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Abstract. This paper investigates the use of a neural network approach for
parameter estimation in the chemostat model, relevant to applications like
wastewater treatment and bioreactor design. Accurate parameter charac-
terization serves as the foundation for understanding system dynamics and
making reliable predictions. Traditional optimization-based methods face
challenges such as noise and high-dimensional data. Neural networks offer a
promising alternative due to their ability to handle complex datasets. The
work applies a simple neural network model, demonstrating its effectiveness
for estimating chemostat parameters. While advanced techniques like neural
architecture search (NAS) are not included, the approach provides a practical
solution for parameter identification in dynamic models.
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1. Introduction

Parameter estimation plays a pivotal role in understanding and predicting the
dynamics of biological systems. Among these, the chemostat model stands out as
a foundational framework for studying the controlled growth of microorganisms,
widely applied in microbial ecology, biotechnology, and environmental sciences [11,
13]. Despite its simplicity, the chemostat model is characterized by nonlinearity
and multiple interacting parameters, thus making accurate parameter identification
a challenging task [2, 6].

In recent years, neural networks have gained significant attention as powerful
tools for solving parameter estimation problems. Unlike traditional approaches,
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which often rely on linearization or gradient-based optimization, neural networks
can capture complex nonlinear relationships in data, even in the presence of noise
or sparsity [7, 8]. This ability positions them as a robust alternative for tackling
the inherent challenges of parameter identification in systems like the chemostat
model [4, 9].

This study aims to develop a neural network-based approach for parameter esti-
mation in a simple chemostat model. By leveraging synthetic data generated from
the model, we explore the effectiveness of neural networks in recovering parameters
under various scenarios, including the presence of noise [1, 12].

The integration of machine learning, particularly neural networks, into biolog-
ical modeling has shown significant potential in related fields such as metabolic
pathway reconstruction [4], gene regulatory network inference [10], and ecosystem
modeling [9].

2. Mathematical model

The chemostat model describes the interaction between microorganisms and the
substrate in a well-mixed environment with continuous input and output. This
section introduces the mathematical formulation of the chemostat system, outlin-
ing its key variables, parameters, and governing differential equations [13]. The
focus will be on the biological significance of these components and their roles in
determining system dynamics. We also briefly review the assumptions underlying
the model, such as constant dilution rates and perfect mixing, which are critical for
its applicability. The chemostat model we consider is derived under the following
assumptions:

e The culture vessel has a constant volume, denoted by V.

o The inflow and outflow rates of the medium are equal and characterized by
a constant flow rate F.

e Microbial growth is dependent on the uptake of a single limiting nutrient,
modeled using Monod kinetics [11].
2.1. Governing equations

We consider the following variables and parameters to describe the dynamics of
the chemostat system:

o S(t): Concentration of the limiting nutrient at time ¢ (units: g/L).
o z(t): Concentration of the microorganism population at time ¢ (units: g/L).
o Sp: Concentration of the nutrient in the inflowing medium (units: g/L).

e D= g: Dilution rate, defined as the ratio of the flow rate F' to the reactor

volume V' (units: h=1).
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o m: Maximum specific growth rate of the microorganism (units: h=1).

e a: Half-saturation constant, representing the nutrient concentration at which
the growth rate is half its maximum (units: g/L).

e 7: Yield coefficient, a dimensionless parameter reflecting the conversion effi-
ciency of the nutrient into biomass.

The dynamics of the system are governed by a set of ordinary differential equations.
The evolution of the nutrient concentration S(t) is determined by nutrient inflow,
outflow, and microbial uptake, expressed as:

S'(t) = (So = S(1))D — g(S(t), (1)),

where ¢(S,z) denotes the nutrient consumption rate. Using the Monod kinetic
model, the consumption rate is given by:

mS x

Substituting ¢(S, ) into the nutrient balance equation, we obtain:

mS x
a+ S~y

S'(t) = (So — S)D —

The dynamics of the microorganism concentration x(t) are governed by microbial
growth and washout:

Combining these equations, the full system of governing equations is:

{S'u) = (S0 - 8)D - Z52,
x'(t) = (ﬂ%)x—Dw

This system captures the interaction between nutrient availability and microorgan-
ism growth in a chemostat.
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Figure 1. Schematic of the chemostat reactor.

2.2. Rescaling the system

To simplify the analysis and reduce the number of parameters, the system is nondi-
mensionalized using appropriate scalings. This process eliminates redundant units
and focuses on the essential dynamics, making the model more tractable for analysis
and parameter estimation. For simplicity, we retain the original symbols ¢, S, and
x for the rescaled time, nutrient concentration, and microorganism concentration,
respectively.

We introduce the following dimensionless variables and parameters:

T a m
S—S()S, _.XV—'}/‘SOQI'J7 t—B, A_5707 M_B

Substituting these scalings into the original equations and dividing through by
appropriate factors, the system transforms into:

{d8:1_5_m5'x

dt at+S?

dz:x mS_l’

dt a+S
with initial conditions: S(0) > 0 and z(0) > 0.

This rescaled system eliminates the dependence on Sy and D, simplifying the
equations and emphasizing the key parameters m (maximum growth rate) and a
(half-saturation constant). This version will be used for further analysis.

Remark 2.1. This process involved nondimensionalizing the equations, which
altered the numerical values and interpretation of the parameters m and a. For
consistency and ease of interpretation, we continue to refer to m as the maximal
growth rate and a as the half-saturation constant in their original biological context.
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2.3. Analysis of the rescaled system

This section reviews existing theoretical results on the stability of the chemostat
model under rescaled variables. Key equilibria and their stability properties are
discussed, along with conditions for the persistence or extinction of the microorgan-
ism population. These results serve as a foundation for understanding the behavior
of the system, guiding the parameter estimation process. The rescaled system sim-
plifies the analysis by focusing on the equilibrium behavior. We can compute the
equilibrium points for this rescaled system. At equilibrium, we have:

e S’ =0, which implies that the nutrient concentration remains constant:

e 2/ =0, which means that the microorganism population remains constant:

mS
m(a—i—S_l) =0.

From the second equation, we find two possible equilibrium points for x:

— 2z = 0 (extinction of the microorganism),

:f;, = 1, which gives S = %5 for m > 1. This is the break-even

concentration A = —%—.
m—1

Thus, the equilibrium points are:
(So,xo) = (1,0) and (S1,z1) = (1= A N).
The stability of these equilibrium points depends on the values of m and A:

o If m < 1, the microorganism population is washed out (z — 0) because the
maximum growth rate is less than the dilution rate.

e If m > 1, and A > 1, the microorganism population is washed out because
insufficient nutrient is available to sustain the growth (z — 0).

e If 0 < A < 1, the microorganism population reaches a stable equilibrium at
x =1— ), and this is the long-term stable population.

This result is intuitive: if the maximum growth rate of the microorganism is less
than the dilution rate, the microorganism population will be washed out. If the
maximum growth rate is greater than the dilution rate, and the nutrient con-
centration is sufficient, the microorganism population will stabilize at a positive
equilibrium value determined by the break-even concentration.
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3. Numerical simulation and synthetic data gener-
ation
Numerical simulations are fundamental to studying the chemostat model and gen-

erating synthetic data for machine learning-based parameter estimation. Below,
we describe the methods and processes involved.

3.1. Numerical simulation of the dynamics

To approximate the solutions of the chemostat model’s ordinary differential equa-
tions (ODEs), we employ the Euler method, a simple and efficient numerical scheme.
The discrete-time update rules are given by:

ds
Sit]=St—1+ At- —
(0= Sl 1]+ e 5,
dx
tl=alt —1 At —
ol =l — 1)+ At 5
where At is the time step, and %, % are derived from the governing equations of

the model.

Simulation steps

1. Initialization: Set initial conditions S(0) and x(0), and define model pa-
rameters m and a.

2. Tterative Computation: Apply the Euler update rules at each time step,
evaluating the rates of change and updating the state variables.

Algorithm 1 Euler method for chemostat dynamics simulation.

1: procedure EULERSIMULATE(So, Zo, a, m, n__steps, dt)

2 Initialize state vectors S,z of length n__steps

3 S[O] <—So,:r[0] “— o

4 for t =1 ton_steps —1 do

5: Compute substrate rate of change:
m-S[t—1]-z[t—1]

7 Compute microorganism rate of change:

8

9

da/dt < z[t —1] - (gg[[;jl] - 1)
: Update state variables with non-negative constraint:
10: S[t] + max(0, S[t — 1] + dt - dS/dt)
11: z[t] < max(0, z[t — 1] + dt - dz/dt)
12: end for
13: return S,z

14: end procedure
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3.2. Generating synthetic data

To emulate real-world experimental scenarios, we generate synthetic data with
added noise to simulate measurement inaccuracies. This data serves as input for
the machine learning model used for parameter estimation.

Steps for data generation

1. Simulate True Dynamics: Solve the chemostat ODEs numerically over a
defined time period to obtain Siue and Zirye.

2. Introduce Noise: Add Gaussian noise to mimic sensor inaccuracies:
Snoisy - Strue + N(07 05)7 Tnoisy = Ttrue + N(O, 0—1)7
where og and o, are noise levels representing measurement precision.

3. Downsample: Simulate discrete sampling intervals by selecting every k-th
data point, reducing temporal resolution.

Algorithm 2 Synthetic Data Generation with Controlled Noise

1: procedure GENERATESYNTHETICDATA(Sy, zo, a, m,n__steps, dt, noise__level)
2 (Strues Terue) < EULERSIMULATE(So, Zo, a, m, n__steps, dt)

3 noise__S <+ Normal(0, noise__level - |Strue| + €)

4 noise_x + Normal(0, noise_level - |Tirue| + €)

5: Snoisy < Strue + notse_S

6 Tnoisy < Ttrue + NOLSC_ T

7 return Snoisy, Tnoisys Strue, Ttrue

8: end procedure

Remark 3.1. Our results demonstrate parameter estimation performance on syn-
thetic data generated from the same model class used for estimation, representing
an idealized scenario. While this controlled approach isolates algorithmic per-
formance, real experimental systems present additional challenges: measurement
artifacts (e.g., sensor drift), ecological complexities (e.g., multiple microbial strains
[5]), and non-stationary operating conditions. The robustness and generalization
tests partially address these concerns, indicating that neural networks may offer
practical advantages in noisy environments but remain sensitive to discrepancies
between assumed and actual system dynamics.

4. Neural network for parameter estimation

In the mathematical modeling of biological systems, estimating parameters accu-
rately from available data is essential for reliable predictions. The effectiveness of
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a model depends largely on correctly identifying these parameters. While tradi-
tional optimization techniques often assume a specific functional form or exploit
convexity, such assumptions may not be valid in complex biological settings. Neu-
ral networks, with their universal approximation property, offer a flexible approach
to modeling nonlinear relationships without strict parametric assumptions. By
learning directly from data distributions, neural networks capture the underlying
system dynamics implicitly, making them especially suitable for intricate models
like the chemostat, where nonlinear interactions play a central role.

4.1. Neural network architecture

The architecture of the neural network used for parameter estimation is designed to
balance simplicity and expressiveness. A standard feedforward neural network was
employed, with input nodes corresponding to features derived from synthetic data
generated by the chemostat model. The network consists of multiple hidden layers,
each utilizing a sufficient number of neurons to capture nonlinear dependencies in
the data. Activation functions such as ReLU were chosen to introduce nonlinearity,
allowing the network to model complex interactions between parameters. The
output layer is structured to provide direct estimates of the parameters a and m,
representing the key quantities in the chemostat model.
The model is constructed using TensorFlow/Keras [3] and consists of:

o Input Layer: Takes the noisy synthetic data Syoisy and Znoisy, flattened into
a 1D array of size 2 x n, where n is the number of time steps.

o Hidden Layers: Three fully connected layers with ReLLU activation func-
tions:

— First layer: 128 neurons.
— Second layer: 64 neurons.

— Third layer: 32 neurons.

These layers capture complex nonlinear relationships between the input data
and the parameters m and a.

¢ Output Layer: Two neurons representing the predicted values of m and a.

Remark 4.1. One should note that, in this work, we employed a feedforward
neural network for parameter identification in the chemostat system, which in-
volves time-dependent data. To address this, the entire time series of substrate
and microorganism concentrations was concatenated into a single input vector.
This design allows the network to implicitly capture temporal patterns through
nonlinear transformations, despite lacking explicit temporal processing capabili-
ties. We selected this straightforward approach to enable the network to learn
complex nonlinear relationships from the data while maintaining simplicity in the
model structure.
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Figure 2. Schematic of the used neural network.

4.2. Training process

The network is trained on noisy synthetic data with the following configuration:

o Loss Function: The Mean Squared Error (MSE) is used to evaluate the
accuracy of the neural network’s parameter predictions by comparing the
true and estimated state variable dynamics.

— Strue(t) and Tiue(t): The true values of the substrate concentration
and microbial population, respectively, derived by solving the chemostat
model using the true parameter values aiue and Mypye.

— Sest (t) and et (t): The estimated values of S and x, obtained by solving
the chemostat model using the neural network’s predicted parameters
Oest ANd Mgt -

The MSE for each state variable is defined as:
XN
MSEs = = > (Strue(ti) = Sest (1)),

=1
1 N
MSEw - N ;(l‘true(ti) - xest(ti))2~

The total MSE combines the errors across both state variables:
MSE = MSEg + MSE,,,

where N is the total number of time points considered in the simulation.

This total MSE provides a quantitative measure of the discrepancy between
the true and estimated dynamics, reflecting the accuracy of the parameter
estimation.
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e Optimizer: Adam, for adaptive and efficient gradient descent.
e Data Split: Divide synthetic data into training and validation sets.

o Epochs: Train over 100 epochs using backpropagation to minimize the loss
function.

Algorithm 3 Chemostat parameter estimation.

1: procedure PARAMETERESTIMATION(So, zo, true_ a, true_m,n_steps, dt, noise_level)
2: (Snoisys Trnoisys Strue, Tirue) — GENERATESYNTHETIC-
DATA(So, o, true__a, true_m,n__steps, dt, noise_ level)

Xtrain < Concatenate(Snoisy, Tnoisy)

Ytrain < [true_a,true_m)]

model - CREATENNMODEL(input__size)

(aest; Mest) mOdel-pTEdiCt(Xtrain)

(Sest,Test) < EULERSIMULATE(Sy, Zo, Gest, Mest, N__steps, dt)

return aest, Mest
end procedure

5. Simulation results

To evaluate the performance of the neural network in estimating the parameters of
the chemostat model, two synthetic datasets were generated, each corresponding to
a distinct scenario. Both cases were constructed using the same initial conditions
and data generation process but differ in the true values of the microbial growth
rate.

5.1. Case 1: Washout Scenario

In this scenario, the system parameters are set to induce a washout condition,
where the microbial population gradually declines to zero, while the substrate
concentration stabilizes at its inflow value. The true parameter values selected
for the simulations were at;ue = 0.5 (half-saturation constant) and miyue = 1.2
(maximum growth rate).

The initial conditions were set as S(0) = 0.1 and x(0) = 0.1, reflecting low initial
concentrations of both substrate and microorganisms. The simulations spanned a
total duration of T' = 20 units, with the time domain divided into ngteps = 200
steps, resulting in a uniform time step size of At = 0.1.

To replicate the uncertainties and variability inherent in experimental data,
Gaussian noise with a standard deviation of 0.01 was added to the simulated mea-
surements. This incorporation of noise evaluates the model’s robustness and relia-
bility in predicting system behavior under realistic, noisy conditions.

Under these parameter values, the microbial growth rate is insufficient to sus-
tain the population, leading to a washout condition where the microorganism is
eradicated from the reactor over time.

10
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Chemostat Dynamics: Synthetic vs. Estimated

®  Synthetic S (Substrate)
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— Estimated S
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Concentration

Figure 3. True vs Estimated dynamics of S(¢) and x(¢) in the
washout case.

MSE Evolution During Training

Epoch

Figure 4. Convergence of Mean Squared Error (MSE) over training
epochs in the washout case.

5.2. Case 2: Coexistence Scenario

This scenario represents a more favorable condition for microbial growth, resulting
in a stable coexistence of the microbial population and the substrate. The pa-
rameter values chosen for this case were a¢ye = 0.5 (half-saturation constant) and
Mirye = 2.2 (maximum growth rate). The initial conditions for the state variables
were set as S(0) = 0.1 and z(0) = 0.1.

11
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Figure 5. True vs Estimated dynamics of S(¢) and x(¢) in the
microorganism existence case.

The simulation was performed over a total time span of 7" = 30 units, with the
time interval discretized into nsteps = 300 steps, resulting in a time step size of
At =0.1.

MSE Evolution During Training

Epoch

Figure 6. Convergence of MSE over training epochs in the mi-
croorganism existence case.

The parameter values enable the microbial population to grow and stabilize at
a positive equilibrium, resulting in coexistence between the microorganism and the
substrate.

12
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5.3. Parameter estimation results

To evaluate the performance of the neural network in estimating parameters, the
true values of @ and m were randomly generated within predefined intervals. Specif-
ically, a was sampled uniformly from the interval (0.1, 1), representing plausible
half-saturation constants, while m was sampled from the interval (0.5, 2.5), reflect-
ing realistic ranges for maximum specific growth rates in the chemostat model.

The neural network demonstrated consistent accuracy across various test cases,
with estimated values closely aligning with the true parameters. These results
validate the robustness of the neural network approach, even under conditions
of added noise and sparsity in the synthetic data.The small mean squared error
values reported indicate the network’s capacity to generalize and accurately recover
parameters across diverse scenarios. Table 1 summarizes the results, including the
Mean Squared Error (MSE) for each run.

Table 1. Summary of parameter estimation results, including
Mean Squared Error (MSE).

Set | True a | True m | Estimated a | Estimated m MSE

1 0.4371 2.4014 0.4338 2.4017 1.556 x 10°
2 0.7588 1.6973 0.7578 1.6982 2.246 x 1077
3 0.2404 0.8120 0.2407 0.8124 1.150 x 10— 11
4 0.1523 2.2324 0.1504 2.2272 2.234 x 1076
5 0.6410 1.9161 0.6376 1.9187 6.247 x 10~°
6 0.1185 2.4398 0.1203 2.4464 1.565 x 106
7 0.8492 0.9247 0.8479 0.9240 3.133 x 1012
8 0.2636 0.8668 0.2632 0.8669 3.031 x 10710
9 0.3738 1.5495 0.3745 1.5497 1.538 x 10~
10 0.4888 1.0825 0.4869 1.0807 7.052 x 10~ 11

5.4. Comparative analysis: Neural network and least squares

In this part we evaluate the performance of the neural network compared to the
least squares (LS) method for parameter estimation in the treated chemostat model
under ideal conditions. Both approaches were tested on synthetic data generated
from the true system dynamics with Gaussian noise, focusing on estimating param-
eters a and m. The LS method minimizes the sum of squared residuals between
simulated and observed trajectories using iterative optimization, while the NN
leverages direct mapping from data to parameters after training.

Results (Figure 7, Table 2) demonstrate the NN’s superior accuracy, achieving
exact matches (a = 0.4, m = 2.3) compared to LS estimates (a = 0.42, m =
2.34). The NN’s inferred trajectories align closely with ground truth, whereas LS
exhibits deviations in biomass dynamics, likely due to sensitivity to noise or local
optima. Additionally, the NN provides faster inference post-training, avoiding the
computational cost of iterative optimization.

13
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Parameter Estimation: Neural Network vs Least Squares
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Figure 7. Comparison of reconstructed trajectories using parame-
ter estimates from the Neural Network and Least Squares methods.

Table 2. True Values: a = 0.4 and m = 2.3.

Method Estimated a | Estimated m
Neural Network 0.40 2.30
Least Squares 0.42 2.34

Table 3. Comparison of parameter estimates: Neural Network vs

Least Squares method.

Set | True Params | NN Estimates LS Estimates
a m a m a m
1 0.4371 2.4014 | 0.4367 2.3980 | 0.4575 2.4554
2 0.7588 1.6973 | 0.7559 1.6955 | 0.6472 1.5900
3 0.2404 0.8120 | 0.2399 0.8119 | 0.2128 0.8184
4 10.1523 2.2324 | 0.1534 2.2343 | 0.1511 2.2256
5 0.6410 1.9161 | 0.6375 1.9174 | 0.6607 1.9420
6 0.1185 2.4398 | 0.1133 2.4349 | 0.1167 2.4207
7 10.8492 0.9247 | 0.8484 0.9215 | 0.0752 0.3958
8 0.2636 0.8668 | 0.2637 0.8671 | 0.0170  0.4909
9 0.3738 1.5495 | 0.3722 1.5487 | 0.3938 1.5756
10 | 0.4888 1.0825 | 0.4891 1.0810 | 0.1526 0.7629

A broader evaluation across ten parameter sets (Table 3) reveals the NN’s
consistency: estimates remain within 1072-10~% relative error of true values. In
contrast, LS fails in critical cases (e.g., Set 7, 8, 10), producing unrealistic estimates
(e.g., a = 0.017 vs. true 0.2636), highlighting its vulnerability to noise and param-
eter identifiability challenges. These findings underscore the NN’s robustness and

14
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reliability in idealized scenarios.

5.5. Discussing the model mismatch case

To assess the robustness of the parameter estimation technique proposed in this
work, we consider a more realistic scenario in which the data-generating process
deviates slightly from the assumed model. In particular, we introduce an inhibi-
tion term in the true biomass dynamics of the form —d§z2, where 6 = 0.02. Despite
this structural discrepancy, the NN outperforms LS in capturing trajectory trends
(Figure 8, Table 4), with smaller parameter deviations (a = 0.30, m = 1.80 vs. LS:
a = 0.32, m = 1.83). LS compensates for model inadequacy by distorting param-
eter values, whereas the NN’s flexible architecture adapts to partial mismatches,
preserving trajectory fidelity.

Parameter Estimation under Model Mismatch (Inhibition Present)

. ® NoisyS
e Noisyx
—— NNS (a=0.30, m=1.80)
—— NNx
—— 155 (a=0.32, m=1.83)
0 -— 15x

'Y s ® ° P )
0.6 T N B TE SIS L ES
. ° .
L]
®e
.
505
El
o L]
> ° °
04 e lw_—w-222 aa_2* = s
__________________________ . —
Se o 0 o o Ve,

Time
Figure 8. Reconstructed trajectories using parameter estimates

from Neural Network and Least Squares methods under model mis-
match.

Table 4. True Values: a = 0.3 and m = 1.8.

Method Estimated a | Estimated m
Neural Network 0.30 1.80
Least Squares 0.32 1.83

This resilience is critical in biological applications, where mechanistic models
often omit complex interactions (e.g., microbial inhibition, unmodeled species).
The NN’s ability to generalize across noisy, imperfectly specified systems makes it
a pragmatic alternative to LS, particularly when rapid inference or iterative opti-
mization is impractical. Further, its performance aligns with real-world demands:

15
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low MSE (107°-10712) confirms accurate dynamic reconstruction, even under per-
turbations.

However, the neural network’s performance depends on the quality and quan-
tity of the training data, which in this study consisted of synthetic data. In a future
work, we could focus on validating the approach with real experimental data, scal-
ing to higher-dimensional systems, and integrating hybrid mechanistic-machine
learning frameworks. Despite these challenges, neural network-based estimation
shows strong potential as a powerful tool for ecological modeling, enabling accu-
rate parameter identification in scenarios where traditional methods may struggle.

6. Conclusion

This study shows that neural networks can offer a practical and powerful way to
estimate key parameters in chemostat models-capturing the dynamics of microbial
systems even when the data is noisy or incomplete. Compared to traditional meth-
ods, neural networks better handle nonlinearities and unexpected outliers, opening
new doors for researchers working in complex or unpredictable environments.

While our results on synthetic data are promising, the real value of this ap-
proach will come from testing it with real microorganisms in the lab. We encour-
age the next steps to involve controlled experiments with model organisms like E.
coli, directly comparing neural networks with established estimation techniques.
Incorporating uncertainty quantification and adaptive learning will be important
for dealing with the natural variability that comes with biological systems. By
moving from computational models to hands-on experiments, we can help bridge
the gap between data science and bioprocess engineering-potentially transforming
how bioreactors are optimized, both in research and industry.

Overall, we believe this methodology provides a strong foundation for future
work in Al-driven biological modeling. There is significant potential to extend
these techniques to more complex microbial communities and to real-time indus-
trial bioprocess monitoring. Continued collaboration across computational and
experimental disciplines will be key to accelerating innovation toward more sus-
tainable bioproduction and a deeper understanding of microbial ecology.

Acknowledgements. The author is grateful to the Editor and the anonymous
referees for their valuable comments and suggestions, which have greatly improved
the quality of this paper.
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