense game with more defenders
and more intruders. This game can be solved with splitting into subgames with
one or two defenders and one attacker [9, 10, 13].

In the reach avoid game the capture radius plays important role. The geometric
solution of a target defense game where the attacker and also a defender can move
freely in a full state space region with faster defenders with non-zero capture radius
and a convex target area using the Hamilton-Jacobi-Isaacs equation is proven, but
only partially appliable to our research, because of the constrained movements of
the defender [3]. But in most of the existing paper discussing the perimeter defense
games, the defender can capture with zero capture radius. There are proposals
mentioned for the solution for the case of non-zero capture radius [12], but it is not
complete proven and using only geometric solution. The most notable difference
in this paper compared to the previous results that we studied the case when the
capture radius is non-zero. In this analysis, we use the first order of necessary
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conditions for optimality according to a classical differential game approach [5].
The steps of solutions is identical to the basic turret defense game [15] with different
termination and optimalization constraints.

The main contribution of this paper is the analytic solution with use of differ-
ential game approach of the Perimeter Defense Game with nonzero capture radius
in a circular target. We give a step by step exploration of the solution.

The paper constructs as follows. After this introduction in Section 1, Section 2
presents the problem statement. Followed by Section 3, where the steps of the
solution method are demonstrated. In section 4 the results are shown and the
equilibrium flow field is presented. Last, in section 5 the conclusion and the future
works with possible research directions are explored.

2. Problem statement
This paper formulates the target guarding problem wherein the Defender (D) con-
strained to move along the circular target perimeter and the Attacker (A) moves
in the plane with simple motion. The Defender can make interception with r cap-
ture radius. In figure 1 can be seen the illustration and the rules of the game:
R denotes the distance between the target center and the attacker, θ denotes the
angular separation between the defender and the attacker and β the angular of the
defender referred to the x axis. The goal of the Attacker is to enter the target,
reach T without interception, and the goal of the Defender is preventing breach by
the Attacker. Selected assumptions are made on the problem statement:

y

x

D

T

O

r

β

A

R d

θ
l

uD

ν

ψ

Figure 1. The illustration of the perimeter defense game with
nonzero capture radius.
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Assumption 2.1. The target is a circle with l = 1 radius.

Assumption 2.2. The player’s speeds are such that 0 < ν ≤ uD = 1, where ν is
the speed of Attacker and uD is the speed of Defender.

Assumption 2.3. The Defender makes interception with r capture radius. The C
Capture Circle is defined as the set of the states of satisfying

C = {(R, θ) | r2 ≥ R2 + 1 − 2R cos θ} (2.1)

Assumption 2.4. The initial separation angle is such that θ(t0) = θ0 ∈ [0, π)

Remark 2.5. The solution in case when θ0 ∈ [−π, 0) can be determined from the
symmetry result.

Assumption 2.6. The initial Attacker distance is such that R(t0) > 1, that is, A
begins outside the target circle.

Assumption 2.7. The initial states are outside the Capture Circle

(R0, θ0) /∈ C. (2.2)

The kinematics can be written as

f(x, u, t) = ẋ =



Ṙ

θ̇

β̇


 =




−ν cosψ
ν 1
R sinψ − uD

uD


 (2.3)

The Defender control is the value of the speed of the defender and lies in the range
uD ∈ [−1, 1] and the defender speed direction is always the tangent of the T target
perimeter. The Attacker control is the heading angle referred to the line between
the target center and the attacker and lies in the range ψ ∈ [−π , π].

2.1. Defender wins scenario
In the Win of Defender (WoD) scenario, when D is able to make interception before
A can reach the target, the agents play zero sum game over the cost-functional

Jd := Φd(xf , tf ) = −Rf , (2.4)

where the subscript f denotes the termination, Φd denotes the terminal value
function that depends on the decision of the attacker and the defender. So the cost
functional is the negative Attacker’s distance from the target center at the end of the
game. The Defender is the minimizing player and the Attacker is the maximizing
player. The Value of the game if it exists, is the saddle-point equilibrium of the
cost-functional over state-feedback strategies

Vd = min
uD(·)

max
ψ(·)

Jd = max
ψ(·)

min
uD(·)

Jd. (2.5)
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The terminal constraint is

ϕd(xf , tf ) =
√
R2 + 1 − 2R cos θ − r = d− r = 0, (2.6)

that means that the game is terminated, if the distance between the Defender and
the Attacker equals to the r capture radius. The final time tf is the first time for
which d = r. Thus, the Terminal Surface is defined as the set of states of satisfying
(2.4)

Jd = {x |R > 1 and d = r}. (2.7)

y

x

D

A

Figure 2. The illustration of the Defender wins scenario radius.

2.2. Attacker wins scenario
In Win of Attacker (WoA) scenario, when A is able to drive R = 1 while avoiding
d ≤ r, because of the separation angle is proportional the distance of the agents in
case Rf = 1, the agents play zero sum game over the cost-functional:

Ja := Φa(xf , tf ) = θf − θr, (2.8)

where θr is the angular separation in the limiting case if df = r and Rf = 1
it can be determined from theorem of cosines from AOD triangle in figure 1
θr = arccos

(
2−r2

2

)
. The Defender is the minimizing player and the Attacker is

the maximizing player. The Value of the game if it exists, is the saddle-point
equilibrium of the cost-functional over state-feedback strategies

Va = min
uD(·)

max
ψ(·)

Ja = max
ψ(·)

min
uD(·)

Ja. (2.9)

Termination occurs when the Attacker reaches the target circle, therefore the ter-
mination constraint

ϕ(xf , tf ) = Rf − 1 = 0. (2.10)

The final time tf is the first time for which R(t) = 1. Thus, the Terminal Surface
is defined as the set of states of satisfying (2.10)

Ja = {x |R = 1 and d ≥ r}. (2.11)

218 Proceedings of the FMF-AI 2025218 Proceedings of the FMF-AI 2025218 Proceedings of the FMF-AI 2025



FMF-AI 2025 Perimeter defense game with nonzero capture radius . . .

y

x

D

A

Figure 3. The illustration of the Attacker wins scenario.

3. Methods
The steps of the analytic solution of the Defender wins scenario (WoD) follow
the steps of the Turret Defense Game [15], but we form the steps to our problem
statement. We use the cost function (2.4) and the terminal constraint (2.6) during
the derivation. The analysis is carried out according to a classical differential game
approach [1, 5]. The solution of Attacker wins scenario (WoA) based upon showing
satisfaction of the sufficient condition. The proposed equilibrium strategies of the
Defender wins scenario and Value function substituting into the Hamilton-Jacobi-
Isaacs equation [5].

3.1. Solution of Defender wins scenario
The steps of the following analytic solution follow the steps of the solution of
zero-capture radius case [15] with subtituting the cost function (2.4) and terminal
constraint (2.6).

The analysis is carried out according to a classical differential game approach
[1, 5]. The Hamiltonian of the Defender wins scenario is

Hd = −σRν cosψ + σθ

(
ν

1
R

sinψ − uD

)
+ σβuD (3.1)

where σ ≡ [σR σθ σβ ]T is the adjoint vector. The Hamiltonian is a separable
function of the controls uD and ψ, and thus Isaacs’ s condition [5] holds:

min
uD(·)

max
ψ(·)

Hd = max
ψ(·)

min
uD(·)

Hd ∀x (3.2)

The Defender minimalize and the Attacker maximalize the Hamiltonian. The De-
fender control range is uD ∈ [−1, 1] and the Attacker control range is ψ ∈
[−π, π]. The equilibrium adjoint dynamics are given by

σ̇R = −∂Hd

∂R
= σθν

1
R2 sinψ (3.3)

σ̇θ = −∂Hd

∂θ
= 0 (3.4)
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σ̇β = −∂Hd

∂β
= 0 (3.5)

The terminal adjoint values are obtained from the transversality condition [2]

σ(tf ) = ∂Φd
∂xf

+ η
∂ϕd
∂xf

(3.6)

⇒
σRf

= −1 + η
r (Rf − cos θf )

σθf
= η

rRf sin θf
σβf

= 0
(3.7)

where η is an additional adjoint variable. Therefore, with (3.3), (3.7), the following
hold

σθ(t) = η

r
Rf sin θf ∀t ∈ [t0 , tf ] (3.8)

σβ(t) = 0 ∀t ∈ [t0 , tf ] (3.9)

Since σβ(t) = 0 for all t ∈ [t0 , tf ], the state component β has no effect on the equi-
librium trajectory or the equilibrium control strategies. The terminal Hamiltonian
satisfies [2]

Hd(tf ) = −∂Φd
∂tf

− η
∂ϕd
∂tf

= 0 (3.10)

Since Φd and ϕd independent on time and dHd

dt = 0 so Hd(t) = 0, t ∈ [t0, tf ].
The equilibrium control actions of the Attacker and Defender maximize and

minimize (3.2), respectively:

H∗
d = max

ψ
min
uD

Hd. (3.11)

In order to maximize (3.2), the vector [cosψ sinψ] must be parallel to the vector
[−σR σθ

R ]. Therefore the optimal control of the Attacker can be expressed as:

cosψ∗ = −σR√
σ2
R +

(
σθ

R

)2
sinψ∗ =

σθ

R√
σ2
R +

(
σθ

R

)2
. (3.12)

If σθ < 0, this implies sinψ∗ < 0 due to (3.12). However, this would mean the
Attacker has a component of its motion that points towards the Defender due to
Assumption 2.4. Thus, it must be the case that σθ > 0 In order to minimize (3.1),
the Defender’s control must satisfy

u∗
D = signσθ = 1, (3.13)

since σθ > 0.
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To express the adjoint variable η must be substituting the equilibrium controls,
(3.12) and (3.13), into the Hamiltonian (3.1) and evaluating at final time with (3.7)
and (3.10) gives

H∗
d(tf ) = −σRf

ν cosψ∗ + σθ

(
ν

Rf
sinψ∗ − u∗

D

)
(3.14)

−→ ν

√
σ2
Rf

+
(
σθ
Rf

)2
− σθ = 0 (3.15)

An expression for σR is obtained by considering the Hamiltonian at a general time
and substituting the equilibrium controls (3.12) (3.13) into the Hamiltonian (3.1):

H∗
d(t) = 0 = −σRν cosψ∗ + σθ

(
ν

1
R

sinψ∗ − u∗
D

)
(3.16)

−→ ν

√
σ2
R +

(σθ
R

)2
− σθ = 0 (3.17)

−→ σR =

√
σ2
θ

ν2

(
1 − ν2

R2

)
(3.18)

The ψ∗ optimal heading angle can be determined by substituting the adjoint vari-
ables to the equilibrium the attackers controls (3.12)

cosψ∗ = −σR√
σ2
R +

(
σθ

R

)2
=

−σθ

ν

√
1 − ν2

R2
√

σ2
θ

ν2

(
1 − ν2

R2

)
+ σ2

θ

R2

=
√

1 − ν2

R2 (3.19)

sinψ∗ =
σθ

R√
σ2
R +

(
σθ

R

)2
= ν

R
(3.20)

The equilibrium kinematics can be obtained by substituting the equilibrium
controls (3.19) and (3.13) into (2.3) which yields

Ṙ∗ = −ν cosψ∗ = −ν
√

1 − ν2

R2 (3.21)

θ̇∗ = ν
1
R

sinψ∗ − u∗
D = ν2

R2 − 1 (3.22)

with the following boundary conditions Rf > 1, r2 = R2
f + 1 − 2Rf cos θf .

Considering the differential equation obtained by dividing the equations in
(3.21)

dR

dθ
= ν√

1 − ν2

R2

(3.23)
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⇒ν

[√
R2

ν2 − 1 + arcsin
( ν
R

)]R

Rf

= ν(θ − θf ) (3.24)

Define

g(R) =
√
R2

ν2 − 1 + arcsin
( ν
R

)
(3.25)

⇒ν(g(R) − g(Rf )) = ν(θ − θf ) (3.26)
⇒θ(R;Rf , θf ) = g(R) − g(Rf ) + θf , r2 = R2

f + 1 − 2Rf cos θf (3.27)

Setting different θf , 0 ≤ θf ≤ θr = arccos
(

2−r2

2

)
in (3.26) describes equilibrium

flow field for the Defender wins scenario. The equilibrium flow field gives the
equilibrium trajectory from given terminal states. The optimal attacker path is
the involute of a circle with radius ν.

The symmetric solution if θ < 0, t ∈ [0, tf ] can be solved in a same way. If
θ0 = π called dispersal surface, and in this case the positive and negative solution
results the same value of the game. If θ0 = 0 called afferent surface and in this
case the defender optimal trajectory is keep the zero angular separation.

The equilibrium state feedback control strategies for the Defender wins scenario
are given by

ψ∗ = sign(θ) arcsin
( ν
R

)
u∗
D = sign(θ) (3.28)

The expression for ψ∗ is obtained by (3.19) taking into account the sign of θ.
Similarly, the Defender strategy is given by (3.13) taking into the sign of θ.

The Value of the game is

Vd(R, θ) = −Rf (3.29)
g(Rf ) = g(R) + θf − |θ| (3.30)
⇒ Vd(R, θ) = −g−1(g(R) + θf − |θ|) (3.31)

where g is defined in (3.25). Because Vd is defined using the inverse of the function
g, it is necessary to show that g(R) is monotic. Taking the derivate of (3.25) w.r.t.
R gives

dg

dR
=

√
R2 − ν2

νR
, (3.32)

It must be that 0 < ν < 1 from Assumption 2.2 and from Assumption 2.6 it must
be that R > 1 throughout the game. So we have R > ν and R, ν > 0 which implies
that g(R) is monotonic.

The Value function does not have a closed form analytic expression since g−1

cannot be expressed in closed form.
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The limiting case for the Defender wins scenario is one in which Rf −→ 1,
θf = θr; thus the surface

θGoK(R) = g(R) − g(1) + θr (3.33)

partitions the state space into regions of win for the Defender and Attacker, re-
spectively,

RD = {x| |θ| ≤ θGoK(R)} (3.34)
RA = {x| |θ| > θGoK(R)}. (3.35)

3.2. Solution of Attacker wins scenario
The solution of Attacker wins scenario based upon showing satisfaction of the
sufficient condition for equilibrium via substitution of the proposed equilibrium
strategies and Value function into the Hamilton-Jacobi-Isaacs equation [5]. The
equilibrium state feedback strategies for the Attacker wins scenario is match those
of the Defender wins scenario. The Value function is given by

V (R, θ) = θf − θr = θ − g(R) + g(1) − θr (3.36)

The Hamilton-Jacobi-Isaacs equation can be written as [5]

min
uD

max
ψ

{
l(x, uD, ψ, t) + ∂V

∂t
+ Vxf(x, uD, ψ, t)

}
= 0 (3.37)

where Vx is the vector
[
∂V
∂R

∂V
∂θ

∂V
∂β

]T
and l represents an integral cost compo-

nent. First, note that the cost, has no integral component, and thus l = 0. Also,
the proposed Value function (3.36) is not an explicit function of time and thus
∂V
∂t = 0. The vector Vx is obtained by differentiating (3.36) w. r. t. each state

Vx =
[

−
√
R2 − ν2

Rν
1 0

]
. (3.38)

The equilibrium dynamics f are given by (3.21). Substituting (3.38) , ∂V∂t = 0 and
l = 0 into (3.37) gives

∂V

∂R
Ṙ+ ∂V

∂θ
θ̇ = 0. (3.39)

So the given Value function satisfies the Hamilton-Jacobi-Isaacs equation and this
reason the equilibrium state feedback strategies are same of the cases Attacker and
the Defender wins scenario The trajectories 3.26 are also same at the two cases,
but in the Attacker wins scenario r2 < R2

f + 1 − 2Rf cos θf holds.
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4. Results
In a Defender wins and Attacker wins scenario the agents have the same equilibrium
strategies: the Attacker moves the tangent of the ν radius circle and the defender
moves along the perimeter of the target towards the Attacker. The equilibrium flow
field shows the trajectories in the (R, θ) plane for the Defender and Attacker wins
scenario, also gives the terminal states and this way the winning regions. Figure 4

1 1.5 2 2.5 3 3.5
0

π
4

π
2

3π
4

π

RD

RA

R

θ(
R
)

GoA Trajectories
GoD Trajectories
Terminal surface
GoK Surface
Dispersal Surface

Figure 4. Full equilibrium flow field with ν = 0.8 and r = 0.4.

shows the full equilibrium flow field in case ν = 0.8, r = 0.4. The Attacker winning
region and the trajectories denoted by red, the Defender winning region and the
trajectories denoted by orange, the trajectory of limiting case denoted by black and
the terminal surface of Defender wins scenario denoted by olive. The white region
represents the C capture circle.

5. Conclusion and future works
In this paper we presented and solved the perimeter defense game with one Attacker
and one Defender with r capture radius in a circular target. We created some
assumptions and then showed the Defender and the Attacker win scenario and its
solutions applying the Hamiltonian and the Hamilton-Jacobi-Isaacs equation ie.
the first order necessary conditions for optimality and the sufficient condition for
the equilibrium. The equilibrium state feedback strategies, the winning regions and
the full equilibrium flow field are also presented. The equilibrium state feedback
strategies are the same as the case of the point capture, but the winning regions
and the equilibrium flow field depend on the r capture radius.
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In future work we aim to solve the perimeter defense game with r capture
radius applying more attackers and defenders. Perimeter defense game with general
convex shape target, or general convex shape capture region is also a possible future
work. It is also a possible generalization if ν > 1, so the defenders have larger speed
as the attackers, but there are more defenders than attackers. It is also possible
future work when the Attacker(s) have penetration radius and this way they can
reach the target earlier.
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Abstract. In this study, we compare full-parameter fine-tuning and pa-
rameter-efficient LoRA on various Hungarian PULI large language models,
evaluating their performance across six Hungarian language understanding
benchmarks. While full-parameter fine-tuning updates all model weights and
requires substantial computational resources, LoRA adapts a smaller sub-
set of parameters, enabling more efficient training. Our experiments on the
monolingual PULI 3SX and the multilingual LlumiX and LlumiX-Llama-3.1
models reveal that LoRA consistently matches or surpasses full fine-tuning
on most tasks, particularly when applied to larger models. Notably, LlumiX-
Llama-3.1 with LoRA achieves state-of-the-art results on five out of six bench-
marks while significantly reducing resource demands. These findings highlight
LoRA’s potential as a scalable and effective fine-tuning method for Hungarian
large language models.
Keywords: LoRA, PULI models, HuLU benchmarks, fine-tuning, parameter-
efficient adaptation
AMS Subject Classification: 68T07, 68T50, 68U15

1. Background
In recent months, large language models have undergone significant development
and have become one of the most popular topics in the field of artificial intelligence.
The training of language models consists of two well-defined phases: pretraining
and fine-tuning. During pretraining, a neural network (most commonly based on
the transformer architecture [8]) is trained on general language understanding. Af-
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ter this phase, the model is further trained for task-specific knowledge through
fine-tuning. In the case of large language models, fine-tuning can be used to train
the model for conversational purposes or domain-specific knowledge. Although
fine-tuning requires fewer resources than pre-training, it still requires significant
hardware power when working with large language models. In traditional fine-
tuning, all the parameters of the pretrained model are updated – this is called
full-parameter fine-tuning. However, this approach is extremely resource intensive.
To address this, parameter-efficient methods have been developed [3, 6, 11], among
which one of the most popular is LoRA. LoRA (Low-Rank Adaptation) improves
training efficiency in multiple ways; one key aspect is that it adapts a pre-trained
weight matrix using a low-rank decomposition, which significantly reduces the num-
ber of trainable parameters.

In our research, we compared full-parameter fine-tuning and LoRA adaptation
on various Hungarian large language models, specifically the PULI models, across
six Hungarian language understanding benchmarks.

2. Related work

Transformers [8] underpin most large language models (LLMs) today, including
Hungarian-specific models like PULI [10] and instruction-tuned variants [9]. Tra-
ditional full-parameter fine-tuning is powerful but computationally expensive. To
address this, Low-Rank Adaptation (LoRA) was proposed as a parameter-efficient
alternative [3]. LoRA freezes original weights and learns low-rank updates, signifi-
cantly reducing resource usage.

Israel et al. [4] demonstrate LoRA’s practical gains, including reduced training
time and memory usage. Further analytical work by Shuttleworth et al. [7] reveals
that LoRA and full fine-tuning lead to structurally different weight matrix spec-
tra, raising concerns about long-term forgetting, especially in continual learning.
Complementary approaches such as adaptive budget allocation [11] and few-shot
tuning [6] also explore PEFT strategies.

In the Hungarian context, the HuLU benchmark [2, 5] offers a standardized
testbed for evaluating LLMs. Our study builds on this infrastructure by comparing
LoRA and full fine-tuning methods on PULI models across HuLU tasks.

3. Methods and experiments

Full fine-tuning involves updating all weights of the pre-trained model θ ∈ Rn×m,
requiring high memory and compute resources. In contrast, LoRA [3] introduces
low-rank matrices A ∈ Rn×r and B ∈ Rr×m, such that weight updates are ex-
pressed as ∆W = AB with r ≪ min(n, m). During training, the original weights
remain frozen, and only A and B are updated. This significantly reduces the
number of trainable parameters and memory usage.
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Practically, LoRA is applied to the attention and feed-forward linear projections
in transformer blocks. We follow the common configuration of inserting LoRA into
the query and value matrices, using rank values between 8 and 16. This structure
allows LoRA to approximate full-rank updates while retaining efficiency.

Our experiments were conducted on four different PULI large language models:

• PULI 3SX [10]: A monolingual Hungarian GPT-NeoX model with 6.7 billion
parameters, trained on 36.3 billion Hungarian words.

• PULI Trio [10]: A Hungarian-English-Chinese trilingual GPT-NeoX model
with 7.67 billion parameters, trained on over 150 billion words, including 41.5
billion Hungarian words.

• PULI LlumiX 32K [9]: A continually pre-trained Llama 2 model for Hungar-
ian with 6.74 billion parameters, trained on 7.9 billion Hungarian words from
long documents only. The context length was extended to 32K tokens.

• PULI-LlumiX-Llama-3.11: A continually pre-trained Llama 3.1 Instruct model
for Hungarian with 8.03 billion parameters, trained on 8.08 billion Hungarian
words, concluding with a Hungarian-only dataset.

For evaluation, we used six Hungarian HuLU benchmarks [5]:

• Hungarian CommitmentBank Corpus (HuCB): The HuCommitmentBank is
a collection of short texts where at least one sentence includes a subordinate
clause under an inference-cancelling operator. The premise is the full text;
the hypothesis is the embedded clause. The task is to assess the author’s
level of commitment to the truth of the subordinate clause.

• Hungarian Corpus of Linguistic Acceptability (HuCOLA): The corpus con-
tains Hungarian sentences labeled for acceptability (0/1), collected from three
linguistic books.

• Hungarian Choice of Plausible Alternatives Corpus (HuCOPA): The dataset
contains instances, each with a premise and two alternatives. The task is to
choose the alternative that is causally related to the premise.

• Hungarian Recognizing Textual Entailment dataset (HuRTE): The dataset
contains instances, each with a premise (sometimes multi-sentence) and a one-
sentence hypothesis. The task is to determine whether the premise entails
the hypothesis.

• Hungarian version of the Stanford Sentiment Treebank (HuSST): The dataset
contains sentences, each labeled for sentiment on a three-point scale (negative,
neutral, positive).

1https://huggingface.co/NYTK/PULI-LlumiX-Llama-3.1
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• Anaphora resolution datasets for Hungarian as an inference task (HuWNLI):
This Hungarian anaphora resolution dataset is framed as a sentence pair
classification task. Each pair is created by replacing an ambiguous pronoun
with possible referents, and the task is to determine which version is correct.

For the HuCB, HuCOLA, HuRTE, HuSST, and HuWNLI benchmarks, we
trained the models using a sequence classification setup, while for HuCoPA, we
trained the models as a multiple-choice task. For tasks with multiple fields, such
as HuRTE with a premise and a hypothesis, we concatenated them using the [SEP]
separator token to fit classification tasks that require a single text and label field.

To perform the fine-tuning experiments, we used the Hugging Face implemen-
tation for full-parameter fine-tuning2. In these experiments, it was necessary to
configure both the Accelerate [1] and FSDP [12] methodologies; otherwise, train-
ing resulted in out-of-memory errors, even when using four A100 GPUs (80GB
each). Despite using Accelerate and FSDP, full-parameter fine-tuning still required
at least two GPUs to run successfully.

For the LoRA experiments, we used the HuLU-evaluate library’s implementa-
tion [2]. For this task, a single GPU was sufficient. The following LoRA hyperpa-
rameters were used: r = 8, LoRA alpha = 32; LoRA dropout = 0.1. Since neither
the Hugging Face implementation3 of the GPT-NeoX nor the LLaMA models sup-
ports the multiple-choice task type, we implemented this functionality ourselves,
based on the HuLU-evaluate framework.

4. Results
Table 1 presents a comparative evaluation of the four Hungarian PULI mod-
els (3SX, Trio, LlumiX, and LlumiX-Llama-3.1) on the six HuLU tasks (HuCB,
HuCOLA, HuCoPA, HuRTE, HuSST, HuWNLI), using either full fine-tuning or
parameter-efficient LoRA adaptation. Results are reported using task-specific met-
rics, consistent with the original HuLU benchmarks4: F1 score (F1), matthews
correlation (MCC), and accuracy (ACC).

Overall, LlumiX-Llama-3.1 consistently delivers the strongest results, especially
when fine-tuned with LoRA. It achieves state-of-the-art (SOTA) scores on five out
of six benchmarks, notably reaching 74.4 F1 on HuCB, 71.9 MCC on HuRTE, and
73.1 ACC on HuWNLI. In addition, on HuCOLA, LlumiX-Llama-3.1 also achieves
a SOTA result, but with full-parameter fine-tuning.

Interestingly, LoRA fine-tuned models often outperform their fully fine-tuned
counterparts — particularly visible in the case of HuRTE and HuWNLI tasks, sug-
gesting that LoRA not only reduces training cost but may also act as a regularizer,
improving generalization.

Performance varies strongly between models and tasks. While 3SX performs
competitively on HuSST and HuCB, it lags behind on reasoning-heavy tasks like

2https://github.com/huggingface/transformers/tree/main/examples/pytorch
3https://github.com/huggingface/transformers/tree/main/src/transformers/models
4https://hulu.nytud.hu
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Table 1. Full-parameter and LoRA results.

PULI PULI PULI PULI-LlumiX-
3SX Trio LlumiX Llama-3.1

HuCB (F1) Full 62.0 55.6 65.9 66.0
LoRA 60.2 58.2 64.1 74.4

HuCOLA (MCC) Full 59.5 60.8 64.1 71.0
LoRA 59.0 63.1 70.3 69.2

HuCoPA (MCC) Full 3.7 31.9 73.4 73.2
LoRA 5.3 44.5 64.2 74.1

HuRTE (MCC) Full 44.7 44.6 52.6 61.1
LoRA 55.5 59.2 68.2 71.9

HuSST (ACC) Full 79.7 78.5 80.2 81.5
LoRA 79.3 79.1 81.9 82.2

HuWNLI (ACC) Full 51.5 63.4 59.7 59.7
LoRA 58.2 64.9 67.2 73.1

HuCoPA and HuRTE. In the case of Trio, LoRA consistently outperformed full fine-
tuning, showing moderate improvements, although it still did not reach LlumiX-
level performance. LlumiX demonstrates robust and stable results across all tasks,
showing that scaling up model capacity leads to significant gains in Hungarian
natural language understanding benchmarks.

In conclusion, these results validate the use of LoRA fine-tuning with larger,
task-adapted PULI models and underscore the potential of LlumiX-based architec-
tures for Hungarian language tasks.

The superior performance of LoRA, particularly on tasks with limited training
data, can be partly attributed to its regularization effect. For instance, the Hu-
COPA benchmark contains only 400 training samples, making the full-parameter
model highly susceptible to overfitting due to its significantly larger number of
trainable parameters. In this constrained data setting, LoRA’s reduced parameter
space naturally constrains the model’s capacity, thereby improving generalization.
This effect is less pronounced for larger datasets like HuCOLA (7276 training sam-
ples), where the risk of overfitting is lower. This pattern supports the interpreta-
tion that LoRA not only enhances efficiency but also acts as an implicit regularizer,
which is especially beneficial for smaller training corpora.

5. Conclusion
We compared full-parameter fine-tuning and parameter-efficient LoRA adaptation
across six Hungarian natural language understanding benchmarks, using four PULI
large language models. The goal was to assess whether LoRA can match or exceed
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full fine-tuning performance while reducing computational cost.
Our results show that LoRA not only reduces resource requirements but often

outperforms full fine-tuning, especially on larger models like LlumiX-Llama-3.1,
which achieved state-of-the-art scores on most tasks. However, full-parameter fine-
tuning remains competitive on select benchmarks (e.g., HuCOLA, HuCoPA).

Overall, using LoRA to adapt large models offers an effective and efficient so-
lution for Hungarian language tasks, combining high performance with scalability.
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Abstract. Understanding the internal structure and behavior of large lan-
guage models remains a key challenge in natural language processing. In this
work, we present a comprehensive analysis of the PULI family of Hungar-
ian generative large language models. Our study combines static analysis of
model parameters with dynamic visualization of model behavior during infer-
ence. The static analysis reveals patterns in parameter distributions and di-
mensionality across layers, offering insight into how different layers specialize.
The dynamic analysis integrates an adapted version of BertViz into a web-
based interface that enables interactive exploration of attention mechanisms
for arbitrary prompts and generated responses. This dual approach advances
interpretability and facilitates further research on the internal mechanics of
transformer models tailored for low-resource languages like Hungarian.
Keywords: PULI models, large language models, transformers visualization,
attention analysis, BertViz, principal component analysis, cumulative ex-
plained variance
AMS Subject Classification: 68T07, 68T30, 68T50, 62R07, 62R40

1. Motivation
The transformer architecture and large language models (LLMs) led to a new era
in natural language processing (NLP) and, more broadly, in computer science.

The study was funded by the National Research, the Development and Innovation Office in
Hungary (RRF-2.3.1-21-2022-00004).
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Although their high-level designs are well documented and such models can be
trained – given sufficient data, computational resources, and expertise – the internal
workings of these models remain poorly understood. Specifically, the structure and
geometry of billions to trillions of parameters, organized in large matrices, present
a significant challenge to interpretation.

A deeper understanding of these internal mechanisms could lead to improved
overall performance, enhanced capabilities in specialized tasks (e.g., disambigua-
tion, humor detection, or handling harmful speech), and potential simplifications
of model architecture. Each of these areas represents current limitations or open
challenges in existing models.

For Hungarian, the PULI family [15, 16] represents the state-of-the-art in gen-
erative large language models, including both GPT-NeoX [3] and LLaMA-based [5,
12] architectures.

In our research, we performed both static and dynamic analyses of the inter-
nal parameters of the model. The static analysis focused on examining various
properties and features of the trained models. In the dynamic analysis, we en-
abled visualization of the model’s internal representations for arbitrary input text
by adopting and integrating the BertViz application [13] into our demonstration
platform1.

2. Related work
A growing body of research has focused on analyzing the internal parameter values
of deep neural networks and transformer-based models. It has long been recognized
that deep neural networks are capable of acquiring and encoding aspects of human
semantic knowledge [11]. Investigations of the BERT model have shown that dis-
tinct subspaces within the parameter space correspond to syntactic and semantic
information [10]. Additionally, different senses of a word can be distinguished and
separated in this space. Further studies have uncovered links between vector ge-
ometries and syntactic structures such as parse trees [6]. Recent research has also
demonstrated that attributes like textual toxicity can be identified by analyzing
internal parameters [8]. Regarding training dynamics, it has been found that low-
dimensional structures within the parameter space are critical for enabling efficient
optimization and successful model training [9]. Such findings lay the foundation
for developing improved, faster, and more resource-efficient learning strategies [2].

Multilingual BERT models, when analyzed through morphosyntactic probing,
have yielded further insights – for instance, indicating that preceding context often
contains more semantically relevant information than the following context [1].
Model compression, particularly through quantization, is another active research
area with significant practical implications [4].

In parallel with analytical approaches, there have been efforts to improve the
interpretability of semantic and contextual representations in LLMs during infer-

1https://juniper.nytud.hu/demo/visualizer
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ence. Tools such as ExBERT, a visualization framework for exploring learned
representations in transformer models [7], and BertViz, a multiscale visualization
tool applicable to any transformer architecture, have proven useful in this regard.
BertViz has been employed, for example, to detect bias and trace specific behaviors
back to particular model components [13, 14].

3. Static analysis

3.1. PULI LlumiX 32K model and its parameters
The static analysis in this study was conducted on the PULI LlumiX 32K model [15],
which is based on LLaMA-2-7B-32K2 variant of the open-source LLaMA (Large
Language Model Meta AI) 2 family [12] introduced by Meta3 in 2023. LLaMA
models are decoder-only architectures, meaning they consist solely of transformer
decoder layers. The core architecture comprises multiple identical layers, each
containing a feed-forward neural network (FFN), layer normalization, and self-
attention blocks. Input data is processed through an embedding layer and posi-
tional encoding before being passed through the stacked layers.

The self-attention mechanism maps a query and a set of key–value pairs to an
output, enabling the model to capture dependencies between tokens regardless of
their position in the sequence. The main components and parameters involved are
as follows:

• Query (Q): Represents the current token being processed and is used to com-
pute attention scores by comparing it to all other tokens’ key vectors.

• Key (K): Associated with each token in the sequence and used to determine
the relevance of other tokens to the current one.

• Value (V): Also associated with each token, and contains the information
that contributes to the final weighted output.

The result of the self-attention mechanism is a weighted sum of the value vec-
tors, where weights are derived from the similarity between queries and keys. Mod-
ern transformer models use multi-head attention, which involves multiple parallel
self-attention mechanisms, each with its own set of learned parameters. Dedicated
weight matrices are used to compute the Q, K, and V vectors from the input
representations.

The LLaMA-2-7B-32K model consists of 32 transformer layers and approxi-
mately 7 billion parameters. A detailed breakdown of the model’s architecture,
including the dimensionality of parameter matrices and the total parameter count,
is provided in Table 1.

2https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
3https://www.meta.ai
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Table 1. Number of Parameters in LLaMA-2-7B-32K.

Description Matrix size Count Parameter
count

embed_token_weight: maps
each token onto the d_model

(32000,4096) 1 131 072 000

input_layernorm: each layer
input normalized

(4096,1) 32 131 072

self_attn_k: multi-
attention head W_K matrix

(4096,4096) 32 536 870 912

self_attn_q: multi-
attention head W_Q matrix

(4096,4096) 32 536 870 912

self_attn_v: multi-
attention head W_V matrix

(4096,4096) 32 536 870 912

self_attn_o: multi-attention
head W_O matrix

(4096,4096) 32 536 870 912

post_attention_layernorm:
each multi-head attention
output normalized

(4096, 1) 32 131 072

mlp.down_proj: FNN
weights

(4096,11008) 32 1 442 840 576

mlp.gate_proj: FNN gate
weights

(11008,4096) 32 1 442 840 576

mlp.up_proj: FNN weights (11008,4096) 32 1 442 840 576
norm: normalizing function
for last layer output

(4096,1) 1 4096

lm_head: maps d_model
back onto the vocabulary
space

(32000,4096) 1 131 072 000

TOTAL 6 738 415 616

3.2. Analysis and results
Distinct patterns were observed in the model’s parameters. In the feedforward net-
work (FNN), the standard deviation of the down, gate, and up projection weights
progressively increases in the upper layers (Figure 1). This trend is further sup-
ported by a decrease in the 25 percentile and an increase in the 75 percentile values
(Figure 2). Notably, the first and last layers exhibit substantially larger changes
compared to the intermediate layers.

In the self-attention blocks, the standard deviations of the key (k) and query (q)
weights decrease from the lower to the upper layers, while the value (v) and output
(o) weights show a similar downward trend. Again, notable exceptions to these
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Figure 1. Plot of min-max, mean and standard deviation value of
FNN components.

Figure 2. Plot of 25, 50 and 75 percentile values of FNN components.

trends appear in the first and last layers. Principal component analysis on these
weights revealed that, in general, the cumulative explained variance indicates that
dimensionality cannot be significantly reduced without information loss. However,
in a few specific cases – particularly for the k and q weights, and to a lesser
extent the v and o weights – early layers (especially the first three) exhibit high
cumulative explained variance, approaching 1, with a substantially smaller number
of dimensions than in later layers (Figure 3, Figure 4).
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Figure 3. Cumulative explained variance of query (q) matrices for
self-attention layers.

Figure 4. Cumulative explained variance of key (k) matrices for
self-attention layers.
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4. Dynamic analysis

For Dynamic analysis, we integrated the BertViz tool [13] into our demo site. In
our demo site4, we split the BertViz output into frontend and backend components
and integrated them into the corresponding sections of our site. While the original
BertVis frontend code remained unchanged, we applied several modifications to
the backend. First, we added a text generation module and then merged the newly
generated text with the original input prompt. This functionality allows us to
observe the relationships between the prompt and its response.

Figure 5 presents the architecture of our dynamic analysis demo site. This
architecture diagram illustrates a system designed to interface with a LLM through
a frontend-backend pipeline. On the frontend, users interact with the system via
a Demo interface, where they input prompts. These prompts are sent to the LLM
hosted in our backend, which generates corresponding model responses and returns
them to the frontend for display. Simultaneously, a weight extraction module
accesses internal data (such as attention weights) from the LLM, processes it, and
forwards the resulting weights to BertViz, a frontend visualization tool that allows
users to explore the model’s inner workings. This design separates user interaction,
model computation, and interpretability, enabling a clear and interactive workflow
to use and understand the behavior of the LLM.

Figure 5. Architecture of the demo site.

In Figure 6, we show the integrated BertViz visualization along with the dy-
namic prompt-response analysis. In our demo site, an input prompt can be pro-
vided, and then the response will be generated (see Figure 6a). In this example,
the prompt is: The table is heavier than the chair. Which is the lighter one? The
answer:. The response: the chair. In Figure 6b, we visualize the relationships
between the prompt and its response. In this example, we observe the weights of
layer 9, where we can see that, in the case of ‘a’ (the), the attention is focused more
on the word ‘szék’ (chair) than on the word ‘asztal’ (table).

4https://juniper.nytud.hu/demo/visualizer
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(a) A screenshot of our demo site. (b) Illustrating the relationship between
the input prompt and the generated re-

sponse.

Figure 6. The PULI visualizer demo.

5. Conclusion
In this paper, we investigated the internal mechanisms of the PULI large lan-
guage models using a two-pronged approach: static parameter analysis and dy-
namic behavior visualization. Our static examination highlighted systematic trends
in weight distributions and dimensionality across layers, suggesting layer-specific
roles in the model’s computation. The dynamic component extended the BertViz
framework, allowing users to explore the relationship between input prompts and
model responses in real time. These findings contribute to the broader goal of de-
mystifying LLMs and open avenues for improving model transparency, fine-tuning
strategies, and error diagnosis, particularly in the context of Hungarian language
technologies. Future work may focus on extending these methods to multilingual
settings or applying similar techniques to fine-tuning and alignment tasks.

In the future, we plan to extend our experiments to other PULI models and im-
plement a model selection module that allows users to interactively switch between
different PULI architectures, including encoder-only, decoder-only, and encoder-
decoder models. This would enable comparative analysis, generalization of results,
and adaptive usage based on specific task requirements. In addition, combining
advanced statistical methods with visualizations appears promising for dynamic
analysis.
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