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Abstract. In this paper, we present research results on the recognition of
text-based CAPTCHA tests using advanced machine learning algorithms and
techniques. Text-based CAPTCHAs serve as a crucial security measure to
prevent automated access to various web services, but their effectiveness de-
pends on their resistance to sophisticated recognition techniques. To this
end, we focus on evaluating and enhancing the performance of recognition
models using a Convolutional Neural Network (CNN) as the base model. We
propose an integrated approach, which incorporates a systematic parame-
ter optimization strategy using Grid Search Cross-Validation (Grid Search
CV) and the Ensemble Voting Method to improve the performance of the
recognition model. The use of Grid Search CV enables us to fine-tune the
hyperparameters of the CNN model, leading to an optimal configuration.
Further, we investigate the effectiveness of the Ensemble Voting Method to
aggregate the predictions from multiple CNN models, each with a set of the
optimal parameters obtained from the Grid Search CV. The methods’ per-
formance was evaluated through multiple learning sessions, assessing their
effectiveness in recognizing text-based CAPTCHAs under various scenarios.
Keywords: Machine learning, CAPTCHA recognition, neural networks, hy-
perparameter optimization, ensemble methods

1. Introduction
CAPTCHA, or Completely Automated Public Turing Test to tell Computers and
Humans Apart, is a widely used security measure designed to differentiate between
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human and machine users [18]. However, with recent advancements in artificial
intelligence, traditional CAPTCHAs are becoming increasingly susceptible to au-
tomated system bypassing.

Convolutional Neural Networks (CNNs) are a category of deep learning algo-
rithms that are generally used for processing and analyzing visual data, such as
images and videos. Their distinctive architecture leverages spatial hierarchies and
local patterns within the data, enabling the automatic learning of complex and
abstract features. While CNNs are highly applicable to a range of computer vi-
sion tasks, including image recognition, object detection, and segmentation, they
can also be employed in other domains, such as time series prediction and speech
recognition. The use of CNNs to recognize distorted characters has exposed the
vulnerability of existing CAPTCHA systems, emphasizing the need for more so-
phisticated and resilient alternatives [7].

Grid Search Cross-Validation (Grid Search CV) is a hyperparameter optimiza-
tion technique in machine learning models [9]. The use of Grid Search CV entails
a comprehensive search across a defined range of hyperparameter values, with the
performance of each combination assessed via cross-validation (CV). This approach
aids in determining the optimal set of hyperparameters, resulting in superior model
performance. Grid Search CV is crucial for developing robust models, as it ensures
that they are fine-tuned and capable of generalizing effectively to unseen data.

Ensemble methods comprise a collection of powerful machine learning tech-
niques that focus on integrating multiple models to achieve enhanced predictive
performance compared to individual models. The core concept underlying ensem-
ble methods are to exploit diversity among various models, which assists in reducing
prediction errors, increasing stability, and bolstering generalization capabilities. By
aggregating the predictions of several models, ensemble methods can counterbal-
ance the limitations of individual models, ultimately yielding more accurate and
robust predictions. Ensemble voting can be effective using learners with the same
model [13], but also using various models for the voters [6].

1.1. Dataset
Figure 1 illustrates two text-based CAPTCHAs from the dataset, each subjected
to different noise levels and distortions.

Figure 1. Random elements of the dataset.

These alterations serve to increase the CAPTCHAs’ complexity for automated
systems, consequently augmenting the security of the protected system. The pres-
ence of diverse distortions and noise levels in the dataset challenges the automated
systems to adapt and recognize characters under varying conditions, thereby testing
their robustness and reliability in solving CAPTCHAs [3].

82



Annal. Math. et Inf. CAPTCHA recognition using machine learning algorithms . . .

The dataset consists of a total of 1,070 images, predominantly in the PNG
format, with a few files in the JPG format [17]. Each of the images is in grayscale,
featuring five alphanumeric characters that may include both letters and numbers.
The dimensions of these images are 200 pixels in width and 50 pixels in height.

1.2. Model

Figure 2 shows the pre-existing model that we utilized for text-based CAPTCHA
prediction, with an input layer for 50 × 200 grayscale images [10].

Figure 2. Representation of the layers.

It features three Conv2D layers, each followed by a MaxPooling2D layer for
feature extraction, and a BatchNormalization layer for improved stability [16].
The output is flattened, and the model branches into five separate paths, each
responsible for predicting one CAPTCHA character. Each branch consists of a
Dense layer, a Dropout layer, and a final Dense layer with output neurons matching
the number of possible characters. The activation function for the last Dense layer
is the softmax function, which calculates probabilities for each possible character.

83



Annal. Math. et Inf. Á. Kovács, T. Tajti

1.3. Voting method
One of the most prominent ensemble methods is the voting method [2, 5, 15]. In
this approach, multiple model instances are trained on the same dataset. These
trained models are then used to make predictions for new data points, and the final
prediction is determined by aggregating the individual models’ predictions using a
voting scheme.

Various voting schemes can be employed in the voting method, such as:

• Plurality voting: The final prediction is the class (or value) that receives the
most votes from the individual models.

• Fuzzy average voting: For classification tasks, the final prediction is deter-
mined by averaging the predicted class probabilities from each model and
selecting the class with the highest average probability.

In practical applications, the voting method has been shown to be highly ef-
fective in a wide range of problems, such as image and speech recognition, natural
language processing, and bioinformatics [1, 14]. Besides the Voting approach, other
ensemble methods like Bagging and Boosting can also be applied to improve pre-
dictive performance [8].

2. Experiments and results

2.1. Performance evaluation framework
We conducted our evaluation utilizing AMD GPU in conjunction with the Tensor-
Flow framework. Additionally, we employed the Keras library alongside Tensor-
Flow to facilitate more straightforward and rapid implementation of neural net-
works.

To address the stochastic nature of the algorithms and potential discrepancies
across learning sessions, we employed the k-fold Cross Validation method. We
divided the dataset into 10 equal-sized subsets, and for each learning session, one
fold served as the validation set while the other nine were used for training. In each
learning session, every model with different parameter combinations was run 10
times and then the average performance was calculated across the 10 validation sets.
To further enhance the reliability of our results, we repeated the entire procedure
ten times, each time using a different random seed to shuffle the dataset before
dividing it into folds. This generated a total of 100 validation sets (10 folds × 10
repetitions), and we tested all parameter combinations on these sets.

This rigorous validation technique ensured scientifically accurate and statisti-
cally reliable results, minimizing random variations and providing a solid basis for
our conclusions.

For the analysis, we leveraged the Python-based Numpy and Pandas libraries
to handle and manipulate the data. In addition to these libraries, we employed the
matplotlib library for data visualization purposes, enabling a more comprehensive
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understanding of the model’s performance and facilitating the evaluation of the
results.

Throughout our experiments, we utilized a CNN with the optimal set of param-
eters to achieve the best possible performance. Initially, we conducted a thorough
search for the best parameters for the CNN model, ensuring that our chosen model
exhibited the highest performance. After identifying the optimal parameters, we
proceeded to apply the selected model for the voting method.

In the voting method, we employed various numbers of models for prediction,
which allowed us to evaluate the performance of our approach across different en-
semble sizes. This strategy not only provided valuable insights into the robustness
and reliability of our selected CNN model but also enabled us to identify the op-
timal number of models to use in our ensemble for achieving the best possible
results.

2.2. Hyperparameter optimization
To ensure that our CNN model achieved the best possible performance, we con-
ducted an extensive hyperparameter optimization process. We employed the Grid
Search CV technique from the sci-kit learn library to systematically explore the hy-
perparameter space and identify the optimal combination of hyperparameters for
our model. The following hyperparameters and their respective candidate values
were included in the grid search:

• Batch size: 16, 32, 64

• Epochs: 50

• Activation function for the convolutional layers: ReLU, ReLU6, Swish

• Number of neurons used in the penultimate dense layer: 32, 64, 128

• Activation function for the first output layer: ReLU, ReLU6, Swish

• Dropout rate: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

• Activation function for the second output layer: Softmax

• Optimizer: Adam

The grid search was conducted with 10-fold CV to ensure that the selected hyper-
parameters were robust and generalizable across different subsets of the dataset.
This approach provided a reliable estimate of the model’s performance and reduced
the risk of overfitting.

Table 1 shows the best performance with the Rectified Linear Unit (ReLU) and
Rectified Linear Unit 6 (ReLU6) activation functions. Thus, we focused on them,
excluding the Swish function due to its lower performance. Based on this, we chose
the optimal hyperparameters for our CNN model, which guided the experiments
and ensemble methods.
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Table 1. The 5 best performing models with varying parameter
combinations using Grid Search CV.

Function Batch Size Dropout Rate Units Mean Test Score
ReLU6 64 0.5 128 0.841061
ReLU6 32 0.4 64 0.840389
ReLU 16 0.5 64 0.840010
ReLU 16 0.4 64 0.839632
ReLU 32 0.4 64 0.839001

The outcomes of our experiments with different batch sizes, neuron numbers,
and dropout rates are illustrated in Figures 3, 4, and 5.

These figures provide a comprehensive overview of the mean test scores achieved
with various combinations of these hyperparameters, assessed using Grid Search
CV. In these results, the ReLU6 is used as an activation function for the convolu-
tional layers and the first output layer. This choice was based on our preliminary
analysis, which indicated that ReLU6 outperformed other activation functions in
our specific problem setting.
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Figure 3. Mean test scores with batch size of 16
using Grid Search CV.

Figure 4 shows that as the batch size increases, the model can learn with a higher
dropout rate, enabling more effective regularization and improved generalization
performance. This observation is consistent with the idea that a larger batch size
provides more accurate gradient estimates, allowing the model to handle the higher
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levels of noise introduced by dropout.
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Figure 4. Mean test scores with batch size of 32
using Grid Search CV.
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Figure 5. Mean test scores with batch size of 64
using Grid Search CV.

The higher the number of units in the model, the more effectively it can learn
and utilize a higher dropout rate. This is likely because a larger number of neurons
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enable the model to represent more complex functions, counterbalancing the effect
of dropout.

Figure 4 and 5 show that using a dropout rate equal to or greater than 0.7
does not result in any significant improvement in the model’s performance. In
fact, dropout rates of 0.7 or higher may lead to degraded performance due to
excessive noise in the learning process, which could hinder the model from capturing
important patterns in the data.

The 0.4 and 0.5 dropout rates produced the best results, providing a good
balance between introducing noise to promote generalization and maintaining suf-
ficient signals for the model to learn the underlying patterns. The optimal neuron
numbers for our model were 64 and 128. These values yielded the best results across
various batch sizes and dropout rates, indicating that they provide an appropriate
level of model complexity to learn from the data without overfitting.

2.3. Performance of voting functions
By employing various voting schemes to combine the predictions of various models
trained on the same dataset, the ensemble approach effectively reduces errors, in-
creases stability, and enhances generalization capabilities. It is important to note
that the models involved in this ensemble approach do not differ in their architec-
ture or parameters; the differences between them arise from the individual training
processes they undergo. As previously discussed in Section 1.3, the plurality voting
function selects the prediction with the highest number of votes, while the fuzzy
average voting function calculates the average of all predictions.

Table 2 presents the results of an experiment conducted to evaluate the perfor-
mance of two voting schemes, plurality and fuzzy average voting functions. The
experiment was performed 10,000 times, with each iteration involving a varying
number of models, ranging from 2 to 30. The number of models used in the exper-
iment increased incrementally by two in each iteration, providing a detailed view
of the performance trends as the ensemble size grew.

In total, 60 models were used, and for each iteration, a random selection of the
required number of models was made from these models. The models’ predictions
were based on the same dataset.

From the analysis of Figure 6, it can be observed that there is a gradual im-
provement in the performance of both the plurality voting function and the fuzzy
average voting function as the number of models increases. This indicates that the
ensemble of models can effectively leverage the strengths of individual models to
reduce errors and increase stability. The voting functions tend to perform better
when there is more diversity among the models, as it allows for a more robust
decision-making process.

Further analysis reveals that as the number of models increases, the achieved
results also improve, indicating higher accuracy in predictions. The fuzzy aver-
age voting function consistently outperforms the plurality voting function. This
advantage is more noticeable with fewer models, but beyond 14–16 models, this
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Table 2. Performance comparison of plurality and fuzzy average
voting functions across different numbers of models.

Models Plurality Voting Function Fuzzy Average Voting Function
2 0.887717 0.906253
4 0.908664 0.915228
6 0.914723 0.918222
8 0.917318 0.919663
10 0.918746 0.920627
12 0.919694 0.921418
14 0.920391 0.922023
16 0.920961 0.922385
18 0.921416 0.922765
20 0.921691 0.923070
22 0.921951 0.923260
24 0.922246 0.923641
26 0.922408 0.923862
28 0.922506 0.924067
30 0.922789 0.924160
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Figure 6. The performance results of voting functions by 2–30
voters on test data.
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superiority stabilizes to a consistent advantage of approximately 0.001 to 0.0015 in
favor of the fuzzy average voting function.

The stable advantage suggests that the fuzzy average voting function, by con-
sidering the average of predictions rather than just the most frequent one, pro-
vides more accurate results. However, from 14–16 models onwards, the rate of
improvement in the results seems to decrease somewhat for both voting functions,
suggesting that while incorporating more models can enhance performance, there
may be diminishing returns beyond a certain point. The greater accuracy of the
fuzzy average voting function may be attributed to its ability to incorporate more
information from the models’ outputs compared to the plurality voting function.

3. Conclusions
In conclusion, our results suggest that a careful choice of batch size, number of neu-
rons in the penultimate dense layer, and dropout rates can significantly impact the
performance of deep learning models. By employing grid search cross-validation,
we were able to identify optimal combinations of these hyperparameters, leading
to improved generalization and higher mean test scores. Furthermore, the exper-
iment demonstrates that the choice of the voting scheme can have a considerable
impact on the performance of an ensemble of models trained on the same dataset.
While both plurality and fuzzy average voting functions can provide some bene-
fits, the plurality voting function appears to offer more consistent improvements in
performance as the number of models increases.

To further advance the field and enhance model performance, future research
could explore the following developments: employing segmentation techniques to
refine the input data, exploring the potential benefits of using fuzzification tech-
niques for refining binary class membership values during model training, inves-
tigating alternative ensemble methods that may provide additional benefits, ex-
perimenting with different datasets to assess the robustness of the models, and
incorporating various machine learning models, such as recurrent neural networks,
to address the specific challenges of the task [4, 11, 12]. While the results pre-
sented in this study are promising, it is important to conduct additional research
and analysis to fully comprehend the behavior and potential of these models, as
this understanding can ultimately lead to more accurate and reliable methods.
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