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Abstract. This thesis presents a detailed comparative analysis of several
prominent homomorphic encryption (HE) schemes-BGV, CKKS, and TFHE-
for secure encrypted image processing within an OpenStack cloud environ-
ment utilizing the TenSEAL library. With cloud computing becoming in-
creasingly prevalent, ensuring data privacy during remote data processing
has emerged as a critical challenge. Image processing, particularly bright-
ness adjustment, is chosen as a representative task to explore the practicality
and computational efficiency of HE schemes. Experiments conducted on a
simulated cloud setup revealed significant differences in computational perfor-
mance, memory utilization, and practical feasibility. Specifically, the CKKS
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scheme exhibited superior efficiency for approximate arithmetic operations,
making it particularly well-suited for real-number computations in image pro-
cessing. These findings highlight the strengths and limitations of current HE
schemes, providing valuable insights into their practical deployment in cloud
environments, with implications for improved data security and privacy.
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BGV, TFHE, TenSEAL, cloud computing, OpenStack, privacy-preserving
computation, secure data processing

AMS Subject Classification: 68P25, 68M14, 68U10, 94A60, 68W10, 68N19

1. Introduction

1.1. Background and context
The rapid adoption of cloud computing across healthcare, government, and en-
terprise sectors has introduced serious concerns around data confidentiality and
privacy. Organizations increasingly outsource computation to cloud providers, but
in doing so, risk exposing sensitive data to third-party infrastructures. Traditional
encryption methods require decryption prior to processing, which leaves data vul-
nerable during computation.

Homomorphic Encryption (HE) offers a powerful alternative – it allows direct
computation on encrypted data without ever decrypting it. This capability en-
ables privacy-preserving computation in untrusted environments and has gained
traction in domains such as secure machine learning, financial analytics, and en-
crypted database queries [3, 19]. Several HE schemes have emerged over the past
decade, including BGV [3], CKKS [3], and TFHE [4], each optimized for different
computational properties.

In image processing, the stakes are particularly high. Medical images (e.g.,
MRIs), surveillance camera footage, and biometric photos contain highly sensitive
information that, if leaked, can lead to serious privacy violations. Securely pro-
cessing such images in the cloud – without ever exposing them in plaintext – is a
pressing and unsolved challenge. Yet practical deployment of HE remains limited
due to its complexity, performance cost, and tuning sensitivity [6].

1.2. Problem statement
Although several HE schemes have been proposed, few studies offer a rigorous,
side-by-side comparison of their performance in realistic cloud-based image pro-
cessing scenarios. The complexity of HE schemes – such as BGV, CKKS, and
TFHE – makes it unclear which is best suited for practical encrypted image en-
hancement tasks. Moreover, real cloud deployments introduce constraints such as
memory limits, network overhead, and processing latency that are often overlooked
in theoretical work [8].
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1.3. Research objectives and questions
This thesis aims to evaluate the performance, feasibility, and trade-offs of three ma-
jor HE schemes – BGV, CKKS, and TFHE – for privacy-preserving image bright-
ness adjustment in a cloud environment. Specifically, we address the following
research questions:

• RQ1: Which HE scheme is most computationally efficient for encrypted
image brightness adjustment?

• RQ2: How do the schemes compare in terms of memory usage and scalabil-
ity?

• RQ3: Does the homomorphic processing pipeline preserve image fidelity
when compared to plaintext adjustment?

1.4. Justification and use case framing
The task of brightness adjustment is selected as a representative and foundational
image processing operation. It is widely used in pre-processing pipelines for en-
hancement, object detection, and medical diagnosis. While simple, it provides a
controlled basis for evaluating arithmetic performance under encryption.

The OpenStack cloud platform is used to simulate a realistic cloud comput-
ing environment. OpenStack is a widely adopted open-source infrastructure-as-a-
service (IaaS) framework, used in both academic and industry settings [11, 15].
By deploying HE operations within OpenStack, this study emulates the conditions
under which real-world privacy-preserving computation would be carried out.

1.5. Scope and structure of the thesis
This work focuses on applying HE schemes to RGB images of resolution 512 × 512,
using the TenSEAL Python library [14] for encryption and processing. The schemes
are benchmarked on encryption/decryption time, processing time for brightness
adjustment, memory consumption, and image output quality.

Section 2 details the system model and requirements, outlining the components
of the cloud-based architecture, the image brightness enhancement task, and the
parameterized homomorphic encryption schemes under consideration. Section 3
describes the proposed methodology, including the adaptation of the image pro-
cessing algorithm for homomorphic computation, the use of the TenSEAL library,
and the deployment in an OpenStack environment. Section 5 presents the ex-
perimental setup, specifying the hardware configuration, datasets, and evaluation
metrics. Section 6 reports the experimental results, comparing performance, mem-
ory usage, and image quality across encryption schemes. Section 7 explores broader
cryptographic and computational implications of the findings. Finally, Section 6
concludes the article and suggests directions for future research.
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1.6. Contribution
This thesis bridges the gap between theoretical homomorphic encryption schemes
and their practical application in cloud-based image processing. It provides one
of the first comparative evaluations of BGV, CKKS, and TFHE under a unified
implementation using TenSEAL within a cloud infrastructure. The findings offer
concrete guidance for practitioners and researchers seeking to deploy secure image
processing pipelines in untrusted environments.

2. Homomorphic encryption schemes overview
Several homomorphic encryption schemes have been developed over the past decade,
each with strengths and weaknesses depending on the use case and computational
requirements [6]. Some of the prominent schemes include:

CKKS scheme CKKS is a public key encryption scheme in which a secret key
and a public key are generated. The public key is used for encryption and
can be shared, while the secret key is used for decryption and must be kept
confidential [3, 22].
The foundation of CKKS, like many other homomorphic encryption schemes,
is the Learning With Errors (LWE) problem, initially introduced by Regev [16]
in the paper “On lattices, learning with errors, random linear codes, and
cryptography.” The LWE problem involves distinguishing noisy pairs of the
form (ai, bi) = (ai, ⟨ai, s⟩ + ei) from truly random ones in Zn

q × Zq. Here,
ai, s ∈ Zn

q , where ai is uniformly sampled, s is a secret, and the ei ∈ Zq are
small noise values, typically Gaussian, that make the problem computation-
ally hard. Without the noise terms ei, the problem could be solved using
Gaussian elimination to find the secret s.
The LWE problem is known to be as hard as worst-case lattice problems,
which are resistant to quantum computer attacks. This computational hard-
ness allows us to build a secure cryptosystem by making it difficult to extract
the secret s from pairs of (ai, ⟨ai, s⟩ + ei) [8].
Suppose we generate a secret key s ∈ Zn

q that is kept private, and publish
n pairs of the type (ai, ⟨ai, s⟩ + ei), which can be written in matrix form as
(A, A · s + e) where A ∈ Zn×n

q and e ∈ Zn
q . The LWE problem states that

it is computationally hard to recover the secret key from this pair, making it
suitable for creating a public key.
The public key is constructed as p = (−A · s + e, A), making it difficult to
extract the secret key from p. During encryption and decryption of a message
µ ∈ Zn

q , the scheme operates as follows:

Encryption of µ using p Compute c = (µ, 0) + p = (µ − A · s + e, A) =
(c0, c1).
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Decryption of c using s Compute µ̃ = c0 + c1 · s = µ − A · s + e + A · s =
µ + e ≈ µ.

In the encryption phase, the public key is used to mask the message µ, which
is hidden in the first coordinate of the ciphertext with a mask −A · s. Since
A is uniformly sampled, it effectively masks µ. During decryption, we re-
move this mask by combining the second coordinate of c (which contains
A) with the secret key s to reveal µ + e. Due to the presence of noise e,
the decrypted message is an approximation of µ, leading to CKKS being an
approximate arithmetic scheme [8]. When e is small, the decryption output
closely approximates the original message µ.
This LWE-based approach provides a secure public-key cryptosystem resis-
tant to quantum attacks [2]. However, the implementation introduces inef-
ficiencies: while the secret key size is O(n), the public key grows to O(n2)
because of the matrix A, and computations also require O(n2) operations.
Since n determines the security level, using LWE directly would be ineffi-
cient in practice, as the large key sizes and computational complexity make
it impractical for many applications.

BGV scheme Named after Brakerski, Gentry, and Vaikuntanathan, the BGV
scheme is a leveled homomorphic encryption scheme that supports both ad-
dition and multiplication operations [3]. It is efficient for certain applications
but accumulates noise quickly, requiring bootstrapping or parameter adjust-
ments for more complex computations [7].

TFHE scheme TFHE is a fast FHE scheme designed to operate on Boolean cir-
cuits with low computational overhead [4]. It is based on the Torus approach
and uses gate bootstrapping, significantly reducing processing time. TFHE
is particularly advantageous in cloud computing for secure computations due
to its optimized memory usage and processing efficiency [20, 23].

In this study, the BGV, CKKS, and TFHE schemes are evaluated for their
effectiveness and efficiency in encrypted image processing within a simulated cloud
environment.

3. Homomorphic encryption using TenSEAL

The TenSEAL library [14], based on Microsoft SEAL, is a high-level Python wrap-
per designed to facilitate homomorphic encryption (HE) for data science, machine
learning, and secure inference applications. Built by Zama, TenSEAL provides
a simplified interface over complex HE primitives, allowing encrypted computa-
tions to be performed directly on numerical data in memory, without requiring
decryption at any stage. This enables privacy-preserving workflows in untrusted
environments such as public cloud platforms.
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TenSEAL is particularly well-suited to Python-based workflows, offering com-
patibility with popular numerical libraries like NumPy and support for batching
and vectorized encrypted operations. It supports several widely used HE schemes, in-
cluding Brakerski-Gentry-Vaikuntanathan (BGV), Cheon-Kim-Kim-Song (CKKS),
and Torus Fully Homomorphic Encryption (TFHE), each optimized for different
computation types.

In this study, TenSEAL was selected for its ease of integration, active support,
and robust backend built on Microsoft SEAL. It allows practical experimentation
with multiple HE schemes under a unified interface, enabling comparative evalu-
ation across real-world encrypted workloads. This makes it an ideal platform for
testing privacy-preserving image processing tasks such as brightness adjustment in
cloud environments.

All experiments were conducted using TenSEAL v0.1.0a0 and Python 3.10.4.
Encryption parameters were manually configured to ensure consistent security lev-
els and noise budgets across all schemes.

3.1. Application of TenSEAL in encrypted image processing
In our initial setup, we tested the encryption and brightness adjustment pipeline
on a single 512 × 512 RGB image. For benchmarking and performance evalua-
tion (Section 6), we scaled this pipeline to process a dataset of 1000 images using
automation scripts and batch execution, keeping encryption parameters constant
across all trials.

TenSEAL was used to encrypt each color channel (R, G, B) of the images
independently. The encryption process involved flattening each channel into a
one-dimensional array and applying homomorphic encryption using the TenSEAL
interface. The encrypted images were then transferred to an Ubuntu instance
running in an OpenStack cloud environment.

On the cloud instance, brightness adjustment was applied by adding a constant
value homomorphically to each encrypted pixel in the color channels, without re-
quiring decryption. This approach preserved end-to-end data privacy throughout
the computation.

3.2. Comparative performance evaluation
Using TenSEAL provided a consistent platform for testing and comparing the BGV,
CKKS, and TFHE schemes under the same experimental conditions. The compar-
ative analysis involved measuring the following metrics:

Encryption and decryption time Time required to encrypt the image data and
decrypt the processed output after brightness adjustment.

Computation time for brightness adjustment Time taken to perform homo-
morphic addition on each encrypted pixel.
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Resource utilization Memory and CPU usage during the encryption, processing,
and decryption stages.

This evaluation enabled an analysis of trade-offs between security, computa-
tional time, memory efficiency, and output fidelity in the context of cloud-based
encrypted image processing.

4. OpenStack cloud computing environment

OpenStack is an open-source platform that enables cloud computing and infrastruc-
ture management. It provides various services such as Nova for compute, Neutron
for networking, and Swift for object storage, making it a popular choice for private
and hybrid clouds [11, 15]. OpenStack’s modular architecture supports scalability,
allowing users to add and manage resources as needed.

In this study, OpenStack was deployed on a laptop using Kolla-Ansible [11]
(version 2023.1), with core services running on Ubuntu 20.04. An Ubuntu instance
was launched in OpenStack to host the homomorphic encryption pipeline. This
configuration provided a simulated but realistic cloud environment to measure HE
scheme performance in a resource-constrained setting. Using OpenStack on a lo-
cal machine offers unique challenges, particularly in terms of CPU and memory
limitations. However, it provides a controlled and reproducible environment to
assess the computational demands and scalability of HE implementations in cloud
infrastructures.

Figure 1. High-level architecture of the OpenStack-based image
processing workflow.
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Figure 1 illustrates the high-level architecture of the OpenStack deployment,
showing the flow of encrypted image data between the client machine and the
Ubuntu instance in the cloud.

5. Implementation and experimentation on Open-
Stack

The OpenStack environment for this experiment was deployed using Kolla-Ansible
on an Ubuntu 20.04 server edition [11]. Table 1 summarizes the core components
and their versions in the deployed setup.

Table 1. OpenStack environment configuration deployed with
Kolla-Ansible.

Component Service name Version
Compute Nova 18.3.0

Networking Neutron 2.0
Block Storage Cinder 9.3.0
Image Service Glance 2.15

Identity Service Keystone 3.14

The hardware resources for the OpenStack deployment consist of a 4-core CPU,
16 GB of RAM, and a 256 GB SSD. Networking is configured with a provider net-
work setup, allowing instances to access external networks. The OpenStack envi-
ronment is hosted on a single physical machine, simulating a private cloud setup
for testing purposes.

Testing was conducted on an Ubuntu 20.04 instance with 2 vCPUs, 4 GB of
RAM, and 20 GB of disk space. This instance was used to host homomorphic en-
cryption applications using the TenSEAL library. Security groups were configured
to permit SSH and ICMP access for monitoring and testing purposes.

This study uses a single image of size 512×512 pixels as input data. The image
is encrypted on the host machine using the TenSEAL library, which provides an
easy-to-use interface for homomorphic encryption with different schemes, including
BGV, CKKS, and TFHE. Each color channel (R, G, B) of the image is encrypted
separately using these schemes.

Once encrypted, the image data is transferred to an Ubuntu instance in an
OpenStack environment, simulating a cloud setting for secure data processing. On
this instance, homomorphic addition is performed on each encrypted pixel value to
simulate brightness adjustment, without decrypting the data. The processed en-
crypted data is then transferred back to the host for decryption and reconstruction
of the image.

Key steps in the implementation include:
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• Encrypting each color channel (R, G, B) of the image using the BGV, CKKS,
and TFHE schemes in TenSEAL.

• Uploading the encrypted data to the Ubuntu instance on OpenStack.

• Applying homomorphic addition on each encrypted channel to increase bright-
ness.

• Transferring the processed encrypted data back to the host machine for de-
cryption and image reconstruction.

The TenSEAL library was chosen for its Python compatibility and support for
various homomorphic encryption schemes. Each scheme is tested for computational
efficiency, noise accumulation, and practicality in a cloud environment.

5.1. Homomorphic encryption process for image brightening
The homomorphic encryption process used in this study involves the encryption
of a 512 × 512 image using the TenSEAL library with the CKKS scheme. This
allows encrypted manipulation of image brightness without exposing the original
pixel values. Below are the key steps involved:

1. Image preprocessing

• The image is loaded using the Python Imaging Library (PIL) and resized
to 512 × 512 pixels to simplify processing.

• The image is then split into its red, green, and blue (R, G, B) color
channels, each represented as a separate 2D array.

2. TenSEAL context initialization

• A TenSEAL context is created using the CKKS scheme with a polynomial
modulus degree of 8192 and coefficient modulus sizes of [60, 40, 40, 60].
This configuration balances computational efficiency and security.

• The global scale is set to 240, which ensures sufficient precision for en-
crypted computations on real-number data.

• Galois keys are generated within the context to support batching oper-
ations, which allow vectorized operations on encrypted data [3, 19].

3. Secret and public key serialization

• The secret context, which contains the decryption key, is serialized and
saved as secret.txt. This will be used later for decrypting the modified
encrypted data.

• The context is then converted to a public-only version by removing the
secret key, allowing encrypted data to be shared securely. This public
context is saved as public.txt and used for encryption.
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4. Image encryption

• Each color channel (R, G, B) is encrypted separately. The flattened
pixel values of each channel are converted into BGV, CKKS, or TFHE
vectors using TenSEAL’s function.

• The encrypted vectors (encrypted_r, encrypted_g, encrypted_b) for
each color channel allow brightness adjustment operations to be per-
formed without revealing the original pixel values.

5. Saving encrypted data

• The files encrypted_r.txt, encrypted_g.txt, and encrypted_b.txt
contain the serialized encrypted data for each color channel. These files
can be transferred to the cloud environment for further processing.

This encryption setup enables secure image processing in untrusted environ-
ments.

5.2. Dataset and automation for large-scale testing
While initial prototyping and validation were conducted using a single 512 × 512
image, the full-scale benchmarking was performed on a dataset of 800 images of
identical resolution. These images were randomly sampled from the publicly avail-
able DIV2K dataset, which is commonly used in image enhancement research.
Each image underwent separate encryption, cloud transfer, brightness adjustment,
return transfer, and decryption.

To handle this scale, a Python-based automation pipeline was implemented.
The process was fully scripted to:

• Load and preprocess each image,

• Split color channels and flatten them into vectors,

• Apply homomorphic encryption using TenSEAL (BGV, CKKS, or TFHE),

• Save and transfer encrypted data to the OpenStack instance,

• Execute brightness adjustment on the encrypted data in the cloud,

• Save processed encrypted vectors and transfer them back,

• Decrypt and reconstruct the final brightened image locally.

The pipeline utilized job queuing and batching to ensure resource-efficient par-
allel execution. Experiments were performed in batches of 100 images to manage
memory constraints on the local and cloud instances. Each encryption scheme was
evaluated across the same dataset under identical parameters to ensure compara-
bility of results.

This process ensured consistent and repeatable measurements of encryption
time, computation latency, and memory usage across the entire image set.

10



Annal. Math. et Inf. Comparative analysis of homomorphic encryption schemes . . .

5.3. Security level and parameter justification
The CKKS scheme implementation used in this study is configured with a poly-
nomial modulus degree of 8192 and coefficient modulus sizes of [60, 40, 40, 60] bits.
According to parameter guidelines provided by Microsoft SEAL and HE standard-
ization efforts, this configuration provides an estimated 128-bit security level under
the Learning With Errors (LWE) assumption. This aligns with Level 1 security
recommendations in the Homomorphic Encryption Standardization Workshop [2].

Similarly, BGV and TFHE configurations were chosen to match comparable
estimated security levels. For BGV, a modulus degree of 8192 and carefully selected
plaintext modulus and ciphertext modulus sizes were used to ensure that the noise
budget allowed multiple additions while maintaining security at or above the 128-
bit level. For TFHE, security was assessed using parameter sets aligned with the
TFHE library’s default secure configurations, designed to meet or exceed 128-bit
post-quantum security guarantees based on ring-LWE hardness assumptions.

In all cases, parameters were selected to balance computational efficiency and
practical security. While stronger security (e.g., 192-bit or 256-bit) would be possi-
ble with higher-degree polynomials and larger moduli, this would come at the cost
of significantly increased memory and processing time, making 128-bit a widely
accepted trade-off point for practical encrypted computing tasks.

5.4. Brightness adjustment on encrypted data in the cloud
To perform brightness adjustment on the encrypted image in a secure cloud envi-
ronment, the necessary encrypted files and a public context must be copied to the
Ubuntu instance within the OpenStack environment. This setup allows brightness
modifications directly on the encrypted data, preserving data privacy.

The main steps involved in this process are as follows:

1. Transfer encrypted files to cloud instance

• The files public.txt (public TenSEAL context), encrypted_r.txt,
encrypted_g.txt, and encrypted_b.txt (encrypted image channels)
are securely copied from the local machine to the Ubuntu instance on
the cloud. These files are necessary to perform encrypted operations on
the image data without needing decryption.

2. Loading encrypted data and context

• On the cloud instance, the public TenSEAL context is loaded from
public.txt to enable encrypted computations.

• The encrypted R, G, and B channels are then loaded from their respec-
tive files (encrypted_r.txt, encrypted_g.txt, and encrypted_b.txt)
and converted into CKKS vectors using the public context.

3. Brightness adjustment on encrypted channels
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• A constant brightness adjustment value of 60 is added to each pixel in
the encrypted R, G, and B channels. This is achieved by using function
increase_brightness_on_encrypted_data to perform homomorphic
addition on each channel. This securely modifies the brightness of the
image without exposing the pixel values.

4. Saving the processed encrypted data

• After brightness adjustment, the modified encrypted data is serialized and
saved as processed_encrypted_r.txt, processed_encrypted_g.txt,
and processed_encrypted_b.txt. These processed files are ready for
transfer back to the local environment for decryption and reconstruction
of the brightened image.

This process ensures that image brightness is adjusted securely in the cloud
without decrypting the data. By performing homomorphic addition on each en-
crypted channel, the image remains protected throughout, demonstrating the ef-
fectiveness of homomorphic encryption for privacy-preserving image processing in
cloud environments.

5.5. Decryption and reconstruction of the brightened image
After applying brightness adjustments to the encrypted image data in the cloud
environment, the processed encrypted data must be transferred back to the client
device for decryption and reconstruction. This final step involves decrypting each
color channel and combining them to produce the brightened image.

The key steps in this phase are as follows:

1. Transfer processed data to client device

• The processed_encrypted_r.txt, processed_encrypted_g.txt, and
processed_encrypted_b.txt processed encrypted files for each color
channel are transferred from the cloud environment back to the client
device.

• The secret context file (secret.txt), containing the decryption key, is
required on the client device to decrypt the processed data. This ensures
that decryption can only be performed by authorized users with access
to the secret key.

2. Decryption of encrypted channels

• The TenSEAL context, which includes the secret key, is loaded on the
client device by deserializing secret.txt. This context allows the de-
cryption of each color channel.

• Each processed encrypted channel – red, green, and blue – is loaded and
decrypted separately using the BGV, CKKS, or TFHE vectors from
TenSEAL. The decrypted values are reshaped to match the original
image dimensions (512 × 512 pixels).

12
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3. Reconstruction of the brightened image

• After decryption, each color channel is clipped to ensure pixel values
remain within the valid range (0–255) and are converted to unsigned
8-bit integers for compatibility with image formats.

• The red, green, and blue channels are stacked to form a single RGB
image, resulting in the brightened version of the original image.

• The reconstructed brightened image is saved as brightened_image.jpg
and displayed on the client device, providing a visual representation of
the encrypted processing results.

This approach enables secure processing of image data in untrusted cloud en-
vironments, ensuring that sensitive data remains encrypted during processing and
is only decrypted upon return to the client device. The use of homomorphic en-
cryption with the CKKS scheme allows approximate arithmetic operations, like
brightness adjustment, on encrypted data, achieving privacy-preserving image en-
hancement without revealing the original content.

6. Results and discussion
The experiment evaluated the performance of BGV, CKKS, and TFHE encryption
schemes in encrypted image processing on a cloud platform, using 1000 images.
Tables 2 and 3 present the computational performance metrics. Table 2 shows the
processing times for each stage – encryption, brightness adjustment, and decryption
– while Table 3 details memory usage for each scheme.

Table 2. Processing time for BGV, CKKS, and TFHE schemes in
encrypted image processing (1000 images).

Scheme Encryption
time (s)

Brightness
adjustment (s)

Decryption
time (s)

BGV 55 14 45
CKKS 45 12 35
TFHE 70 100 60

The results indicate that CKKS is the most efficient scheme for this applica-
tion, with the lowest processing time and memory usage. CKKS required only 12
seconds for brightness adjustment, likely benefiting from its design for approximate
real-number arithmetic. Memory usage for CKKS remained stable across stages,
peaking at 360 MB during brightness adjustment.

In contrast, BGV experienced higher processing times due to noise management
overhead, especially during brightness adjustment, taking 14 seconds. BGV also
exhibited slightly higher memory consumption than CKKS, peaking at 420 MB.
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Table 3. Memory usage for BGV, CKKS, and TFHE schemes in
encrypted image processing (1000 images).

Scheme Encryption (MB) Brightness
adjustment (MB)

Decryption (MB)

BGV 400 420 400
CKKS 350 360 340
TFHE 500 510 500

6.1. Output quality evaluation
To evaluate the visual fidelity of the decrypted images after homomorphic bright-
ness adjustment, we compared the results against baseline images processed directly
in plaintext. The comparison was performed on all 800 images using standard im-
age quality metrics – Structural Similarity Index (SSIM) and Peak Signal-to-Noise
Ratio (PSNR).

For each image, we computed SSIM and PSNR between:

1. the decrypted image (after HE-based brightness adjustment), and

2. the plaintext-adjusted image (brightness increased using standard numpy op-
erations).

Table 4 presents the average scores across all tested images.

Table 4. Average SSIM and PSNR between decrypted and
plaintext-adjusted images (800 images).

Scheme SSIM (avg) PSNR (avg)
CKKS 0.9991 48.7 dB
BGV 1.0000 59.9 dB

TFHE 1.0000 60.0 dB

These results indicate that the decrypted images are nearly identical to their
plaintext counterparts. The CKKS scheme, while designed for approximate arith-
metic, still achieved high fidelity with minimal perceptual loss (SSIM > 0.999 and
PSNR > 48 dB), which is well within acceptable bounds for visual quality.

Note on TFHE inclusion It is important to emphasize that the TFHE scheme
is not inherently designed for real-number arithmetic, but rather for efficient com-
putation on Boolean circuits. While CKKS and BGV natively support arithmetic
operations over integers or real numbers, TFHE operates at the bitwise level and
requires significant overhead to emulate arithmetic logic.

In this study, we included TFHE in our benchmarking for completeness and
consistency across homomorphic encryption schemes supported by the TenSEAL
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framework. However, we acknowledge that TFHE is not a natural fit for tasks
like brightness adjustment, which involve direct arithmetic on pixel intensities.
The TFHE results presented should therefore not be interpreted as competitive
benchmarks but rather as illustrative of the challenges and inefficiencies that arise
when using Boolean-oriented FHE schemes for real-valued tasks.

Future studies may focus on comparing TFHE within the scope of logic-based
image processing tasks, such as encrypted thresholding or binary masking, where
its design advantages would be more apparent.

This confirms the accuracy and reliability of the homomorphic encryption pipe-
line in preserving visual integrity during image processing.

Finally, TFHE, which specializes in Boolean operations, showed limitations with
slower encryption and decryption times (70 and 60 seconds, respectively) and the
highest memory usage, peaking at 510 MB.

The CKKS scheme has several characteristics that make it particularly well-
suited for image processing tasks, such as brightness adjustments, in homomorphic
encryption:

Designed for real-number computations CKKS supports approximate arith-
metic on real numbers, making it ideal for image processing tasks like bright-
ness adjustments, where small approximations are acceptable.

Efficiency CKKS is generally faster for arithmetic operations on floating-point
numbers, as it is optimized for these types of computations. This efficiency
allows for faster processing in homomorphic encryption applications.

These results indicate that CKKS is best suited for image processing tasks
requiring approximate arithmetic on real-number data, while TFHE could be ef-
fective for applications focused on Boolean computations. BGV, though effective,
may require optimization for tasks involving complex computations.

6.2. Limitations and future considerations
Noise growth and bootstrapping During experimentation, noise growth in
CKKS and BGV was indirectly managed through conservative parameter selection.
In particular, the CKKS scheme used a modulus degree of 8192 and a coefficient
modulus chain of [60, 40, 40, 60], which provided ample noise budget for the rel-
atively shallow computation (i.e., a single homomorphic addition per pixel). As
expected, we did not encounter any noise budget exhaustion in CKKS.

For BGV, noise accumulation was more prominent due to its use of modular
arithmetic and less tolerance for additive depth. However, since the operation in-
volved only one level of addition, bootstrapping was not required. Instead, the
scheme was configured with parameters sufficient to handle the fixed-depth oper-
ation. No runtime bootstrapping was performed in either CKKS or BGV experi-
ments.
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Cloud latency and transfer overhead This study focuses on the crypto-
graphic and computational performance of the HE schemes in a simulated cloud
setting using OpenStack. While file transfers were executed between host and
VM instances, transfer latency and bandwidth profiling were not part of the ex-
perimental scope. We acknowledge that in real-world deployments, network up-
load/download speed can become a significant bottleneck – especially for large
encrypted payloads – and should be profiled in future deployment-focused studies.

Scalability and resolution limitations All experiments in this study were
performed on 512 × 512 RGB images, selected to strike a balance between im-
age complexity and processing/memory feasibility in constrained environments.
High-resolution images (e.g., 4K medical scans or surveillance footage) introduce
challenges due to the large ciphertext size and memory footprint after encryption.

Future work will investigate scaling strategies, including ciphertext batching,
hardware acceleration (e.g., GPU offloading), and chunked processing for larger
images. We also aim to profile system behavior under higher resolutions and longer
operation pipelines, where noise growth and bootstrapping may become relevant.

7. Broader cryptographic and computational impli-
cations

Beyond the practical performance comparison of the BGV, CKKS, and TFHE
homomorphic encryption (HE) schemes, this study intersects with broader areas
of cryptographic research and computational theory. Two particularly relevant
directions are the post-quantum security of HE schemes and their connections to
graph-theoretical and logical modeling, both hold promise for future research and
applications [9, 12, 16, 21].

7.1. Post-quantum security and the role of LWE
The CKKS scheme, along with many modern homomorphic encryption systems,
is based on the Learning With Errors (LWE) problem [16]. LWE is known for its
hardness even in the presence of quantum adversaries, making CKKS and related
schemes promising candidates for post-quantum cryptography. This is especially
important in emerging quantum computing technologies, where traditional cryp-
tographic protocols such as RSA and ECC are vulnerable to quantum attacks via
Shor’s algorithm [18].

The Learning With Errors (LWE) problem is considered as computationally
intractable as specific worst-case lattice problems [12], which are widely believed to
remain resistant even to quantum algorithms, making LWE-based cryptographic
schemes strong candidates for post-quantum security. The National Institute of
Standards and Technology (NIST) has acknowledged this by releasing finalized
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post-quantum encryption standards in 2024 [10], further validating the relevance
of LWE-based encryption shortly.

Additionally, recent developments have introduced noise-resilient homomorphic
encryption frameworks specifically tailored for secure healthcare data processing
[17], demonstrating how HE continues to evolve in line with practical needs for
both security and performance.

7.2. Graph-theoretical modeling of HE computation pipelines
From a computational theory perspective, the structure of homomorphic encryp-
tion workflows can be modeled using directed acyclic graphs (DAGs), where nodes
represent encryption, transformation, or decryption operations, and edges denote
the data flow between them. In our implementation, for instance, the encryption
of RGB channels, homomorphic brightness adjustment, and decryption can each
be interpreted as transformation steps within a DAG pipeline [9, 21].

This graph-based abstraction opens the door to optimization strategies inspired
by scheduling and dependency analysis in graph theory. Such representations may
help design HE computation workflows that are better suited to the physical topolo-
gies of distributed systems or even future quantum hardware architectures. No-
tably, an efficient graph encryption scheme for secure shortest path queries was
proposed in 2024, demonstrating how graph theory continues to shape secure com-
putation [9, 21].

7.3. Future potential for quantum implementation
Although our current work is conducted entirely on classical hardware, it raises
the intriguing possibility of exploring homomorphic encryption implementations
on quantum computing platforms. In principle, if certain HE operations can be
reformulated using quantum circuits, this could enable secure encrypted comput-
ing with exponential parallelism. While this remains a largely unexplored domain,
early-stage research into quantum secure multiparty computation [5], quantum
lattice-based cryptography [1], and more recently, the convergence of post-quantum
cryptography with quantum artificial intelligence [13] suggests that the intersec-
tion of HE and quantum computing is a compelling direction for interdisciplinary
investigation.

8. Conclusion
This study demonstrates the practical feasibility of applying homomorphic encryp-
tion (HE) to real-world image processing tasks in cloud environments. By imple-
menting brightness adjustment on encrypted 512 × 512 RGB images using three
HE schemes – BGV, CKKS, and TFHE – within an OpenStack-based cloud infras-
tructure and TenSEAL library, we evaluated performance in terms of encryption
time, computation overhead, memory usage, and output quality.
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The results indicate that the CKKS scheme offers the best balance of perfor-
mance and accuracy for image processing tasks involving real-number operations.
CKKS demonstrated the fastest processing times and lowest memory usage, while
maintaining high visual fidelity in decrypted outputs (average SSIM > 0.999). Its
support for approximate arithmetic makes it well-suited for tasks such as brightness
adjustment, filtering, and potentially even encrypted machine learning inference.

The BGV scheme, while less efficient, remains a viable alternative for opera-
tions requiring exact integer arithmetic and offers strong theoretical guarantees.
However, its susceptibility to noise growth and greater memory demands limit its
practicality in low-resource settings unless carefully tuned.

In contrast, the TFHE scheme, optimized for Boolean logic, was found to be
inefficient for arithmetic-heavy tasks like brightness adjustment. While included in
this study for completeness, its strengths would be better leveraged in logic-based
operations such as encrypted thresholding or access control.

Beyond computational metrics, this study highlights the importance of selecting
appropriate HE schemes based on task characteristics, security requirements, and
available resources. It also illustrates that privacy-preserving image processing
in untrusted cloud environments is not only theoretically possible but practically
achievable using modern HE frameworks and cloud infrastructure.

Future work will explore broader image processing operations (e.g., edge detec-
tion, denoising), support for higher image resolutions and video streams, and the
integration of transfer latency and throughput measurements to assess full pipeline
performance. Additional work will also examine the impact of noise growth in
deeper pipelines and the potential use of bootstrapping where necessary.
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