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Abstract. In this paper, we classify the structure of the unit group of
semisimple group algebras over groups of order 36. There are 14 noniso-
morphic groups of this order, 10 of which are nonabelian. The structures of
the unit groups of the group algebras corresponding to all abelian groups of
order 36, as well as the groups C3 × A4 and D36, have already been studied.
This work focuses on the remaining 8 non-abelian groups of order 36, provid-
ing a detailed examination of the unit group structures of their corresponding
semisimple group algebras.
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1. Introduction
Let FG represent the group algebra of a finite group G over the finite field F of
order q = pk. It is crucial to keep in mind that the collection of all invertible
elements of FG is the unit group U(FG). Finding the structure of a unit group
of group rings has always been an interesting and difficult problem due to the
fact that group algebraic units can be applied to both cryptography and coding
theory. Additionally, units are very helpful for exploring the Lie properties of group
algebras and solving isomorphism problems. Unit groups of various group algebras
have been examined and described in the past few years [6, 7, 9–11, 13, 16, 18,
19, 21, 22]. Unit group of finite group algebras of abelian groups of order at most
16 are discussed in [17]. In [5], the unit group structure of non-abelian groups
of order 16 is discussed. The unit group structure of group algebras of groups
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of order 18, 20, and 24 are characterized by Sahai and Ansari [1, 14, 17]. Some
recent papers related to the characterization of groups of order 26 to 34 are listed
in [10, 16]. We have total 10 non-isomorphic non-abelian groups of order 36 namely
D36, Dic9, C2

3 ⋊ C4, C3 ⋊ Dic3, C3 · A4, S2
3 , S3 × C6, C3 × A4, C3 × Dic3 and

C2 × C3 ⋊ S3. The structure of unit groups of group algebra of abelian groups of
order 36, U(F (C3 × A4)) and U(FD36) has already been studied in [2, 20]. In this
paper, we characterize the structure of unit groups of the remaining non-abelian
groups of order 36.

2. Preliminaries
Let F be any arbitrary finite field, e represent the exponent of G, and let ζ be
a primitive eth root of unity. Then T be the multiplicative group consisting of
those elements t, taken modulo e, for which ζ 7→ ζt defines an automorphism of
F (ζ) over F , i. e., T = {t : ζ 7→ ζt is an automorphism of F (ζ) over F}. For any
p-regular element g ∈ G, we can denote γg as the sum of all of its conjugates, and
the cyclotomic F-classes of γg are denoted by S(γg) = {γgt : t ∈ T}.

Theorem 2.1 ([4]). The number of simple components of FG/J(FG) and the
number of cyclotomic F -classes in G is equal.

Theorem 2.2 ([4]). Let j be the number of cyclotomic F -classes in G. If Ki,
1 ≤ i ≤ j, are the simple components of the center of FG/J(FG) and Si, 1 ≤ i ≤ j,
are the cyclotomic F -classes in G, then |Si| = [Ki : F ] for each i , after a suitable
ordering of the indices.

Theorem 2.3 ([8]). Let F be a finite field with prime power order q. If e is such
that gcd(e, q) = 1, ζ is the primitive eth root of unity and z is the order of q modulo
e, then we have T = {1, q, q2, . . . , qz−1} mod e.

Theorem 2.4 ([12]). If RG is a semisimple group algebra, then

RG = R(G/G′) ⊕ ∆(G, G′),

where G′ is the commutator subgroup of G, R(G/G′) is the sum of all commutative
simple components of RG, and ∆(G, G′) is the sum of all others.

Theorem 2.5 ([3]). If R =
⊕j

t=1 Mnt
(Fqt

) is a summand of a semisimple group
ring FqG(q = pk), then p does not divide any of the nt.

3. Main results
The unit group structure of the group algebras of all non-isomorphic non-abelian
groups of order 36 over the finite field F of positive characteristics, p > 0, where
p ∤ |G|, is discussed in this section.
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Theorem 3.1. Let G ∼= C9 ⋊ C4, then for a field F of characteristic p > 3,

U(Fq(C9 ⋊ C4))

∼=


C4

pk−1 ⊕ GL2(Fq)8 for q ≡ 1, 17 mod 36

C4
pk−1 ⊕ GL2(Fq)2 ⊕ GL2(Fq3)2 for q ≡ 29, 13, 5, 25 mod 36

C2
pk−1 ⊕ Cp2k−1 ⊕ GL2(Fq)8 for q ≡ 19, 35 mod 36

C2
pk−1 ⊕ Cp2k−1 ⊕ GL2(Fq)2 ⊕ GL2(Fq3)2 for q ≡ 11, 31, 23, 7 mod 36.

Proof. Let G ∼= C9 ⋊ C4 = ⟨x, y, z, w | x2y−1, y−1x−1yx, z−1x−1zxw−1z−1,
w−1x−1wxw−1, y2, z−1y−1zy, w−1y−1wy, z2w−2, w−1z−1wz, w3⟩. The Conjugacy
classes description of C9 ⋊ C4 are given in Table 1.

Table 1

Representative Elements in Order of
the class element

1 {1} 1
x {x, xw2, xw, xz2, xz2w2, xz2w, xzw2, xzw, xz} 4
y {y} 2
z {z, z2w} 9
w {w, w2} 3
xy {xy, xyw2, xyw, xyz2, xyz2w2, xyz2w, xyzw2, xyzw, xyz} 4
yz {yz, yz2w} 18
yw {yw, yw2} 6
z2 {z2, zw} 9
yz2 {yz2, yzw} 18
zw2 {zw2, z2w2} 9
yzw2 {yzw2, yz2w2} 18

Here, the exponent of C9⋊C4 is 36, (C9⋊C4)′ = C9 and (C9⋊C4)/(C9⋊C4)′ =
C4. Now we discuss the proof in the following four cases.
Case 1. If pk ≡ 1, 17 mod 36. In this case T = {1} and |S(γg)| = 1 for all g ∈
(C9⋊C4). As F is a field of characteristic p > 3, therefore Fq(C9⋊C4) is semisimple.
So Wedderburn decomposition is provided by Fq(C9 ⋊ C4) ∼= Fq

⊕i−1
t=1 Mnt(Ft),

where Ft is a finite extension of Fq. Theorems 2.1 and 2.2 imply that Fq(C9⋊C4) ∼=
Fq

⊕11
t=1 Mnt(Ft). As F (C9 ⋊ C4)/(C9 ⋊ C4)′ ∼= FC4, and FC4 ∼= F 4, for pk ∼= 1

mod 4 [15]. Thus, using Theorem 2.4, we get Fq(C9 ⋊ C4) ∼= F 4
q

⊕8
t=1 Mnt

(Ft).
Now, by the dimension formula, we have 32 =

∑8
t=1 n2

t , nt ≥ 2, ∀ t. Here (2, 2, 2,
2, 2, 2, 2, 2) is the only possibility of nt’s. So we have,

Fq(C9 ⋊ C4) ∼= F 4
q ⊕ M2(Fq)8.

Case 2. If pk ≡ 29, 13, 5, 25 mod 36, then T = {1, 5, 25, 17, 13, 29} and |S(γz)| =
{γz, γz2 , γzw2}, |S(γyz)| = {γyz, γyz2 , γyzw2} and |S(γg)| = {γg} for the remaining
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representatives of the conjugacy classes of C9 ⋊ C4. Now using Theorems 2.1
and 2.2, we have Fq(C9 ⋊ C4) ∼= Fq

⊕5
t=1 Mnt

(Ft)
⊕5

t=1 Mnt
(Ft3). Since F (C9 ⋊

C4)/(C9 ⋊ C4)′ ∼= FC4 and FC4 ∼= F 4 for pk ∼= 1 mod 4, therefore by Theorem
2.4, we have Fq(C9 ⋊ C4) ∼= F 4

q

⊕2
t=1 Mnt(Ft)

⊕4
t=3 Mnt(Ft3). This implies 32 =∑8

t=1 n2
t , nt ≥ 2, ∀ t. Now (2, 2, 2, 2, 2, 2, 2, 2) is the only choice for nt’s. Thus,

Fq(C9 ⋊ C4) ∼= F 4
q ⊕ M2(Fq)2 ⊕ M2(Fq3)2.

Case 3. If pk ≡ 19, 35 mod 36, then T = {1, 19}, T = {1, 35}, |S(γx)| =
{γx, γxy} and |S(γg)| = {γg} for the remaining representatives of the conjugacy
classes of C9 ⋊ C4. Now using Theorems 2.1 and 2.2 we have Fq(C9 ⋊ C4) ∼=
Fq

⊕9
t=1 Mnt(Ft) ⊕ Mnt(Ft2). Since F (C9 ⋊ C4)/(C9 ⋊ C4)′ ∼= FC4, and FC4 ∼=

F 2 ⊕ F2, for pk ∼= −1 mod 4, using Theorem 2.4 we have, Fq(C9 ⋊ C4) ∼= F 2
q ⊕

Fq2
⊕8

t=1 Mnt
(Ft). Now by dimension formula, 32 =

∑8
t=1 n2

t , nt ≥ 2, ∀ t, which
further implies that the possible choice of nt’s is (2, 2, 2, 2, 2, 2, 2, 2). Therefore,
we have

Fq(C9 ⋊ C4) ∼= F 2
q ⊕ Fq2 ⊕ M2(Fq)8.

Case 4. If pk ≡ 7, 11, 23, 31 mod 36, then T = {1, 7, 13, 19, 25, 31}, and |S(γx)| =
{γx, γxy} |S(γz)| = {γz, γz2 , γzw2}, |S(γyz)| = {γyz, γyz2 , γyzw2} and |S(γg)| = {γg}
for the remaining representatives of the conjugacy classes of C9 ⋊ C4.
Now using Theorems 2.1 and 2.2 we have Fq(C9 ⋊ C4) ∼= Fq

⊕2
t=1 Mnt(Ft) ⊕

Mnt
(Ft2)

⊕4
t=3 Mnt

(Ft3). Since F (C9 ⋊ C4)/(C9 ⋊ C4)′ ∼= FC4 and FC4 ∼= F 2 ⊕
F2, for pk ∼= −1 mod 4, using Theorem 2.4 we have, Fq(C9 ⋊ C4) ∼= F 2

q ⊕
Fq2

⊕2
t=1 Mnt(Ft)

⊕4
t=3 Mnt(Ft3). Now by dimension formula, 32 = n2

1 + n2
2 +

3
∑3

t=2 n2
t , nt ≥ 2, ∀ t, which further implies that the possible choice of nt’s is (2,

2, 2, 2, 2, 2, 2, 2). Therefore, we have

Fq(C9 ⋊ C4) ∼= F 2
q ⊕ Fq2 ⊕ M2(Fq)2 ⊕ M2(Fq3)2.

Theorem 3.2. Let G ∼= C2
3 ⋊ C4, then for a field F of characteristic p > 3,

U(Fq(C2
3 ⋊ C4)) ∼=

C4
pk−1 ⊕ GL4(Fq)2 for q ≡ 1, 5 mod 12

C2
pk−1 ⊕ Cp2k−1 ⊕ GL4(Fq)2 for q ≡ 7, 11 mod 12.

Proof. Let G ∼= C2
3 ⋊ C4 = ⟨x, y, z, w | x2y−1, y−1x−1yx, z−1x−1zxw−2,

w−1x−1wxw−1z−2, y2, z−1y−1zyz−1, w−1y−1wyw−1, z3, w−1z−1wz, w3⟩. Conjuga-
cy classes description of C9 ⋊C4 are given in Table 2. It is clear from Table 2 that
the exponent of C2

3 ⋊ C4 is 12, (C2
3 ⋊ C4)′ = C2

3 and (C2
3 ⋊ C4)/(C2

3 ⋊ C4)′ = C4.
We discuss the proof in two cases.

Case 1. If pk ≡ 1, 5 mod 12. In this case T = {1, 5} , and |S(γg)| = 1 for all the
representatives of the conjugacy classes of (C2

3 ⋊C4). Theorems 2.1 and 2.2 imply
that Fq(C2

3 ⋊ C4) ∼= Fq

⊕5
t=1 Mnt

(Ft). As F (C2
3 ⋊ C4)/(C2

3 ⋊ C4)′ ∼= FC4, and
FC4 ∼= F 4 for pk ∼= 1 mod 4 [15]. Thus, using Theorem 2.4, we get Fq(C2

3 ⋊C4) ∼=
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Table 2

Representative Elements in Order of
the class element

1 {1} 1
x {x, xzw2, xz2w, xw, xz, xz2w2, xw2, xzw, xz2} 4
y {y, yw2, yw, yz2, yz2w2, yz2w, yz, yzw2, yzw} 2
z {z, z2, z2w, zw2} 3
w {w, zw, w2, z2w2} 3
xy {xy, xyz2, xyz, xyz2w2, xyzw2, xyw2, xyzw, xyw, xyz2w} 4

F 4
q

⊕2
t=1 Mnt

(Ft). Now, by the dimension formula, we have 32 = n2
1 + n2

2, n1, n2 ≥
2, ∀ t. Here (4, 4) is the only choice of n1, n2. Hence,

Fq(C2
3 ⋊ C4) ∼= F 4

q ⊕ M4(Fq)2. (3.1)

Case 2. If pk ≡ 7, 11 mod 12. Here T = {1, 7} or T = {1, 11}, and |S(γx)| =
{γx, γxy} |S(γg)| = 1 for all remaining representatives of the conjugacy classes of
(C2

3 ⋊C4). Theorems 2.1 and 2.2 imply that Fq(C2
3 ⋊C4) ∼= Fq

⊕5
t=1 Mnt

(Ft). As
F (C2

3 ⋊ C4)/(C2
3 ⋊ C4)′ ∼= FC4, and FC4 ∼= F 2 ⊕ F2 , for pk ∼= −1 mod 4 [15].

Thus, using Theorem 2.4, we get Fq(C2
3 ⋊ C4) ∼= F 4

q

⊕2
t=1 Mnt

(Ft). Now, by the
dimension formula, we have 32 = n2

1 + n2
2, n1, n2 ≥ 2, ∀ t. Here (4, 4) is the only

choice for n1, n2. Thus

Fq(C2
3 ⋊ C4) ∼= F 2

q ⊕ Fq2 ⊕ M4(Fq)2.

Theorem 3.3. Let G ∼= C3 ⋊ Dic3, then for a field F of characteristic p > 3,

U(Fq(C3 ⋊ Dic3)) ∼=

C4
pk−1 ⊕ GL2(Fq)8 for q ≡ 1, 5 mod 12

C2
pk−1 ⊕ Cp2k−1 ⊕ GL2(Fq)8 for q ≡ 7, 11 mod 12.

Proof. Let G ∼= C3 ⋊ Dic3 = ⟨x, y, z, w | x2y−1, y−1x−1yx, z−1x−1zxz−1,
w−1x−1wxw−1, y2, z−1y−1zy, w−1y−1wy, z3, w−1z−1wz, w3⟩. The Conjugacy
classes description of C3⋊Dic3 are given in Table 3. It is clear from Table 3 that the
exponent of C3⋊Dic3 is 12, (C3⋊Dic3)′ = C2

3 and (C3⋊Dic3)/(C3⋊Dic3)′ = C4.
We discuss the proof in two cases.

Case 1. If pk ≡ 1, 5 mod 12. In this case T = {1, 5} , and |S(γg)| = 1 for all
the representatives of the conjugacy classes of (C2

3 ⋊ C4). Theorems 2.1 and 2.2
imply that Fq(C3 ⋊ Dic3) ∼= Fq

⊕11
t=1 Mnt

(Ft). As F (C3 ⋊ Dic3)/(C3 ⋊ Dic3)′ ∼=
FC4, and FC4 ∼= F 4, for pk ∼= 1 mod 4 [15]. Thus, using Theorem 2.4, we
get Fq(C3 ⋊ Dic3) ∼= F 4

q

⊕8
t=1 Mnt

(Ft). Now using dimension formula, we have
32 =

∑8
t=1 n2

t , nt ≥ 2, ∀ t, (2, 2, 2, 2, 2, 2, 2, 2) is the only choice of nt’s. Hence

Fq(C3 ⋊ Dic3) ∼= F 4
q ⊕ M2(Fq)8.
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Table 3

Representative Elements in Order of
the class element

1 {1} 1
x {x, xw2, xw, xz2, xz2w2, xz2w, xz, xzw2, xzw} 4
y {y} 2
z {z, z2} 3
w {w, w2} 3
xy {xy, xyw2, xyw, xyz2, xyz2w2, xyz2w, xyz, xyzw2, xyzw} 4
yz {yz, yz2} 6
yw {yw, yw2} 6
zw {zw, z2w2} 3
yzw {yzw, yz2w2} 6
z2w {z2w, zw2} 3
yz2w {yz2w, yzw2} 6

Case 2. If pk ≡ 7, 11 mod 12. Here T = {1, 7} or T = {1, 11} and |S(γx)| =
{γx, γxy}, |S(γg)| = 1 for all remaining representatives of the conjugacy classes of
(C3 ⋊Dic3). Theorems 2.1 and 2.2 imply that Fq(C3 ⋊Dic3) ∼= Fq

⊕5
t=1 Mnt

(Ft).
As F (C3 ⋊ Dic3)/(C3 ⋊ Dic3)′ ∼= FC4, and FC4 ∼= F 2 ⊕ F2 , for pk ∼= −1 mod 4
[15]. Thus, using Theorem 2.4, we get Fq(C3 ⋊ Dic3) ∼= F 4

q

⊕2
t=1 Mnt(Ft). Now

by dimension formula, we have 32 =
∑8

t=1 n2
t , nt ≥ 2, ∀ t, (2, 2, 2, 2, 2, 2, 2, 2) is

the only choice of nt’s. Hence

Fq(C2
3 ⋊ C4) ∼= F 2

q ⊕ Fq2 ⊕ M2(Fq)8.

Theorem 3.4. Let G ∼= C3 · A4, then for a field F of characteristic p > 3,

U(Fq(C3 · A4))

∼=


C9

pk−1 ⊕ GL3(Fq)3 for q ≡ 1 mod 18

Cpk−1 ⊕ Cp2k−1 ⊕ Cp6k−1 ⊕ GL3(Fq) ⊕ GL3(Fq2) for q ≡ 5, 11 mod 18
C3

pk−1 ⊕ C2
p3k−1 ⊕ GL3(Fq)3 for q ≡ 7, 13 mod 18

Cpk−1 ⊕ C4
p2k−1 ⊕ GL3(Fq) ⊕ GL3(Fq2) for q ≡ 17 mod 18.

Proof. Let G ∼= C3 · A4 = ⟨x, y, z, w | x3y−1, y−1x−1yx, z−1x−1zxw−1z−1,
w−1x−1wxz−1, y3, z−1y−1zy, w−1y−1wy, z2, w−1z−1wz, w2⟩. Conjugacy classes
description of C3 · A4 are given in Table 4. Now from Table 4 the exponent of
C3 · A4 is 12, (C3 · A4)′ = C2

2 and (C3 · A4)/(C3 · A4)′ = C9. We discuss the proof
in four cases.

Case 1. If pk ≡ 1 mod 18. In this case T = {1} and |S(γg)| = 1 for all the
representative of the conjugacy classes of (C3 · A4). Theorems 2.1 and 2.2 imply
that Fq(C3 · A4) ∼= Fq

⊕11
t=1 Mnt

(Ft). As F (C3 · A4)/(C3 · A4)′ ∼= FC9, and FC9 ∼=
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Table 4

Representative Elements in Order of
the class element

1 {1} 1
x {x, xz, xw, xzw} 9
y {y} 3
z {z, w, zw} 2
x2 {x2, x2z, x2w, x2zw} 9
xy {xy, xyz, xyw, xyzw} 9
y2 {y2} 3
yz {yz, yw, yzw} 6
x2y {x2y, x2yz, x2yw, x2yzw} 9
xy2 {xy2, xy2z, xy2w, xy2zw} 9
y2z {y2z, y2w, y2zw} 6
x2y2 {x2y2, x2y2z, x2y2w, x2y2zw} 9

F 9, for pk ∼= 1 mod 9 [15]. Thus, using Theorem 2.4, we get Fq(C3 · A4) ∼=
F 9

q

⊕3
t=1 Mnt

(Ft). Now by using dimension formula, we have 27 =
∑3

t=1 n2
t , nt ≥

2, ∀ t, (3, 3, 3) is the only choice of nt’s. Hence

Fq(C3 · A4) ∼= F 9
q ⊕ M3(Fq)3.

Case 2. If pk ≡ 5, 11 mod 18. Here T = {1, 5, 7, 11, 13, 17} and |S(γx)| =
{γx, γx2 , γxy, γx2y2 , γx2y, γxy2}, |S(γy)| = {γy, γy2}, |S(γyz)| = {γyz, γy2z} and
|S(γg)| = 1 for all the remaining representative of the conjugacy classes of (C3 ·A4).
Theorems 2.1 and 2.2 imply that Fq(C3 · A4) ∼= Fq

⊕11
t=1 Mnt

(Ft). As F (C3 ·
A4)/(C3 · A4)′ ∼= FC9, and FC9 ∼= F ⊕ F2 ⊕ F6 , for pk ∼= 2, −4 mod 9 [15]. Thus,
using Theorem 2.4, we get Fq(C3 · A4) ∼= Fq ⊕ Fq2 ⊕ Fq6

⊕3
t=1 Mnt

(Ft). Now by
using the dimension formula, we have 27 =

∑3
t=1 n2

t , nt ≥ 2, ∀ t, (3, 3, 3) is the only
choice of nt’s. Hence

Fq(C3 · A4) ∼= Fq ⊕ Fq2 ⊕ Fq6 ⊕ M3(Fq)3.

Case 3. If pk ≡ 7, 13 mod 18. Here T = {1, 7, 13} and |S(γx)| = {γx, γxy, γy2 , }
|S(γx2)| = {γx2 , γx2y, γx2y2} |S(γg)| = 1 for all the remaining representatives of the
conjugacy classes of (C3 · A4). Theorems 2.1 and 2.2 imply that Fq(C3 · A4) ∼=
Fq

⊕11
t=1 Mnt

(Ft). As F (C3 · A4)/(C3 · A4)′ ∼= FC9, and FC9 ∼= F 3 ⊕ F 2
3 ,

for pk ∼= −2, 4 mod 9 [15]. Thus, using Theorem 2.4, we get Fq(C3 · A4) ∼=
F 3

q ⊕ F 2
q3

⊕3
t=1 Mnt

(Ft). Now, by using the dimension formula, we have 27 =∑3
t=1 n2

t , nt ≥ 2, ∀ t. Here (3,3,3) is the only choice of nt’s. Hence

Fq(C3 · A4) ∼= F 3
q ⊕ F 2

q3 ⊕ M3(Fq)3.

Case 4. If pk ≡ 17 mod 18. Here T = {1, 17} and |S(γx)| = {γx, γx2y2}, |S(γy)| =
{γy, γy2}, |S(γx2)| = {γx2 , γxy2}, |S(γxy)| = {γxy, γx2y}, |S(γyz)| = {γyz, γy2z},
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|S(γg)| = 1 for all the remaining representatives of the conjugacy classes of (C3·A4).
Theorems 2.1 and 2.2 imply that Fq(C3 · A4) ∼= Fq ⊕ Mnt(Ft)

⊕5
t=1 Mnt(Ft2). As

F (C3 · A4)/(C3 · A4)′ ∼= FC9, and FC9 ∼= F ⊕ F 4
2 , for pk ∼= −1 mod 9 [15]. Thus,

using Theorem 2.4, we get Fq(C3 · A4) ∼= Fq ⊕ F 4
q2 ⊕ Mnt

(Ft) ⊕ Mnt
(Ft2). Now,

by using the dimension formula, we have 27 = n2
1 + 2n2

2, n1, n2 ≥ 2. Now (3,3,3) is
the only choice of n1, n2. Hence

Fq(C3 · A4) ∼= Fq ⊕ F 4
q2 ⊕ M3(Fq) ⊕ M3(Fq2).

Theorem 3.5. Let G ∼= S2
3 , then for a field F of characteristic p > 3,

U(FqS2
3) ∼= C4

pk−1 ⊕ GL2(Fq)4 ⊕ GL4(Fq) for q ≡ 1, 5 mod 6.

Proof. Let G ∼= S2
3 = ⟨x, y, z, w | x2, y−1x−1yx, z−1x−1zx, w−1x−1wxw−1,

y2, z−1y−1zyz−1, w−1y−1wy, z3, w−1z−1wz, w3⟩. Conjugacy classes description of
S2

3 are given in Table 5. It is clear from Table 5 that the exponent of S2
3 is 6,

Table 5

Representative Elements in Order of
the class element

1 {1} 1
x {x, xw, xw2} 2
y {y, yz, yz2} 2
z {z, z2} 3
w {w, w2} 3
xy {xy, xyw2, xyw, xyz2, xyz2w2, xyz2w, xyz, xyzw2, xyzw} 2
xz {xz, xzw2, xzw, xz2, xz2w2, xz2w} 6
yw {yw, yz2w, yzw, yw2, yz2w2, yzw2} 6
zw {zw, z2w, zw2, z2w2} 3

(S2
3)′ = C2

3 and (S2
3)/(S2

3)′ = C2
2 . Now, if pk ≡ 1, 5 mod 6, then T = {1, 5} and

|S(γg)| = 1 for all the representatives of the conjugacy classes of (S2
3). Theorems 2.1

and 2.2 imply that Fq(S2
3) ∼= Fq

⊕8
t=1 Mnt(Ft). As F (S2

3)/(S2
3)′ ∼= FC2

2 , and
FC2

2
∼= F 4, for pk ∼= 1 mod 6 [15]. Thus, using Theorem 2.4, we get Fq(S2

3) ∼=
F 4

q

⊕5
t=1 Mnt(Ft). Now, using the dimension formula, we have 32 =

∑5
t=1 n2

t , nt ≥
2, ∀ t. We have (2, 2, 2, 2, 4) as the only choice of nt’s. Hence,

Fq(S2
3) ∼= F 4

q ⊕ M2(Fq)4 ⊕ M4(Fq).

Theorem 3.6. Let G ∼= S3 × C6, then for a field F of characteristic, p > 3 the
Wedderburn decomposition is given by

U(Fq(S3×C6)) ∼=

C12
pk−1 ⊕ GL2(Fq)6 for q ≡ 1 mod 6

C4
pk−1 ⊕ C4

p2k−1 ⊕ GL2(Fq)2 ⊕ GL2(Fq2)2 for q ≡ 5 mod 6.

8
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Proof. Let G ∼= S3 × C6 = ⟨x, y, z, w | x2, y−1x−1yx, z−1x−1zx, w−1x−1wxw−1,
y2, z−1y−1zy, w−1y−1wy, z3, w−1z−1wz, w3⟩. The Conjugacy classes description of
S3 × C6 are given below.

Table 6

Representative Elements in Order of
the class element

1 {1} 1
x {x, xw, xw2} 2
y {y} 2
z {z} 3
w {w, w2} 3
xy {xy, xyw, xyw2} 2
xz {xz, xzw, xzw2} 6
yz {yz} 6
yw {yw, yw2} 6
z2 {z2} 3
zw {zw, zw2} 3
xyz {xyz, xyzw, xyzw2} 6
xz2 {xz2, xz2w, xz2w2} 6
yz2 {yz2} 6
yzw {yzw, yzw2} 6
z2w {z2w, z2w2} 3
xyz2 {xyz2, xyz2w, xyz2w2} 6
yz2w {yz2w, yz2w2} 6

It is clear from Table 6 that the exponent of S3 × C6 is 6, (S3 × C6)′ = C3 and
(S3 × C6)/(S3 × C6)′ = C2 × C6.

Case 1. If pk ≡ 1 mod 6, then T = {1} and |S(γg)| = 1 for all the representatives
of the conjugacy classes of (S2

3). Theorems 2.1 and 2.2 imply that Fq(S2
3) ∼=

Fq

⊕17
t=1 Mnt(Ft). As F (S3 × C6)/(S3 × C6)′ ∼= F (C2 × C6), and F (C2 × C6) ∼=

F 12, for pk ∼= 1 mod 3 [21]. Thus, using Theorem 2.4, we get Fq(S3 × C6) ∼=
F 12

q

⊕6
t=1 Mnt(Ft). Now using the dimension formula, we have 24 =

∑6
t=1 n2

t , nt ≥
2, ∀ t, (2, 2, 2, 2, 2, 2) is the only valid combination of nt’s. Thus,

Fq(S3 × C6) ∼= F 12
q ⊕ M2(Fq)6.

Case 2. If pk ≡ 5 mod 6, then T = {1, 5}, and |S(γz)| = {γz, γz2}, |S(γxz)| =
{γxz, γxz2}, |S(γyz)|={γyz, γyz2}, |S(γzw)|={γzw, γz2w}, |S(γxyz)| = {γxyz, γxyz2},
|S(γyzw)| = {γyzw, γyz2w} and |S(γg)| = 1 for all the representatives of the con-
jugacy classes of (S3 × C6). Theorems 2.1 and 2.2 imply that Fq(S3 × C6) ∼=
Fq

⊕5
t=1 Mnt

(Ft)
⊕6

t=1 Mnt
(Ft2). As F (S3 × C6)/(S3 × C6)′ ∼= F (C2 × C6), and

F (C2 × C6) ∼= F 4 ⊕ F 4
2 , for pk ∼= 2 mod 3 [21]. Thus, using Theorem 2.4, we get

Fq(S3 × C6) ∼= F 4
q ⊕ F 4

q2

⊕2
t=1 Mnt

(Ft)
⊕4

t=3 Mnt
(Ft2). Now using the dimension

9
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formula, we have 24 =
∑2

t=1 n2
t + 2

∑4
t=3 n2

t , nt ≥ 2, ∀ t, (2, 2, 2, 2, 2, 2) is the only
valid combination of nt’s. Hence

Fq(S3 × C6) ∼= F 4
q ⊕ F 4

q2 ⊕ M2(Fq)2 ⊕ M2(Fq2)2.

Theorem 3.7. Let G ∼= C3 × Dic3, then for a field F of characteristic p > 3,

U(Fq(C3 × Dic3))

∼=


C12

pk−1 ⊕ GL2(Fq)6 for q ≡ 1 mod 12

Cpk−1 ⊕ C4
p2k−1 ⊕ GL2(Fq)2 ⊕ GL2(Fq2)2 for q ≡ 5 mod 12

C6
pk−1 ⊕ C3

p2k−1 ⊕ GL2(Fq)6 for q ≡ 7 mod 12

C2
pk−1 ⊕ C5

p2k−1 ⊕ GL2(Fq)2 ⊕ GL2(Fq2)2 for q ≡ 11 mod 12.

Proof. Let G ∼= C3 × Dic3 = ⟨x, y, z, w | x2z−1, y−1x−1yx, z−1x−1zx,
w−1x−1wxw−1, y3, z−1y−1zy, w−1y−1wy, z2, w−1z−1wz, w3⟩. Conjugacy classes
description of C3 × Dic3 are given in Table 7. Now the exponent of C3 × Dic3

Table 7

Representative Elements in Order of
the class element

1 {1} 1
x {x, xw, xw2} 4
y {y} 3
z {z} 2
w {w, w2} 3
xy {xy, xyw, xyw2} 12
xz {xz, xzw, xzw2} 4
y2 {y2} 3
yz {yz} 6
yw {yw, yw2} 3
zw {zw, zw2} 6
xy2 {xy2, xy2w, xy2w2} 12
xyz {xyz, xyzw, xyzw2} 12
y2z {y2z} 6
y2w {y2w, y2w2} 3
yzw {yzw, yzw2} 6
xy2z {xy2z, xy2zw, xy2zw2} 12
y2zw {y2zw, y2zw2} 6

is 12, (C3 × Dic3)′ = C2
2 and (C3 ×Dic3)/(C3 ×Dic3)′ = C9. We discuss the proof

in four cases.

Case 1. If pk ≡ 1 mod 12. In this case T = {1} and |S(γg)| = 1 for all the
representative of the conjugacy classes of (C3 ×Dic3). Theorems 2.1 and 2.2 imply

10
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that Fq(C3 × Dic3) ∼= Fq

⊕17
t=1 Mnt(Ft). As F (C3 × Dic3)/(C3 × Dic3)′ ∼= FC12,

and FC12 ∼= F 12, for pk ∼= 1 mod 12 [21]. Thus using Theorem 2.4, we get
Fq(C3 × Dic3) ∼= F 12

q

⊕6
t=1 Mnt

(Ft). Now by using dimension formula, we have
24 =

∑6
t=1 n2

t , nt ≥ 2, ∀ t, (2, 2, 2, 2, 2, 2) is the only choice of nt’s. Hence

Fq(C3 × Dic3) ∼= F 12
q ⊕ M2(Fq)6.

Case 2. If pk ≡ 5 mod 12. In this case T = {1, 5}, and |S(γy)| = {γy, γy2},
|S(γxy)| = {γxy, γxy2}, |S(γyz)| = {γyz, γy2z}, |S(γyw)| = {γyw, γy2w}, |S(γxyz)| =
{γxyz, γxy2z}, |S(γyzw)| = {γyzw, γy2zw} and |S(γg)| = 1 for all the representatives
of the conjugacy classes of (C3 × Dic3). Theorems 2.1 and 2.2 imply that Fq(C3 ×
Dic3) ∼= Fq

⊕5
t=1 Mnt

(Ft)
⊕11

t=6 Mnt
(Ft2). As F (C3 ×Dic3)/(C3 ×Dic3)′ ∼= FC12,

and FC12 ∼= F 4 ⊕ F 4
q2 , for pk ∼= 5 mod 12 [21]. Thus, using Theorem 2.4, we

get Fq(C3 × Dic3) ∼= F 4
q ⊕ F 4

q2

⊕2
t=1 Mnt

(Ft)
⊕4

t=3 Mnt
(Ft2). Now by using the

dimension formula, we have 24 =
∑2

t=1 n2
t + 2

∑4
t=3 n2

t , nt ≥ 2, ∀ t, (2, 2, 2, 2, 2, 2)
is the only choice of nt’s. Hence

Fq(C3 × Dic3) ∼= F 4
q ⊕ F 4

q2 ⊕ M2(Fq)2 ⊕ M2(Fq2)2.

Case 3. If pk ≡ 7 mod 12. In this case T = {1, 7}, |S(γx)| = {γx, γxz}
|S(γxy2)| = {γxy2 , γxy2z}, and |S(γg)| = 1 for all the representatives of the conju-
gacy classes of (C3 × Dic3). Theorems 2.1 and 2.2 imply that Fq(C3 × Dic3) ∼=
Fq

⊕11
t=1 Mnt

(Ft)
⊕14

t=12 Mnt
(Ft2). As F (C3 × Dic3)/(C3 × Dic3)′ ∼= FC12, and

FC12 ∼= F 6 ⊕ F 3
q2 , for pk ∼= 7 mod 12 [21]. Thus, using Theorem 2.4, we get

Fq(C3 ×Dic3) ∼= F 6
q ⊕F 3

q2

⊕6
t=1 Mnt(Ft). Now by using the dimension formula, we

have 24 =
∑6

t=1 n2
t , nt ≥ 2, ∀ t, (2, 2, 2, 2, 2, 2) is the only choice of nt’s. Hence,

Fq(C3 × Dic3) ∼= F 6
q ⊕ F 3

q2 ⊕ M2(Fq)6.

Case 4. If pk ≡ 11 mod 12. In this case T = {1, 11}, and |S(γx)| = {γx, γxz},
|S(γy)| = {γy, γy2}, |S(γxy)| = {γxy, γxy2z}, |S(γyz)| = {γyz, γy2z}, |S(γyw)| =
{γyw, γy2w}, |S(γxy2)| = {γxy2 , γxyz}, |S(γy2w)| = {γy2w, γy2zw} and |S(γg)| = 1
for all the representative of the conjugacy classes of (C3 × Dic3). Theorems 2.1
and 2.2 imply that Fq(C3 × Dic3) ∼= Fq

⊕3
t=1 Mnt

(Ft)
⊕10

t=4 Mnt
(Ft2). As F (C3 ×

Dic3)/(C3 ×Dic3)′ ∼= FC12, and FC12 ∼= F ⊕F 5
q2 , for pk ∼= 11 mod 12 [21]. Thus,

using Theorem 2.4, we get Fq(C3×Dic3) ∼= F 2
q ⊕F 5

q2

⊕3
t=1 Mnt

(Ft)
⊕5

t=4 Mnt
(Ft2).

Now, by using the dimension formula, we have 24 =
∑3

t=1 n2
t + 2

∑5
t=4 n2

t , nt ≥
2, ∀ t, (2, 2, 2, 2, 2, 2) is the only choice of nt’s. Hence,

Fq(C3 × Dic3) ∼= F 2
q ⊕ F 5

q2 ⊕ M2(Fq)2 ⊕ M2(Fq2)2.

Theorem 3.8. Let G ∼= C2 × C3 ⋊ S3, then for a field F of characteristic p > 3,

U(Fq(C2 × C3 ⋊ S3)) ∼= C4
pk−1 ⊕ GL2(Fq)8 for q ≡ 1, 5 mod 6.

11



Annal. Math. et Inf. D. Upadhyay, H. Chandra

Proof. Let G ∼= C2 × C3 ⋊ S3 = ⟨x, y, z, w | x2, y−1x−1yx, z−1x−1zxz−1,
w−1x−1wxw−1, y2, z−1y−1zy, w−1y−1wy, z3, w−1z−1wz, w3⟩. Conjugacy classes
description of C2 × C3 ⋊ S3 are given in Table 8.

Table 8

Representative Elements in Order of
the class element

1 {1} 1
x {x, xw2, xw, xz2, xz2w2, xz2w, xz, xzw2, xzw} 2
y {y} 2
z {z, z2} 3
w {w, w2} 3
xy {xy, xyw2, xyw, xyz2, xyz2w2, xyz2w, xyz, xyzw2, xyzw} 2
yz {yz, yz2} 6
yw {yw, yw2} 6
zw {zw, z2w2} 3
yzw {yzw, yz2w2} 6
z2w {z2w, zw2} 3
yz2w {yz2w, yzw2} 6

It can be observed that the exponent of S2
3 is 6, (C2 × C3 ⋊ S3)′ = C2

3 and
(C2 × C3 ⋊ S3)/(C2 × C3 ⋊ S3)′ = C2

2 . Now, if pk ≡ 1, 5 mod 6, then T = {1, 5}
and |S(γg)| = 1 for all the representatives of the conjugacy classes of C2 × C3 ⋊S3.
Theorems 2.1 and 2.2 imply that Fq(C2 ×C3⋊S3) ∼= Fq

⊕11
t=1 Mnt

(Ft). As F (C2 ×
C3 ⋊ S3)/(C2 × C3 ⋊ S3)′ ∼= FC2

2 , and FC2
2

∼= F 4, for pk ∼= 1 mod 6 [15]. Thus,
using Theorem 2.4, we get Fq(C2 × C3 ⋊ S3) ∼= F 4

q

⊕8
t=1 Mnt

(Ft). Now, using the
dimension formula, we have 32 =

∑8
t=1 n2

t , nt ≥ 2, ∀ t, (2, 2, 2, 2, 2, 2, 2, 2) is the
only choice of nt’s. Hence,

Fq(C2 × C3 ⋊ S3) ∼= F 4
q ⊕ M2(Fq)8.
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