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Abstract. Recently, Neri [6] studied the rate of convergence in the strong
law of large numbers. For the proof, Neri combined the method of [1] and
the ideas of proof mining. In this paper, we follow the method of [6] to
find the rate of convergence in the strong law of large numbers for random
variables with double indices. We show that the rate of convergence for a
certain subsequence implies the rate of convergence for the whole sequence.
Then, we apply this result to find the rate of convergence in the strong law of
large numbers for pairwise independent random variables with double indices.
Quasi uncorrelated random variables are also considered.
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1. Introduction

Let &1,&s,... be identically distributed random variables with finite expectation
p = E¢ and with partial sum S, = Y1 &. One of the best-known results
in probability theory is the following Kolmogorov’s strong law of large numbers
(SLLN). If &3, &o, . .. are independent, then S,,/n — p almost surely if n — oo, see
[5]. Rényi in his textbook [7] presented a proof of the following Khintchine type
weak law of large numbers (WLLN): if &, &s,... are pairwise independent, then
Sp/n — p in probability if n — co.

Etemadi in [2] gave a joint generalization of the above Kolmogorov’s SLLN and
Khintchine’s WLLN: if £1, &, ... are pairwise independent, then S, /n — u almost
surely if n — co. The proof given by Etemadi is an elementary one.
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Concerning the rate of convergence in the SLLN, famous results were proved by
Hsu, Robbins, Erdds, Spitzer, Baum, and Katz. A particular case of the results is
the following theorem. Let &1, &5, ... be independent identically distributed random
variables, S, =Y | &, r > 1, and assume that E|¢;|" < oo, E§; = 0. Then

anQIF’(sup |Sk/k| > 5) < oo forall >0,
k>n

n=1

see, e.g. [3].
In [6], Neri also studied the rate of convergence in the SLLN. Theorem 1.4 of
[6] is the following.

Proposition 1.1. Suppose &1,&s, ... is a sequence of pairwise independent random
variables satisfying E(&) = 0, E(|&|) < 7 and Var(&) < o2, for all k and some
7>0,0>0. Let S, = Z?:l &;. There exists a universal constant k < 1536 such
that for all0 < e < T,

2
]P’(Sup|5m/m| > 5) <0 BT.
m>n ne

In the proof of the above theorem, some methods of [1] were applied.

In our paper, we shall use the ideas of [6] to obtain rate of convergence results
for the double indices version of the SLLN. It is known that for the multi-index
SLLN we need a stronger moment assumption than for the usual single index case.
By [8], Kolmogorov’s SLLN is true for independent identically distributed random
variables &,, n € N7, if and only if E|¢,|(log™ [€,])""! < oo. Here and in what
follows N denotes the set of positive integers.

For pairwise independent identically distributed random variables &; ;, Etemadi
in [2] obtained the following SLLN. Let Sy, = >2;"; >°7_; & ;. Then condition
E|&;1 4] log™ |£1,1] < oo implies limyy, 00, n—s00 Sm,n — E&1,1 almost surely. The main
aim of our paper is to find the rate of convergence result in this SLLN using ideas
of [6].

In Section 2 of our paper, we give a possible description of the rate of conver-
gence in the case of two-dimensional indices. In Section 3, we show how we can
apply certain subsequences to obtain the rate of convergence in the law of large
numbers. In Section 4, we find the rate of convergence in the strong law of large
numbers for pairwise independent random variables with double indices. In Sec-
tion 5, we extend the results of the previous section to quasi uncorrelated random
variables.

2. Basic definitions

First, we give a description of the convergence rate for sequences of random vari-
ables with double indices. In our point of view, it can be defined by a parametrized
family of curves in R2 = [0, 00) x [0, 00).
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For short, we shall denote the function and its graph by the same letter. Let
a,b > 0 be fixed. Let R}, be the set of the graphs of all functions f}, with the
following properties: f1 : [a,00) — [0,b] is a non-increasing continuous function
with f1,(a) = b. We denote by R2, the set of those graphs f2, which are reflections
of graphs fl, € R}, to the line f(z) =z, z € R.

We define Ry, as the set of all curves f,, = f1, U f2, with fl, € Rl, and
f2, € RZ,. As the point (a,b) belongs both to fl, and fZ,, so f,, is a continuous
curve in Ri. Now, let

We see that any f € R is a continuous curve in Ri.

Any f € R divides R% into two disjoint parts: AJ and Af so that AJ contains
the origin 0 = (0,0). For p € R2, we shall write that f < p, if p € A{. Forpe f,
we shall accept that f < p. If f < p but p ¢ f, then we shall write that f < p.
For f,g € R, we shall write that f < g if f < p for any point p € g.

12 12
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4 4 ~
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0 0
0 2 4 6 8 10 12 0 2 4 6 8 00 12
. 1 i 1
(a) The function f_,. (b) The function f, .
12 12 \
\ \
‘u i,5) = £,
10 10 \ (i,) = fa
\
8 \ 8 \

(c) The function f . (d) The points being greater than f ;.

Figure 1. An example for f,,.

To characterize the rate of convergence, we shall use the following type of
parametrized families. Let (T', <) be a (non-empty) partially ordered set. We
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assume that for any v € I' there exists an element of R which we denote by f..
We assume that f, < f, if y <v, 7,v € I'. In the next sections, we shall see how
a parametrized family of curves { fy 7€ I'} can be used to describe the rate of
convergence of sequences with double indices. For short, a family { fyive€ '} will
be called a rate.

Example 2.1. In this example, we show how to build up a curve f, (see subfigure
(1c) of Figure 1) using f}, (see subfigure (1a)) and f, (see subfigure (1b)). Then
we visualize the points (4, ) with (¢,5) > f,, on subfigure (1d) of Figure 1.

In Section 3, we shall apply general rates. In Section 4 and Section 5, we shall
use symmetric rate curves.

3. General results

We consider sequences of random variables with double indices. n = (ny,n2) € N?
will denote the indices. Here N denotes the set of positive integers. We will
denote by Ny the set of non-negative integers. We say that the double sequence of
random variables 7, € N2, converges almost surely to 7, if 1, n, (w) — n(w)
as ni,ng — oo for w € A, P(A) = 1. We say that the double sequence of random
variables 1, n € N2, converges almost surely strongly to 7, if 7, n, (W) — n(w)
as max{ni,na} — oo forw € A, P(4) = 1.

Let a > 1 and let p = (p1, p2) € N3 be fixed. Define the following set of indices

Cop={n:ne N2 aPt < nqy < aPtl aP? <ny < a”ﬁl}.

These sets are (possibly empty) rectangles of integer lattice points.

Let k= (p) = minC, , and k™ (p) = maxC, p, if Cop # 0, where min and
max is defined coordinate-wise. Then k™ (p) < n < k™ (p) for any n € C,, (<
is defined coordinate-wise). When C,, , = 0, let k™ (p) = k™ (p) = 0 = (0,0). We
shall use notation k¥ (p) if a relation is true both for k™ (p) and k™ (p).

Let |n| = ny - ng if n = (n1,n2). We shall use the notation 1 = (1,1) € N2.

Proposition 3.1. Let &,,n € N2, be non-negative random variables, and let S,, =
Zkgn &, By = p for all m € N2, If for each o > 1,

S
Z IP( k’f(p) —u‘>€)<oo7 forall >0,
pGNg,ki(p)7$0 | (p)l

then

Sn
] — @ a.s. strongly as m — oo. (3.1)
n

Proof. By the Borel-Cantelli lemma, only finitely many of the events

{ Sk (p)

&E®) H‘ > 6} occur almost surely. So

Sk (p)
k= (p)|

— 1 almost surely as  max{p1,p2} — 0. (3.2)
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Let m € Cy p. Then

Sm Sk~ (p) Sk~ (p) <5k—(p> ) 1 <1 )
om > cps (e ) (1), (33
il 42 Tm] P @k @) M ke Mt e ) B9

Here, the first inequality follows from the fact that {S,} is monotone (since {{,}
is non-negative) and k~ (p) < m. The second inequality is due to the fact that
|m| < o?|k™ (p)| (since m € Cy p, so by definition m < aP* and k™ (p) € C, p,
so, a? <k”(p) ).

Using similar arguments, we have,

Smo_Skw) (ST@)
|m| im| k™ (p)l

Now, using (3.2) and taking o — 1 in inequalities (3.3)—(3.4), we obtain (3.1). O

- ,u> o + pu(a? —1). (3.4)

Proposition 3.2. Let &,,n € N2, be non-negative random variables, and let S,, =
Zkgn ¢k, E&n = p for all m. Assume that for any e > 0 and any o > 1

Sk (p) .
> (| ) <A 1z A, (3.5)
p>Lk*(p)#£0

where {A; o(X) : A > 0} is a rate. Then

S
P(sup L u’ > 8) <A if n>®. a0V,
m>n |m|
T e )] 2 _ =
where P p 0(X) = 27 and o = = + 1. Here [z] denotes the smallest

2n
integer being not smaller than x and of = (ar*,a!?) if T = (I'y, ).

Proof. Let m > n and assume that
S ‘
— — | >e. (3.6)
‘ [m|

Then o < m < oP*1 for some p = (p1,p2) € NZ. So, by (3.3) and (3.4), either

Skt(p) o 2 2
o —pot 4 pla® —1) > ¢
k" (p)|
or 5
k() 1 1 )
—p)—tul—-1)<-=
<|k—<p>| “) o “<a2
That is either s ( ) )
k:"'(p) g — pula™ — 1
—u> — " (3.7)
k" (p)| a?
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ey o

£, that is o? = 3; + 1. Then (3.7) is equivalent to

or

Now, let p(a? —1) =

Moreover, (3.8) implies that

Sk~ (p) 1 e _ —¢

—p<—|e—p(l-—=)]a?=-ea?+ - < —
ol " (=e(-32)) 27 202
S—

as a > 1. So (3.6) implies that either ‘i’f(;’))l - u’ > 555 or Ikk‘((;))\ - ,u‘ > 555,
By (3.5), the total probability of these events is smaller than A if I > Aﬁ,a()\),
A_e_ (A
A —es e _ B. 7 0(\). 0

that isif n > «

4. Pairwise independent random variables

Lemma 4.1. Let &, k € N2, be pairwise independent random variables with E&, =
1 and Var &, < o2 for all k € N2, S, = Zkgn €k. Let ao> 1. Then

Ski(n)
2 P( = (n)) _“’ >5> <A

n>pk* (n)#0

if p1 +po > loga(%) = pe.a(A), that is the rate of convergence is given by
Ac o (X), where Ag () is determined by the curve T +y = pe o(A).

Proof.

VaI‘(Ski (n))
k™ (n)[2

= ¢0P< AR EERPY :

n>p,k*(n) n>p,k*(n)#0

_ 1 Z > k<k® (n) Vor(ée)

+
e L Ol

o Z k= (n))|
e? T k™ (n)|2
n>p,k*(n)#0

=D RN
3

n>p,k*(n)#£0

oo 0
Z ey
3

ni=pi n2=p2

A
|

A
|

A
|
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2 P a P2
g2 qPitlg—p2tl
AR

if a*(pﬁpz)gjaiz <\
< (a_1)2 =

Here, the first inequality follows from Chebyshev’s inequality. The second in-
equality is derived using pairwise independence and the assumption that Var &, <
02, The third inequality is satisfied by the condition (k*(n)); > a™ for i = 1,2.
The remaining steps are obtained through straightforward calculations with the
application of the formula for the sum of an infinite geometric series.

The last inequality is equivalent to

2.2
aPrtpPz > oo

= Ne2(a—1)2
or

e > og, (2 0
P1 p2 = log,, Asz(a-—»l)Q .

Lemma 4.2. Let &,k € N2, be pairwise independent non-negative random vari-
ables with E&, = p and Varé, < o2 for all k € N2, Let S, = Zkgn&g,
a2:i+1. Then for alle >0, A >0,

S.
IP( sup |[—— — u' > 6) <A, (4.1)
m>n| M|
A ()]

if n > ®. A(N\), where . aA(N) =a 2a and Ago(X) is determined by the
curve & +y = pe (X)) with pe o(N) = loga(%) Inequality (4.1) is satisfied

. 10208
if na-ne 2 sty

Proof. By Lemma 4.1,

Sk (n
Z IE”( If()—u’>£><)\7
nepitmyzo N F (7))

o‘2

if py +po > 1oga(€2)i’(1771)2). Therefore, by Proposition 3.2,

A_e A
get _”‘ D EE IR SO
m>n||m|
We see that the above inequality is satisfied if n1 - no > a? - % _
2
4, 2 8
X2 (a1 -
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Remark 4.3. We visualize the rates in Lemma 4.1 and Lemma 4.2 using Figure 2.
On subfigure (2a), we show a rate curve in Lemma 4.1. That A, ,()\) curve is
determined by a part of the x axis, a part of the y axis and the section of the line
T+Y = pe,o(A) being in the first quadrant. On subfigure (2b), we show a sequence of

. A_e_ (A

rate curves in Lemma 4.2. These curves are of the shape ®.4(\) = 04( 7oz o W] .

P . 2 8
In explicit form these curves are given by the formula x -y = %.

S 2 x

s,

R G () =7 AN "

o ONGHHEREND

N ‘SRR SRR RS ,

0 5 10 15 20 0 5 10 15 20

(a) A curve A in Lemma 4.1. (b) Curves in Lemma 4.2.

Figure 2. Rates for pairwise independent random variables.

Proposition 4.4. Let &,,n € N2, be pairwise independent random variables with
Eén =0, E|én| =7 > 0 and Varé, < 0% >0 for alln € N?. Let Sp, = >, ., k-
Then for alle >0, A > 0, B

|Sm| . 3202048 2 e
P( sup —= <\ if > —— d =—+1.
<bu>p ‘ > e ) \n| )\62( 1)2 an (% B)

Proof. For the positive and the negative parts, we have Var & +Var &, < E(&F)2+
E(&,)? = EE2 = Varé, < o2, therefore Varé! < o2, Varg, < o%. Moreover,
K&, = EE, = 5 = pu. By Lemma 4.2,

S* € A 40208
P Supm—u‘> )g if |n|>————
(s ol >3) <3 31y
wherea2:%~ﬁ+1:%+1. Then
| S| ) < St ‘ 5) ( S €
Pl sup —— >¢ ) <P| sup|—= —pu|>= ) +P( sup [ —u| > =
(m>n |m| m>n m| K 2 m>n |m\ ’ 2
AA
<2422
- 2 + 2 ’
i fn] > x22er -
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Lemma 4.5. Let 7 > 0 and o = 5= + 1 be the values from Proposition 4.4. Then
for any C > 4, we have

ad 472
— < —C
(a—1)2 = &2
for small enough e > 0. More precisely, for any C > 4 there exists an a € (0,1/2)
for which ((1 o)’ ) = C, and with b= (1 —2a)/a® the inequality (4.2) is satisfied
for 0 < e < 27h.

(4.2)

Proof. Analysing the function f(z) = vz +1—1, z > 0, and the straight line az,
where a € (0,1/2) is a parameter, we get the followmg.

ar <vrx+1—-1 if 0<xz<h,

where b = (1 — 2a)/a® and a is a fixed value from the interval (0,1/2).
Now, let o? = 5- + 1 be from Proposition 4.4, and apply the above inequality
with z = 5. Then

a8 _ ab < a8 4728
N T
As now % =1x < b, we have
8 1-2q 9
4&7< o+t 4t (0 +U_ﬂ@
(a—1)2~ 2 a2 g2 a? e?

2
where C' = ((1;73)4) . Now, we consider the function g(a) = (1 a) “fora e (0,1/2).
Its infimum is 2. So for any given C' > 4 we can find an approprlate a so that

C:Giﬁf. D

a

Theorem 4.6. Let &,,n € N2, be pairwise independent random variables with
E, =0, Eléy| =7 > 0 and Varé, < o? >0 for alln € N2, Let S,, = Zkgn k.

Then
( | Sl ) Ko?r2
P{ sup —— > <

m>n |m| et|n|

if K > 512 and € > 0 is small enough.

Proof. By Proposition 4.4, we have

[Siml 320208
P —_— < - —.
( P m e = e2|ln|(a—1)2

| Sl . 3202 ﬁC’ < KO’QTQ.
e2|n| &2 et|n|
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5. Quasi uncorrelated random variables

Definition 5.1. A sequence &,,n € N2, of random variables is said to be quasi
uncorrelated if each &,,n € N2, has finite variance and there exists a positive
constant ¢ such that

Var(Sp) <c¢ Z Var (&) (5.1)

k<n
for any n € N2, see [4].

We can see that the results for pairwise independent random variables can
be adapted to the case of quasi uncorrelated random variables. So we present
them without proofs. Next proposition is a version of Proposition 4.4 for quasi
uncorrelated random variables.

Proposition 5.2. Let &,,n € N?, be quasi uncorrelated random variables with
E&, =0, E|én]| =7 > 0 and Varé, < o? >0 for alln € N2, Let Sp, = > o, k-
Then for alle >0, A > 0, B

| Sl ) 32020 5y €
P — > <A > — d =—+1,
(iuz% m| = ° e

where ¢ is from (5.1).
Now, we turn to the quasi uncorrelated version of Theorem 4.6.

Theorem 5.3. Let &,,n € N2, be quasi uncorrelated random variables with EE,, =
0, E[¢n] =7 > 0 and Var&, < 0% >0 for allm € N?. Let Sy, = > o, &k Then
with ¢ from (5.1), we have B

S K 2.2
P<Sup [Sml E) < Ko
b =i[n]

if K > 512 and € > 0 is small enough.

Now, we turn to negatively dependent random variables. Random variables &
and 7 are called negatively dependent (ND) if

P& <z,n<y) <PE<2)P(n<y)

for all real numbers « and y. A set of random variables is said to be pairwise ND
if every pair of random variables in the set is ND.

Remark 5.4. For pairwise ND random variables Proposition 5.2 and Theorem 5.3
are true with ¢ = 1. For the proof, we just remark that in a pairwise ND set, for
two different random variables £ and 7, we have Cov({,n) < 0, see e.g. [9]. So an
ND set of random variables is quasi uncorrelated with ¢ = 1.

10
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