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Abstract. Recently, Neri [6] studied the rate of convergence in the strong
law of large numbers. For the proof, Neri combined the method of [1] and
the ideas of proof mining. In this paper, we follow the method of [6] to
find the rate of convergence in the strong law of large numbers for random
variables with double indices. We show that the rate of convergence for a
certain subsequence implies the rate of convergence for the whole sequence.
Then, we apply this result to find the rate of convergence in the strong law of
large numbers for pairwise independent random variables with double indices.
Quasi uncorrelated random variables are also considered.
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1. Introduction
Let ξ1, ξ2, . . . be identically distributed random variables with finite expectation
µ = Eξi and with partial sum Sn =

∑n
i=1 ξi. One of the best-known results

in probability theory is the following Kolmogorov’s strong law of large numbers
(SLLN). If ξ1, ξ2, . . . are independent, then Sn/n → µ almost surely if n → ∞, see
[5]. Rényi in his textbook [7] presented a proof of the following Khintchine type
weak law of large numbers (WLLN): if ξ1, ξ2, . . . are pairwise independent, then
Sn/n → µ in probability if n → ∞.

Etemadi in [2] gave a joint generalization of the above Kolmogorov’s SLLN and
Khintchine’s WLLN: if ξ1, ξ2, . . . are pairwise independent, then Sn/n → µ almost
surely if n → ∞. The proof given by Etemadi is an elementary one.
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Concerning the rate of convergence in the SLLN, famous results were proved by
Hsu, Robbins, Erdős, Spitzer, Baum, and Katz. A particular case of the results is
the following theorem. Let ξ1, ξ2, . . . be independent identically distributed random
variables, Sn =

∑n
i=1 ξi, r > 1, and assume that E|ξ1|r < ∞, Eξ1 = 0. Then

∞∑
n=1

nr−2P
(

sup
k≥n

|Sk/k| > ε

)
< ∞ for all ε > 0,

see, e.g. [3].
In [6], Neri also studied the rate of convergence in the SLLN. Theorem 1.4 of

[6] is the following.

Proposition 1.1. Suppose ξ1, ξ2, . . . is a sequence of pairwise independent random
variables satisfying E(ξk) = 0, E(|ξk|) ≤ τ and Var(ξk) ≤ σ2, for all k and some
τ > 0, σ > 0. Let Sn =

∑n
i=1 ξi. There exists a universal constant κ ≤ 1536 such

that for all 0 < ε ≤ τ ,

P
(

sup
m≥n

|Sm/m| > ε

)
≤ κσ2τ

nε3 .

In the proof of the above theorem, some methods of [1] were applied.
In our paper, we shall use the ideas of [6] to obtain rate of convergence results

for the double indices version of the SLLN. It is known that for the multi-index
SLLN we need a stronger moment assumption than for the usual single index case.
By [8], Kolmogorov’s SLLN is true for independent identically distributed random
variables ξn, n ∈ Nr, if and only if E|ξn|(log+ |ξn|)r−1 < ∞. Here and in what
follows N denotes the set of positive integers.

For pairwise independent identically distributed random variables ξi,j , Etemadi
in [2] obtained the following SLLN. Let Sm,n =

∑m
i=1

∑n
j=1 ξi,j . Then condition

E|ξ1,1| log+ |ξ1,1| < ∞ implies limm→∞,n→∞ Sm,n → Eξ1,1 almost surely. The main
aim of our paper is to find the rate of convergence result in this SLLN using ideas
of [6].

In Section 2 of our paper, we give a possible description of the rate of conver-
gence in the case of two-dimensional indices. In Section 3, we show how we can
apply certain subsequences to obtain the rate of convergence in the law of large
numbers. In Section 4, we find the rate of convergence in the strong law of large
numbers for pairwise independent random variables with double indices. In Sec-
tion 5, we extend the results of the previous section to quasi uncorrelated random
variables.

2. Basic definitions
First, we give a description of the convergence rate for sequences of random vari-
ables with double indices. In our point of view, it can be defined by a parametrized
family of curves in R2

+ = [0, ∞) × [0, ∞).
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For short, we shall denote the function and its graph by the same letter. Let
a, b > 0 be fixed. Let R1

ab be the set of the graphs of all functions f1
ab with the

following properties: f1
ab : [a, ∞) → [0, b] is a non-increasing continuous function

with f1
ab(a) = b. We denote by R2

ab the set of those graphs f2
ab which are reflections

of graphs f1
ab ∈ R1

ab to the line f(x) = x, x ∈ R.
We define Rab as the set of all curves fab = f1

ab ∪ f2
ba, with f1

ab ∈ R1
ab and

f2
ba ∈ R2

ba. As the point (a, b) belongs both to f1
ab and f2

ba, so fab is a continuous
curve in R2

+. Now, let
R =

⋃
a,b>0

Rab.

We see that any f ∈ R is a continuous curve in R2
+.

Any f ∈ R divides R2
+ into two disjoint parts: Af

0 and Af
1 so that Af

0 contains
the origin 0 = (0, 0). For p ∈ R2

+, we shall write that f ≤ p, if p ∈ Af
1 . For p ∈ f ,

we shall accept that f ≤ p. If f ≤ p but p /∈ f , then we shall write that f < p.
For f , g ∈ R, we shall write that f ≤ g if f ≤ p for any point p ∈ g.
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(a) The function f1
ab.
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(b) The function f1
ba.
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(c) The function fab.
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(d) The points being greater than fab.

Figure 1. An example for fab.

To characterize the rate of convergence, we shall use the following type of
parametrized families. Let (Γ, ≤) be a (non-empty) partially ordered set. We
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assume that for any γ ∈ Γ there exists an element of R which we denote by fγ .
We assume that fγ ≤ fν if γ ≤ ν, γ, ν ∈ Γ. In the next sections, we shall see how
a parametrized family of curves {fγ : γ ∈ Γ} can be used to describe the rate of
convergence of sequences with double indices. For short, a family {fγ : γ ∈ Γ} will
be called a rate.
Example 2.1. In this example, we show how to build up a curve fab (see subfigure
(1c) of Figure 1) using f1

ab (see subfigure (1a)) and f1
ba (see subfigure (1b)). Then

we visualize the points (i, j) with (i, j) ≥ fab on subfigure (1d) of Figure 1.
In Section 3, we shall apply general rates. In Section 4 and Section 5, we shall

use symmetric rate curves.

3. General results
We consider sequences of random variables with double indices. n = (n1, n2) ∈ N2

will denote the indices. Here N denotes the set of positive integers. We will
denote by N0 the set of non-negative integers. We say that the double sequence of
random variables ηn, n ∈ N2, converges almost surely to η, if ηn1,n2(ω) −→ η(ω)
as n1, n2 −→ ∞ for ω ∈ A, P(A) = 1. We say that the double sequence of random
variables ηn, n ∈ N2, converges almost surely strongly to η, if ηn1,n2(ω) −→ η(ω)
as max{n1, n2} −→ ∞ for ω ∈ A, P(A) = 1.

Let α > 1 and let p = (p1, p2) ∈ N2
0 be fixed. Define the following set of indices

Cα,p = {n : n ∈ N2, αp1 ≤ n1 < αp1+1, αp2 ≤ n2 < αp2+1}.

These sets are (possibly empty) rectangles of integer lattice points.
Let k−(p) = min Cα,p and k+(p) = max Cα,p, if Cα,p ̸= ∅, where min and

max is defined coordinate-wise. Then k−(p) ≤ n ≤ k+(p) for any n ∈ Cα,p (≤
is defined coordinate-wise). When Cα,p = ∅, let k−(p) = k+(p) = 0 = (0, 0). We
shall use notation k±(p) if a relation is true both for k−(p) and k+(p).

Let |n| = n1 · n2 if n = (n1, n2). We shall use the notation 1 = (1, 1) ∈ N2.
Proposition 3.1. Let ξn, n ∈ N2, be non-negative random variables, and let Sn =∑

k≤n ξk, Eξn = µ for all n ∈ N2. If for each α > 1,∑
p∈N2

0,k±(p)̸=0

P
(∣∣∣∣ Sk±(p)

|k±(p)|
− µ

∣∣∣∣ > ε

)
< ∞, for all ε > 0,

then
Sn

|n|
→ µ a.s. strongly as n → ∞. (3.1)

Proof. By the Borel-Cantelli lemma, only finitely many of the events{∣∣∣ Sk±(p)
|k±(p)| − µ

∣∣∣ > ε
}

occur almost surely. So

Sk±(p)

|k±(p)|
→ µ almost surely as max{p1, p2} → ∞. (3.2)

4



Annal. Math. et Inf. Quantitative strong laws of large numbers . . .

Let m ∈ Cα,p. Then

Sm

|m|
−µ ≥

Sk−(p)

|m|
−µ ≥

Sk−(p)

α2|k−(p)|
−µ =

(
Sk−(p)

|k−(p)|
− µ

)
1

α2 +µ

(
1

α2 − 1
)

. (3.3)

Here, the first inequality follows from the fact that {Sn} is monotone (since {ξn}
is non-negative) and k−(p) ≤ m. The second inequality is due to the fact that
|m| ≤ α2|k−(p)| (since m ∈ Cα,p, so by definition m < αp+1 and k−(p) ∈ Cα,p,
so, αp ≤ k−(p) ).

Using similar arguments, we have,

Sm

|m|
− µ ≤

Sk+(p)

|m|
− µ ≤

(
Sk+(p)

|k+(p)|
− µ

)
α2 + µ(α2 − 1). (3.4)

Now, using (3.2) and taking α → 1 in inequalities (3.3)–(3.4), we obtain (3.1).

Proposition 3.2. Let ξn, n ∈ N2, be non-negative random variables, and let Sn =∑
k≤n ξk, Eξn = µ for all n. Assume that for any ε > 0 and any α > 1

∑
p≥l,k±(p)̸=0

P
(∣∣∣∣ Sk±(p)

|k±(p)|
− µ

∣∣∣∣ > ε

)
≤ λ if l ≥ Λε,α(λ), (3.5)

where {Λε,α(λ) : λ > 0} is a rate. Then

P
(

sup
m≥n

∣∣∣∣ Sm

|m|
− µ

∣∣∣∣ > ε

)
≤ λ if n ≥ Φε,Λ,α(λ),

where Φε,Λ,α(λ) = α
⌈Λ ε

2α2 ,α(λ)⌉ and α2 = ε
2µ + 1. Here ⌈x⌉ denotes the smallest

integer being not smaller than x and αΓ = (αΓ1 , αΓ2) if Γ = (Γ1, Γ2).

Proof. Let m ≥ n and assume that∣∣∣∣ Sm

|m|
− µ

∣∣∣∣ > ε. (3.6)

Then αp ≤ m < αp+1 for some p = (p1, p2) ∈ N2
0. So, by (3.3) and (3.4), either

Sk+(p)

|k+(p)|
α2 − µα2 + µ(α2 − 1) > ε

or (
Sk−(p)

|k−(p)|
− µ

)
1

α2 + µ

(
1

α2 − 1
)

< −ε.

That is either
Sk+(p)

|k+(p)|
− µ >

ε − µ(α2 − 1)
α2 (3.7)
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or
Sk−(p)

|k−(p)|
− µ < −

(
ε − µ

(
1 − 1

α2

))
α2. (3.8)

Now, let µ(α2 − 1) = ε
2 , that is α2 = ε

2µ + 1. Then (3.7) is equivalent to

Sk+(p)

|k+(p)|
− µ >

ε

2α2 .

Moreover, (3.8) implies that

Sk−(p)

|k−(p)|
− µ < −

(
ε − µ

(
1 − 1

α2

))
α2 = −εα2 + ε

2 ≤ −ε

2α2

as α > 1. So (3.6) implies that either
∣∣∣ Sk+(p)

|k+(p)| − µ
∣∣∣ > ε

2α2 or
∣∣∣ Sk−(p)

|k−(p)| − µ
∣∣∣ > ε

2α2 .
By (3.5), the total probability of these events is smaller than λ if l ≥ Λ ε

2α2 ,α(λ),

that is if n ≥ α
⌈Λ ε

2α2 ,α(λ)⌉ = Φε,Λ,α(λ).

4. Pairwise independent random variables
Lemma 4.1. Let ξk, k ∈ N2, be pairwise independent random variables with Eξk =
µ and Var ξk ≤ σ2 for all k ∈ N2, Sn =

∑
k≤n ξk. Let α > 1. Then

∑
n≥p,k±(n)̸=0

P
(∣∣∣∣ Sk±(n)

|k±(n)|
− µ

∣∣∣∣ > ε

)
≤ λ,

if p1 + p2 ≥ logα( σ2α2

ε2λ(α−1)2 ) = ρε,α(λ), that is the rate of convergence is given by
Λε,α(λ), where Λε,α(λ) is determined by the curve x + y = ρε,α(λ).

Proof. ∑
n≥p,k±(n)̸=0

P
(∣∣∣∣ Sk±(n)

|k±(n)|
− µ

∣∣∣∣ > ε

)
≤ 1

ε2

∑
n≥p,k±(n)̸=0

Var(Sk±(n))
|k±(n)|2

)

= 1
ε2

∑
n≥p,k±(n)̸=0

∑
k≤k±(n) Var(ξk)

|k±(n)|2

≤ σ2

ε2

∑
n≥p,k±(n)̸=0

|k±(n)|
|k±(n)|2

≤ σ2

ε2

∑
n≥p,k±(n)̸=0

α−n

≤ σ2

ε2

∞∑
n1=p1

α−n1

∞∑
n2=p2

α−n2

6
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= σ2

ε2 · α−p1

1 − 1
α

· α−p2

1 − 1
α

= σ2

ε2 · α−p1+1α−p2+1

(α − 1)2 ≤ λ,

if α−(p1+p2) σ2

ε2
α2

(α−1)2 ≤ λ.
Here, the first inequality follows from Chebyshev’s inequality. The second in-

equality is derived using pairwise independence and the assumption that Var ξk ≤
σ2. The third inequality is satisfied by the condition (k±(n))i ≥ αni for i = 1, 2.
The remaining steps are obtained through straightforward calculations with the
application of the formula for the sum of an infinite geometric series.

The last inequality is equivalent to

αp1+p2 ≥ σ2α2

λε2(α − 1)2

or
p1 + p2 ≥ logα

(
σ2α2

λε2(α − 1)2

)
.

Lemma 4.2. Let ξk, k ∈ N2, be pairwise independent non-negative random vari-
ables with Eξk = µ and Var ξk ≤ σ2 for all k ∈ N2. Let Sn =

∑
k≤n ξk,

α2 = ε
2µ + 1. Then for all ε > 0, λ > 0,

P
(

sup
m≥n

∣∣∣∣ Sm

|m|
− µ

∣∣∣∣ > ε

)
≤ λ, (4.1)

if n ≥ Φε,Λ(λ), where Φε,Λ(λ) = α
⌈Λ ε

2α2 ,α(λ)⌉ and Λε,α(λ) is determined by the
curve x + y = ρε,α(λ) with ρε,α(λ) = logα

(
σ2α2

λε2(α−1)2

)
. Inequality (4.1) is satisfied

if n1 · n2 ≥ 4σ2α8

λε2(α−1)2 .

Proof. By Lemma 4.1, ∑
n≥p,k±(n)̸=0

P
(∣∣∣∣ Sk±(n)

|k±(n)|
− µ

∣∣∣∣ > ε

)
≤ λ,

if p1 + p2 ≥ logα( σ2α2

ε2λ(α−1)2 ). Therefore, by Proposition 3.2,

P
(

sup
m≥n

∣∣∣∣ Sm

|m|
− µ

∣∣∣∣ > ε

)
≤ λ if n ≥ Φε,Λ,α(λ) = α

⌈Λ ε
2α2 ,α(λ)⌉

.

We see that the above inequality is satisfied if n1 · n2 ≥ α2 · σ2α2

λ( ε
2α2 )2(α−1)2 =

4σ2α8

λε2(α−1)2 .

7



Annal. Math. et Inf. I. Fazekas, N. H. Masasila

Remark 4.3. We visualize the rates in Lemma 4.1 and Lemma 4.2 using Figure 2.
On subfigure (2a), we show a rate curve in Lemma 4.1. That Λε,α(λ) curve is
determined by a part of the x axis, a part of the y axis and the section of the line
x+y = ρε,α(λ) being in the first quadrant. On subfigure (2b), we show a sequence of
rate curves in Lemma 4.2. These curves are of the shape Φε,Λ(λ) = α

⌈Λ ε
2α2 ,α(λ)⌉ .

In explicit form these curves are given by the formula x · y = 4σ2α8

λε2(α−1)2 .
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(a) A curve Λ in Lemma 4.1.
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(b) Curves in Lemma 4.2.

Figure 2. Rates for pairwise independent random variables.

Proposition 4.4. Let ξn, n ∈ N2, be pairwise independent random variables with
Eξn = 0, E|ξn| = τ > 0 and Var ξn ≤ σ2 > 0 for all n ∈ N2. Let Sn =

∑
k≤n ξk.

Then for all ε > 0, λ > 0,

P
(

sup
m≥n

|Sm|
|m|

> ε

)
≤ λ if |n| ≥ 32σ2α8

λε2(α − 1)2 and α2 = ε

2τ
+ 1.

Proof. For the positive and the negative parts, we have Var ξ+
n +Var ξ−

n ≤ E(ξ+
n )2+

E(ξ−
n )2 = Eξ2

n = Var ξn ≤ σ2, therefore Var ξ+
n ≤ σ2, Var ξ−

n ≤ σ2. Moreover,
Eξ+

n = Eξ−
n = τ

2 = µ. By Lemma 4.2,

P
(

sup
m≥n

∣∣∣∣ S±
m

|m|
− µ

∣∣∣∣ >
ε

2

)
≤ λ

2 if |n| ≥ 4σ2α8

( λ
2 )( ε

2 )2(α − 1)2 ,

where α2 = ε
2 · 1

2µ + 1 = ε
2τ + 1. Then

P
(

sup
m≥n

|Sm|
|m|

> ε

)
≤ P

(
sup

m≥n

∣∣∣∣ S+
m

|m|
− µ

∣∣∣∣ >
ε

2

)
+ P

(
sup

m≥n

∣∣∣∣ S−
m

|m|
− µ

∣∣∣∣ >
ε

2

)
≤ λ

2 + λ

2 = λ,

if |n| ≥ 32σ2α8

λε2(α−1)2 .
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Lemma 4.5. Let τ > 0 and α2 = ε
2τ + 1 be the values from Proposition 4.4. Then

for any C > 4, we have
α8

(α − 1)2 ≤ 4τ2

ε2 C (4.2)

for small enough ε > 0. More precisely, for any C > 4 there exists an a ∈ (0, 1/2)
for which

(
(1−a)4

a5

)2
= C, and with b = (1 − 2a)/a2 the inequality (4.2) is satisfied

for 0 < ε < 2τb.

Proof. Analysing the function f(x) =
√

x + 1 − 1, x ≥ 0, and the straight line ax,
where a ∈ (0, 1/2) is a parameter, we get the following.

ax ≤
√

x + 1 − 1 if 0 ≤ x ≤ b,

where b = (1 − 2a)/a2 and a is a fixed value from the interval (0, 1/2).
Now, let α2 = ε

2τ + 1 be from Proposition 4.4, and apply the above inequality
with x = ε

2τ . Then

α8

(α − 1)2 = α8(√
ε

2τ + 1 − 1
)2 ≤ α8(

a ε
2τ

)2 ≤ 4τ2α8

a2ε2 .

As now ε
2τ = x ≤ b, we have

α8

(α − 1)2 ≤ 4τ2

ε2
(b + 1)4

a2 = 4τ2

ε2

( 1−2a
a2 + 1

)4

a2 = 4τ2

ε2 C,

where C =
(

(1−a)4

a5

)2
. Now, we consider the function g(a) = (1−a)4

a5 for a ∈ (0, 1/2).
Its infimum is 2. So for any given C > 4 we can find an appropriate a so that
C =

(
(1−a)4

a5

)2
.

Theorem 4.6. Let ξn, n ∈ N2, be pairwise independent random variables with
Eξn = 0, E|ξn| = τ > 0 and Var ξn ≤ σ2 > 0 for all n ∈ N2. Let Sn =

∑
k≤n ξk.

Then
P

(
sup

m≥n

|Sm|
|m|

> ε

)
≤ Kσ2τ2

ε4|n|
if K > 512 and ε > 0 is small enough.

Proof. By Proposition 4.4, we have

P
(

sup
m≥n

|Sm|
|m|

> ε

)
≤ 32σ2α8

ε2|n|(α − 1)2 .

Applying Lemma 4.5, we obtain

P
(

sup
m≥n

|Sm|
|m|

> ε

)
≤ 32σ2

ε2|n|
4τ2

ε2 C ≤ Kσ2τ2

ε4|n|
.

9
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5. Quasi uncorrelated random variables
Definition 5.1. A sequence ξn, n ∈ N2, of random variables is said to be quasi
uncorrelated if each ξn, n ∈ N2, has finite variance and there exists a positive
constant c such that

Var(Sn) ≤ c
∑
k≤n

Var(ξk) (5.1)

for any n ∈ N2, see [4].

We can see that the results for pairwise independent random variables can
be adapted to the case of quasi uncorrelated random variables. So we present
them without proofs. Next proposition is a version of Proposition 4.4 for quasi
uncorrelated random variables.

Proposition 5.2. Let ξn, n ∈ N2, be quasi uncorrelated random variables with
Eξn = 0, E|ξn| = τ > 0 and Var ξn ≤ σ2 > 0 for all n ∈ N2. Let Sn =

∑
k≤n ξk.

Then for all ε > 0, λ > 0,

P
(

sup
m≥n

|Sm|
|m|

> ε

)
< λ if |n| ≥ c32σ2α8

λε2(α − 1)2 and α2 = ε

2τ
+ 1,

where c is from (5.1).

Now, we turn to the quasi uncorrelated version of Theorem 4.6.

Theorem 5.3. Let ξn, n ∈ N2, be quasi uncorrelated random variables with Eξn =
0, E|ξn| = τ > 0 and Var ξn ≤ σ2 > 0 for all n ∈ N2. Let Sn =

∑
k≤n ξk. Then

with c from (5.1), we have

P
(

sup
m≥n

|Sm|
|m|

> ε

)
≤ Kcσ2τ2

ε4|n|

if K > 512 and ε > 0 is small enough.

Now, we turn to negatively dependent random variables. Random variables ξ
and η are called negatively dependent (ND) if

P(ξ ≤ x, η ≤ y) ≤ P(ξ ≤ x)P(η ≤ y)

for all real numbers x and y. A set of random variables is said to be pairwise ND
if every pair of random variables in the set is ND.

Remark 5.4. For pairwise ND random variables Proposition 5.2 and Theorem 5.3
are true with c = 1. For the proof, we just remark that in a pairwise ND set, for
two different random variables ξ and η, we have Cov(ξ, η) ≤ 0, see e.g. [9]. So an
ND set of random variables is quasi uncorrelated with c = 1.
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