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Abstract. In this paper, we classify the structure of the unit group of
semisimple group algebras over groups of order 36. There are 14 noniso-
morphic groups of this order, 10 of which are nonabelian. The structures of
the unit groups of the group algebras corresponding to all abelian groups of
order 36, as well as the groups C3 x A4 and D3e, have already been studied.
This work focuses on the remaining 8 non-abelian groups of order 36, provid-
ing a detailed examination of the unit group structures of their corresponding
semisimple group algebras.
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1. Introduction

Let F'G represent the group algebra of a finite group G over the finite field F' of
order ¢ = pF. Tt is crucial to keep in mind that the collection of all invertible
elements of F'G is the unit group U(FG). Finding the structure of a unit group
of group rings has always been an interesting and difficult problem due to the
fact that group algebraic units can be applied to both cryptography and coding
theory. Additionally, units are very helpful for exploring the Lie properties of group
algebras and solving isomorphism problems. Unit groups of various group algebras
have been examined and described in the past few years [6, 7, 9-11, 13, 16, 18,
19, 21, 22]. Unit group of finite group algebras of abelian groups of order at most
16 are discussed in [17]. In [5], the unit group structure of non-abelian groups
of order 16 is discussed. The unit group structure of group algebras of groups

Submitted: December 14, 2024
Accepted: October 3, 2025
Published online: October 21, 2025


https://doi.org/10.33039/ami.2025.10.014
https://ami.uni-eszterhazy.hu
mailto:dikshaupadhyay111@gmail.com
mailto:hcmsc@mmmut.ac.in

Annal. Math. et Inf. D. Upadhyay, H. Chandra

of order 18, 20, and 24 are characterized by Sahai and Ansari [1, 14, 17]. Some
recent papers related to the characterization of groups of order 26 to 34 are listed
in [10, 16]. We have total 10 non-isomorphic non-abelian groups of order 36 namely
D367 D’ng, 032 X 04, Cg X Dng, Cg . A4, S%, 53 X 067 Cg X A4, Cg X D’ng and
Cy x C3 x S3. The structure of unit groups of group algebra of abelian groups of
order 36, U(F(C5 x Ay4)) and U(F D3g) has already been studied in [2, 20]. In this
paper, we characterize the structure of unit groups of the remaining non-abelian
groups of order 36.

2. Preliminaries

Let F be any arbitrary finite field, e represent the exponent of G, and let ¢ be
a primitive e*” root of unity. Then T be the multiplicative group consisting of
those elements t, taken modulo e, for which ¢ + ¢* defines an automorphism of
F(¢) over F,i. e, T = {t: { ~ (! is an automorphism of F(¢) over F'}. For any
p-regular element g € GG, we can denote 7, as the sum of all of its conjugates, and
the cyclotomic F-classes of 7, are denoted by S(vy) = {y4 : t € T'}.

Theorem 2.1 ([4]). The number of simple components of FG/J(FG) and the
number of cyclotomic F-classes in G is equal.

Theorem 2.2 ([4]). Let j be the number of cyclotomic F-classes in G. If K;,
1 <4 < j, are the simple components of the center of FG/J(FQ) and S;, 1 < i < j,
are the cyclotomic F-classes in G, then |S;| = [K; : F] for each i , after a suitable
ordering of the indices.

Theorem 2.3 ([8]). Let F be a finite field with prime power order q. If e is such
that ged(e,q) = 1, ¢ is the primitive et root of unity and z is the order of ¢ modulo
e, then we have T = {1,q,¢%,...,¢°"'} mod e.

Theorem 2.4 ([12]). If RG is a semisimple group algebra, then
RG = R(G/G) & A(G,G),

where G' is the commutator subgroup of G, R(G/G') is the sum of all commutative
simple components of RG, and A(G,G'") is the sum of all others.

Theorem 2.5 ([3]). If R = @{:1 My, (Fy,) is a summand of a semisimple group
ring F,G(q = p¥), then p does not divide any of the n;.

3. Main results

The unit group structure of the group algebras of all non-isomorphic non-abelian
groups of order 36 over the finite field F' of positive characteristics, p > 0, where
p1 |G, is discussed in this section.
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Theorem 3.1. Let G = Cy x Cy, then for a field F' of characteristic p > 3,
U(Fq(Cg Dol 04))

C;ﬂ_l ® GLo(F,)® forg=1,17 mod 36

o ) O ® GLa(Fy)? @ GLo(Fyp)? for ¢=29,13,5,25 mod 36
C’;k_l @® Cpar_1 ® GLy(Fy)® for g =19,35 mod 36
C2_ ® Cpar 1 © GLo(Fy)® ® GLa(Fys)*  for ¢ =11,31,23,7 mod 36.

Proof. Let G = Cy x Cy = (z,y, z,w | 2%y~ y ta~lyz, 2 o~ lzaw= 1271,
w‘lx_lwxw_l,y27z_ly_lzy,w_ly_lwy,zQw_Q,w_lz_lwz,w?’). The Conjugacy

classes description of Cg x Cy4 are given in Table 1.

Table 1

Representative Elements in Order of

the class element
1 {1} 1
x {z, 202, 2w, 22%, x2%w?, v2%w, 22W?, T2W, T2} 4
y {y} 2
z {z, 2%w} 9
w {w, w?} 3
Ty {zy, vyw?, zyw, 2y2?, vy2*w?, zy22w, y2w?, vysw, TYZ ) 4
Yz {yz,y22w} 18
yw {yw, yw?} 6
22 {22, zw} 9
yz? {y2%, yzw} 18
2w? {zw?, 22w?} 9
yzw? {yzw?, yz>w?} 18

Here, the exponent of Cy x Cy is 36, (Co xCy) = Co and (CoxCy)/(CoxCy) =
Cy4. Now we discuss the proof in the following four cases.
Case 1. If p* = 1,17 mod 36. In this case T = {1} and |S(y,)| = 1 for all g €
(CoxCy). As Fis a field of characteristic p > 3, therefore F,(CoxCy) is semisimple.
So Wedderburn decomposition is provided by Fy(Cy x Cy) = F, @;1 M, (Fy),
where F} is a finite extension of F;. Theorems 2.1 and 2.2 imply that F,;(CoxCy) =
Fy @1, My, (F;). As F(Co x Cy)/(Co x Cy) = FCy, and FCy = F*, for pF = 1
mod 4 [15]. Thus, using Theorem 2.4, we get F,(Cy x Cy) = F; @le M, (F}).
Now, by the dimension formula, we have 32 = Zle nZ,ny > 2,V t. Here (2, 2, 2,
2, 2, 2, 2, 2) is the only possibility of n;’s. So we have,

Fy(Co x Cy) = Ff @ My(Fyp)®.

Case 2. If p¥ =29,13,5,25 mod 36, then T = {1,5,25,17,13,29} and |S(v.)| =
{72772277zw2}7 |S(7yz)| = {Vyzvvyz%’}/yzwz} and |S(’79)| = {’Yg} for the remaining
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representatives of the conjugacy classes of Cy9 x Cy. Now using Theorems 2.1
and 2.2, we have F,(Co x Cy) = F, @)_, My, (F;) @;_, M, (Fis). Since F(Cy x
C4)/(Cy x Cy) = FCy and FCy = F* for p* = 1 mod 4, therefore by Theorem
2.4, we have Fy(Cy x Cy) = FA@:_| My, (Fy) @,_3 My, (Fy). This implies 32 =
Ztgzl nZ,ny > 2,V t. Now (2, 2,2, 2, 2, 2, 2, 2) is the only choice for n;’s. Thus,

Fy(Co x Cy) = Ff @ My(Fy)* @ Ma(Fys)?.

Case 3. If p*¥ = 19,35 mod 36, then T = {1,19}, T = {1,35}, |S(v.)| =
{7z, Y2y} and [S(vg4)| = {74} for the remaining representatives of the conjugacy
classes of Cy x C4. Now using Theorems 2.1 and 2.2 we have F,(Cy x Cy)
F,@®)_, My, (F;) ® M, (Fp2). Since F(Cg x Cy)/(Co x Cy) = FCy, and FC,
F% & Fy, for p* =2 —1 mod 4, using Theorem 2.4 we have, F,(Co x Cy) = qu &)
Fp @le M, (F}). Now by dimension formula, 32 = Ztg:1 n?,ng > 2,V t, which
further implies that the possible choice of ny’s is (2, 2, 2, 2, 2, 2, 2, 2). Therefore,
we have

1R

Fy(Co x Cy) 2 F? @ Fpe ® My(Fy)®.

Case 4. If p* =7,11,23,31 mod 36, then T = {1,7,13,19,25,31}, and |S(7,)| =
{%ca%cy} IS(v)l = {72722, Va2 ) |S('7y2)| = {'sza'}’yzza’yyzw?} and |S('79)| = {'Vg}
for the remaining representatives of the conjugacy classes of Cg x Cj.
Now using Theorems 2.1 and 2.2 we have F,(Cy x Cy) = F, @le M,,(F;) &
My, (Fp2) @_q My, (Fys). Since F(Co x1 Cy)/(Co x Cy)' = FCy and FCy = F2 @
Fy, for p* = —1 mod 4, using Theorem 2.4 we have, F,(Co x C;) = F?2 o
Fp @le M, (F) @fzg M, (Fy3). Now by dimension formula, 32 = n? + n2 +
3 E?:g n?,ny > 2,V t, which further implies that the possible choice of n;’s is (2,
2,2,2,2 2 2, 2). Therefore, we have

Fy(Cy x Cy) 2 F @ Fpo @ Ma(Fy)* @ Ma(Fpe)?. O

Theorem 3.2. Let G =2 C% x Cy, then for a field F of characteristic p > 3,

Cﬁk,l ® GLy(F,)? forg=1,5 mod 12

U(R(C3 e = 2
Cor 1 ®Cp2e1 @ GL4(F,)* forq=7,11 mod 12.

Proof. Let G = C2 x Cy = (z,y,z,w | 22y~ y to tyz, 27 o~ Lzaw =2

)
w e wrzw 272 Y2 2y zye T w iy T lwyw T 23, w2 twez, w?). Conjuga-
cy classes description of Cg x Cy are given in Table 2. It is clear from Table 2 that
the exponent of C3 x Cy is 12, (C% x Cy) = C2 and (C3 x Cy)/(C2 x Cy) = Cy.

We discuss the proof in two cases.

Case 1. If p* = 1,5 mod 12. In this case T = {1,5} , and |S(y,)| = 1 for all the
representatives of the conjugacy classes of (C3 x Cy). Theorems 2.1 and 2.2 imply
that F,(C3 x Cy) = F, @), My, (F;). As F(C3 x C4)/(C2 x Cy) = FCy, and
FC, = F* for p* 21 mod 4 [15]. Thus, using Theorem 2.4, we get F,(C3 x Cy) =
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Table 2

Representative Elements in Order of
the class element

1 {1} 1

T {z, 22w?, 222w, 2w, 22, v2°W?, PW?, T2W, 227} 4

y {y, yw?, yw, y22, y22w?, y22w, yz, yzw?, yzw} 2

z {z,22, 22w, z2w?} 3

w {w, 2w, w?, 22w?} 3

zy {zy, vy2?, vyz, 2yz2w?, wyzw?, zyw?, xyzw, ryw, vy22w} 4

F} @?:1 M,,, (F;). Now, by the dimension formula, we have 32 = n? +n2,ny,ny >
2,V t. Here (4, 4) is the only choice of ny,ny. Hence,

Fy(C3 % Cy) = F, @ My(F,)*. (3.1)

Case 2. If p¥ = 7,11 mod 12. Here T = {1,7} or T = {1,11}, and |S(y,)| =
{7V, Yoy} [S(74)] = 1 for all remaining representatives of the conjugacy classes of
(C3 x C4). Theorems 2.1 and 2.2 imply that F,(C3 x Cy) = F, @,_, M,,,(F}). As
F(C2 % Cy)/(C2xCy) = FCy, and FCy = F2 & F, |, for p* = —1 mod 4 [15].
Thus, using Theorem 2.4, we get F,(C3 x Cy) = F;' @le M,,(F}). Now, by the
dimension formula, we have 32 = n? + n3,n1,n9 > 2,V t. Here (4, 4) is the only
choice for ni,ny. Thus

Fy(C3 % Cy) 2 F; & Fpp ® My(F,)*. O

Theorem 3.3. Let G = C3 x Dicg, then for a field F of characteristic p > 3,

Cf,‘k_l & GLy(F,)8 forq=1,5 mod 12

U(Fq(C:), X Dng)) = ) s
Cp,_l © Cper—1 ® GLy(Fy)®  forq=7,11 mod 12.

Proof. Let G =2 C3 x Dics = (z,y, z,w | 2%y~ Ly o lyz, 2 o~ tanz™,

w_lx_lwxw_l,yQ,z_ly_lzy,w_ly_lwy,23,w_1z_1wz,w3>. The Conjugacy
classes description of C's x Dicg are given in Table 3. It is clear from Table 3 that the
exponent of Cs x Dicg is 12, (C5 X Dng,)/ = (% and (C3 x Dic3)/(Cs x Dz'03)l = Cy.

We discuss the proof in two cases.

Case 1. If p* = 1,5 mod 12. In this case T = {1,5} , and |S(y,)| = 1 for all
the representatives of the conjugacy classes of (C3 x Cy4). Theorems 2.1 and 2.2
imply that F,(Cs x Dicg) =2 F, @1, My, (F;). As F(Cs x Dics)/(Cs x Dics) =
FCy, and FC; = F* for p* = 1 mod 4 [15]. Thus, using Theorem 2.4, we
get Fy(Cs x Dicg) = Fy Eszl M, (F;). Now using dimension formula, we have
32 = Zle nZng >2,Vt,(2,2,2,2,2,2,2,2) is the only choice of n;’s. Hence

F,(C3 x Dics) = Ff & Ma(F,)%.
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Table 3

Representative Elements in Order of

the class element
1 1} 1
T {z, 202, 2w, 22%, 2%w?, v2%0, 22, v2W?, T2W} 4
y {y} 2
z {2,722} 3
w {w, w?} 3
Y {zy, zyw?, zyw, zy2?, vy22w?, vy2?w, vyz, vyzw?, vyzw} 4
yz {yz,y2*} 6
yw {yw, yw?} 6
Zw {zw, 22w?} 3
yzw {yzw, yz*w?} 6
22w {22w, zw?} 3
yz22w {yz2w, yzw?} 6

Case 2. If p* = 7,11 mod 12. Here T = {1,7} or T = {1,11} and |S(v.)| =
{V2, Yoy}, |S(74)| = 1 for all remaining representatives of the conjugacy classes of
(C3 x Dicz). Theorems 2.1 and 2.2 imply that F,(Cs x Dics) = F, @:_, M,,(F}).
As F(C5 % Dic3)/(Cs x DZ'Cg)/ ~ FCy,and FC, 2 F2 @ F, , for p* =2 —1 mod 4
[15]. Thus, using Theorem 2.4, we get Fy(Cs % Dics) = Fy @le M, (F;). Now
by dimension formula, we have 32 = Ztgzl nZng > 2Vt (2,2,2,2,2,2,2 2)is
the only choice of n;’s. Hence

Fy(C2 % Cy) 2 F2 @ Fpe @ Ma(F,)%. O
Theorem 3.4. Let G = Cs - Ay, then for a field F' of characteristic p > 3,

U(Fy(Cs - As))

Cgk—l ® GL3(F,)? forgq=1 mod 18

~ Cpk_l S>) Op2k_1 D Cp6k_1 S GLg(Fq) D GLg(qu) forq=>5,11 mod 18
Co_ ®Clu_ & GL3(Fy)° for ¢ =7,13 mod 18
Cpr_1® 0;4;2’@71 ® GL3(Fy) ® GL3(F,2) for ¢ =17 mod 18.

Proof. Let G = C3- Ay = (z,y,z,w | 23y~ L,y to"tyx, 27 Lo~ Lepw =271,

w‘lx_lwxz_l,yS,z_ly_lzy,w_ly_lwy,zz7w_lz_1wz,w2>. Conjugacy classes
description of C3 - A, are given in Table 4. Now from Table 4 the exponent of
C3-Ayis 12, (C3- Ay) = C% and (C5- Ay)/(Cs - Ay) = Coy. We discuss the proof

in four cases.
Case 1. If p* = 1 mod 18. In this case T = {1} and |S(v,)| = 1 for all the

representative of the conjugacy classes of (C5 - Ay). Theorems 2.1 and 2.2 imply
that F,(Cs- Ay) = F, @2, My, (F,). As F(C3-A)/(Cs- Ay) = FCy, and FCy
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Table 4

Representative Elements in Order of

the class element
1 {1} 1
T {z, 22, 2w, z2W} 9
Yy {y} 3
z {z,w, zw} 2
x? {22,222, 2%w, 222w} 9
zy {zy, xyz, zyw, xyzw} 9
y’ {v*} 3
yz {yz, yw,yzw} 6
2%y {22y, 2%yz, 22yw, 22yzw} 9
xy? {zy?, 2y?2, vy*w, 2y 2w} 9
Y2z {y?2, 52w, y? 2w} 6
x2y? {2292, 22y2 2, 229w, 22y 2w} 9

F9 for p* 2 1 mod 9 [15]. Thus, using Theorem 2.4, we get F,(C3 - As)
F) @le M, (F). Now by using dimension formula, we have 27 = Zf:l nZ, ny
2,V t, (3,3,3) is the only choice of n,’s. Hence

IV 1R

Fy(Cs- Ay) 2 F) ® M3(F,)°.

Case 2. If p* = 5,11 mod 18. Here T = {1,5,7,11,13,17} and |S(v.)| =

{'Va:a Va2 Yayr Va2y2s Va2y, 7wy2}7 |S(7y)| = {7y> '7y2}7 |S(7yz)| = {ryy% 72/22} and
|S(7vg)| = 1 for all the remaining representative of the conjugacy classes of (Cs- Ay).

Theorems 2.1 and 2.2 imply that F,(Cs - A4) = F, iil M,,(F). As F(Cs -
Ay)/(Cs -A4)/ >~ [Cy,and FCy 2 F O F, @ Fg , for p* =22, —4 mod 9 [15]. Thus,
using Theorem 2.4, we get Fy(Cs - A4) = F, @ F2 & Fis @le M, (F;). Now by
using the dimension formula, we have 27 = Zle nZ,ng > 2,V t,(3,3,3) is the only
choice of n;’s. Hence

Fy(C3-A)) 2 F, @ Fp ® Fyo @ M3(F,)>.

Case 3. If p* = 7,13 mod 18. Here T = {1,7,13} and |S(v,)| = Ve Yoy Y25 }
IS (Va2)| = { Va2, Y2y, Y242 } |S(79)] = 1 for all the remaining representatives of the

~

conjugacy classes of (Cs - Ay4). Theorems 2.1 and 2.2 imply that F,(Cs - Ay) =
F, @, My, (F,). As F(Cs - Ay)/(Cs - Ay) =2 FCy, and FCy = F3 ¢ F3 |
for p¥ = —2.4 mod 9 [15]. Thus, using Theorem 2.4, we get F,(Cs - Ay) =
F} e Fy @?_, M,,(F;). Now, by using the dimension formula, we have 27 =
Zle nZ,ny > 2,V t. Here (3,3,3) is the only choice of n;’s. Hence

Fy(Cs- Ay) = F) ® Fls & Ms(Fy)®.

Case 4. If p* = 17 mod 18. Here T = {1,17} and |S(74)| = {Vas Va2y2 }» [S ()| =
{'7ya7y2}a 1S (Ve2)| = {71257961;2}7 ‘S(’ny)‘ = {'Yacy»'Yr?y}a |S(7y2)| = {7y277y22}7
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|S(7v4)| = 1 for all the remaining representatives of the conjugacy classes of (C5-Ay4).
Theorems 2.1 and 2.2 imply that F,(Cs - As) = F, & M, (F}) @le M, (Fy2). As
F(Cs-Ay)/(Cs- Ay) = FCy, and FCy = F & F4, for p* = —1 mod 9 [15]. Thus,
using Theorem 2.4, we get Fy(C3 - Ag) = Fy @ Fy © My, (Fy) © My, (Fr). Now,
by using the dimension formula, we have 27 = n? + 2n2,ny,ny > 2. Now (3,3,3) is
the only choice of ni,ny. Hence

Fy(Cs - Ay) = Fy & Fjo @ M3(Fy) & Ms(Fp). O
Theorem 3.5. Let G =2 53, then for a field F of characteristic p > 3,
U(F,53) = Co_ & GLy(Fy)* © GL4y(F,) forq=1,5 mod 6.

Proof. Let G = 5% = (v,y,z,w | 22,y a7 yz, 27 Lo~ Lz, w™ e~ twzw ™1,
1, -1,,,—1 1 3 1,-1

v 27y ey 7wty T hwy, 23, w2 twz, w?). Conjugacy classes description of
S2 are given in Table 5. It is clear from Table 5 that the exponent of S? is 6,

Table 5
Representative Elements in Order of
the class element
1 {1} 1
a {z, 2w, 2w} 2
y {y,y2,y2%} 2
z {2,722} 3
w {w, w?} 3
Ty {zy, zyw?, zyw, 2y2?, vy2*w?, zy22w, TY2, TY20?, TY2W) 2
xz {2z, 2202, 220, 2%, w2202, 2220} 6
yw {yw, y2>w, yzw, yw?, yz>w?, yzw?} 6
Zw {2w, 22w, zw?, 22w?} 3

(52) = C2 and (S2)/(S2)" = C2. Now, if p* = 1,5 mod 6, then T = {1,5} and
|S(v4)| = 1 for all the representatives of the conjugacy classes of (S%). Theorems 2.1
and 2.2 imply that F,(S2) = F, @5, M,,(F,). As F(S2)/(52) =~ FCZ, and
FC? = F*, for p* 2 1 mod 6 [15]. Thus, using Theorem 2.4, we get F,(S2) =
Fq4 EB?:I M, (F}). Now, using the dimension formula, we have 32 = 25:1 nZ ng >
2,V t. We have (2, 2, 2, 2, 4) as the only choice of n;’s. Hence,

Fq(S?%)gF;@MQ(Fq)4@M4(Fq)- [

Theorem 3.6. Let G = S3 x Cg, then for a field F' of characteristic, p > 3 the
Wedderburn decomposition is given by

O;E_l ® GLy(F,)° forq=1 mod 6

U(Fq(Sg XCG)) = 1 4 ) )
Coe 1 ® Clanes ® GLo(Fy)” ® GL2(Fy2)”  for g=5 mod 6.
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Proof. Let G = S3 x Cg = (w,y,z,w | 2%,y Lo~ tyz, 2 a7z, w™ e~ twzw ™1,
y?, 27y ey, wmly T wy, 23, w2 twz, w?). The Conjugacy classes description of

S3 x Cg are given below.

Table 6
Representative Elements in Order of
the class element
1 1} 1
z {z, 2w, zw?} 2
Y {y} 2
z {z} 3
w {w, w?} 3
zy {zy, zyw, zyw?} 2
xz {22, 220, 220%} 6
yz {yz} 6
yw {yw, yw?} 6
22 {z%} 3
2w {zw, zw?} 3
Tyz {zyz, xyzw ryzw?} 6
222 {222, 222w, 222w?} 6
yz2 {y=*} 6
yzw {yzw, yzw?} 6
22w {z%w, 2%w?} 3
xyz? {ayz?, 2y22w, vyz?w?} 6
yz22w {y22w, yz>w?} 6

It is clear from Table 6 that the exponent of S5 x Cg is 6, (S3 x Cg)/ = C3 and
(S3 X CG)/(Sg X C@) = 02 X C@.

Case 1. If p" =1 mod 6, then T = {1} and |S(7y,)| = 1 for all the representatives
of the conjugacy classes of (S3). Theorems 2.1 and 2.2 imply that F,(S3) =
F, @, , My, (F;). As F(S3 x Cs)/(S3 x Cg)" =2 F(Cy x Cg), and F(Cy x Cg)
F'2 for pk = 1 mod 3 [21]. Thus, using Theorem 2.4, we get F,(S5 x Cg) =
F}? @°_, M, (F;). Now using the dimension formula, we have 24 = 30 n? n,
2, Vt (2, 2, 2, 2, 2, 2) is the only valid combination of n;’s. Thus,

1R

Y

Fq(53 X Cg) = Fqu (5] MQ(Fq)6.

Case 2. If p* = 5 mod 6, then T = {1,5}, and |S(1.)| = {32,722}, [S(72)] =

{’erf)/xz?}a |S(7yz)|:{7y277y22}7 |S(7zw)|:{’}/zw,722w}a |S(’Yryz)| = {ﬂ}/xyz’f)/xyzz}a
IS (Vyzw)| = {Vyzw, Yyz2w} and |S(v4)] = 1 for all the representatives of the con-
jugacy classes of (Sg x Cg). Theorems 2.1 and 2.2 imply that F,(S3 x Cg) =
F @t 1 nt(Ft) @t 1 nt(th) As F(Sg X 06)/(53 X 06) = F(CQ X C@), and

(C’2 x Cg) & F* @ Fy, for pk =~ 2 mod 3 [21] Thus, using Theorem 2.4, we get
Fy(Ss x Cg) 2 F} & F4 @t 1 My, (F}) @t 3 My, (F2). Now using the dimension
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formula, we have 24 = Zle n? + 22;1:3 nZ ng > 2.Vt (2,2,2,2,2,2) is the only
valid combination of n;’s. Hence

Fy(S3 x Cs) = F} @ Fi» @ My(F,)* & Ma(Fp2)*. O
Theorem 3.7. Let G = C3 x Dics, then for a field F' of characteristic p > 3,

U(Fq(03 X DZCg))

C’;E_l ® GLy(F,)° forg=1 mod 12
o) Cor 1 ® Cooi_y © GLo(Fy)® ® GLo(Fp2)?  forg=5 mod 12
CSLl & C§2k71 ® GLy(F,)° forq=7 mod 12
Co L ®Ch_ & GLy(Fy)? ® GLy(Fp2)?  for g=11 mod 12.
Proof. Let G = C3 x Dics = (x,y,z,w | 222~y to~lyz, 27 1o~ e,

w iz lwrw ™t 3, 27y ey, wy T wy, 22 w27 lwz, w3). Conjugacy  classes

description of C3 x Dics are given in Table 7. Now the exponent of C3 x Dicg

Table 7
Representative Elements in Order of
the class element
1 {1} 1
x {z, 7w, 2w?} 4
Y {y} 3
z {z} 2
w {w, w?} 3
xy {zy, vyw, zyw?} 12
xz {zz, v2w, x20?} 4
y’ {v*} 3
yz {yz} 6
yw {yw, yw?} 3
Zw {zw, zw?} 6
xy? {.’L‘yQ, xy?w, ;L‘yZ’wQ} 12
Tyz {zyz, 2yzw, vyzw?} 12
Y’z {y*2} 6
yw {v*w, y*w?} 3
yzw {yzw, yzw?} 6
Y’z {acyQZ, xy? 2w, Iyzsz} 12
y2zw {y22w, y?2w?} 6

is 12, (C5 x Dz’c;),)/ = C% and (C3 x Dic3)/(C3 x Dic?,)/ = Cy. We discuss the proof
in four cases.

Case 1. If p* = 1 mod 12. In this case T = {1} and |S(v,)| = 1 for all the
representative of the conjugacy classes of (C3 X Dics). Theorems 2.1 and 2.2 imply

10
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that F,(Cs x Dicg) = F, @, My, (F;). As F(Cs x Dic3)/(Cs x Dics) = FCha,
and FCpo & F'2, for p* =2 1 mod 12 [21]. Thus using Theorem 2.4, we get
F,(Cs x Dicg) = F,? @°_, M,,(F;). Now by using dimension formula, we have
24 = Zle nZ ng >2,Vt, (2,2, 2, 2,2, 2) is the only choice of n;’s. Hence

Fy(C3 x Dics) = F}* ® My(F,)°.

Case 2. If p* = 5 mod 12. In this case T = {1,5}, and [S(vy)| = {7V 2}

|S('V:ry)‘ = {'me77wy2}, 1S (vy2)| = {'7y27'7y2z}7 1S (Yyw)| = {7ywv’7y2w}7 ‘S(’mez)‘ =
{Vayzr Vay22 by 1S (Vyzw)| = {Vyzw, Y220} and [S(7g)| = 1 for all the representatives
of the conjugacy classes of (C5 x Dicz). Theorems 2.1 and 2.2 imply that F,(Cs x

Dicz) = F, @), My, (F) @,L My, (Fi2). As F(Csx Dics)/(Cs x Dics) =2 FCia,
and FC1p = F* @ F;Q, for p¥ = 5 mod 12 [21]. Thus, using Theorem 2.4, we
get F,(Cs x Dicz) = F} © Fy, @:_, M, (F) @;_s M,,(F). Now by using the

dimension formula, we have 24 = 23:1 n? +2 Z?::s nZng > 2,Vt (2,2,2,2,2,2)
is the only choice of n;’s. Hence

Fy(Cs x Dics) = F;} @ Fja ® My(F,)? @ My(Fp2)*.

Case 3. If p* = 7 mod 12. In this case T = {1,7}, [S(a)| = {Va,Vaz}
IS (Yay2)| = {Vay2: Yay2-}, and |S(v4)| = 1 for all the representatives of the conju-
gacy classes of (C5 x Dicg). Theorems 2.1 and 2.2 imply that F,(C5 x Dicg) =

F, @1, My, (F) @2, My, (Fz). As F(Cs x Dic3)/(C3 x Dicz) = FCjg, and
FCi2 = FC o F;’Q, for p* = 7 mod 12 [21]. Thus, using Theorem 2.4, we get

Fy(Cs x Dics) = F§ EBFqu @?:1 M,,,(F;). Now by using the dimension formula, we
have 24 = Zle nZ ng >2,Vt, (2,2, 2, 2,2, 2) is the only choice of n;’s. Hence,

Fy(C5 x Dics) = F{ & F & My(F,)°.

Case 4. If p* = 11 mod 12. In this case T = {1,11}, and |S(7.)| = {7V, Vez})

|S(7y)| = {f)/ya’)’yz}a |S(7ry)| = {Vﬂﬂya’yzgﬁz}v |S(7yz)| = {Vyzaf}/y?z}a |S(’wa)| =
{'waa'Vwa}v |S(%cy2)‘ = {%cy"’v'yzyz}v |S('7y2w)| = {'Vwav'Yy?‘zw} and |S('Yg)| =1
for all the representative of the conjugacy classes of (C3 x Dics). Theorems 2.1

and 2.2 imply that F,(Cs x Dics) = F, @)_, My, (F)) @2, My, (F2). As F(Cs x
Dics)/(C5 x Dic;;), > FCio, and FCpp & F@Fq52, for p* =2 11 mod 12 [21]. Thus,
using Theorem 2.4, we get F,(C3 x Dicz) = F,?EBFSQ @le M, (F)) @®;_, My, (Fp).
Now, by using the dimension formula, we have 24 = 32 n? 4230 n? n, >
2,Vt, (2, 2,2, 2,2, 2) is the only choice of n;’s. Hence,

Fy(Cs x Dics) = F? @ F, @ My(Fy)* @ My(Fp2)*. O
Theorem 3.8. Let G = Cy x C3 X S3, then for a field F of characteristic p > 3,

U(Fy(Cy x C3 % 83)) = Coi_y & GLy(F,)*  forq=1,5 mod 6.

11
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Proof. Let G = C’2 x C3 x S3 = (ac y, z,w | 22y e lyx, 2 e T e T
w iz lwrw ™t Y2, 2y ey, wty T wy, 23wz lwz, w3). Conjugacy  classes

description of Cy x C3 x S5 are given in Table 8.

Table 8
Representative Elements in Order of
the class element
1 {1} 1
x {z, 2w?, 2w, 222, v22w?, x2%w, 12, 2202, 220} 2
y {y} 2
z {2,722} 3
w {w, w?} 3
Ty {zy, zyw?, zyw, 2y2?, vy2*w?, zy22w, vy2, TY20?, TY2W) 2
yz {yz,y2°} 6
yw {yw, yw?} 6
Zw {zw, 22w?} 3
yzw {yzw, yz*w?} 6
22w {22w, zw?} 3
yz22w {y22w, y2w?} 6

It can be observed that the exponent of S2 is 6, (Cy x Cs x S3) = C2 and
(Cy x Cs %1 S3)/(Cy x C3 3 S3) = C3. Now, if p¥ = 1,5 mod 6, then T = {1,5}
and |S(vy4)| = 1 for all the representatives of the conjugacy Classes of Cy x C3 x Ss.
Theorems 2.1 and 2.2 imply that F,(Cy x C5x S3) = @ M, (F}). As F(Cy %
O3 % S3)/(Cy x Cy % S3) = FCZ, and FC2 = F4, for pk ~1 mod 6 [15]. Thus,
using Theorem 2.4, we get F,(Cy x C3 x S3) = F4 @t 1 M, (Fy). Now, using the
dimension formula, we have 32 = 35| n?,n; > 2,v t,(2,2,2,2,2, 2, 2, 2) is the
only choice of n;’s. Hence,

Fy(Cay x C3 % S3) = F @ M (F,)®. O
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