
ANNALES
MATHEMATICAE ET

INFORMATICAE

VOLUME 58. (2023)

EDITORIAL BOARD

Sándor Bácsó (Debrecen), Sonja Gorjanc (Zagreb), Tibor Gyimóthy (Szeged),
Miklós Hoffmann (Eger), József Holovács (Eger), Tibor Juhász (Eger),

László Kovács (Miskolc), Zoltán Kovács (Eger), Gergely Kovásznai (Eger),
László Kozma (Budapest), Kálmán Liptai (Eger), Florian Luca (Mexico),

Giuseppe Mastroianni (Potenza), Ferenc Mátyás (Eger),
Ákos Pintér (Debrecen), Miklós Rontó (Miskolc), László Szalay (Sopron),

János Sztrik (Debrecen), Tibor Tajti (Eger), Gary Walsh (Ottawa)

INSTITUTE OF MATHEMATICS AND INFORMATICS
ESZTERHÁZY KÁROLY CATHOLIC UNIVERSITY

HUNGARY, EGER

Selected papers of the
12th International Conference

on Applied Informatics

HU ISSN 1787-6117 (Online)

A kiadásért felelős az
Eszterházy Károly Katolikus Egyetem rektora

Megjelent a Líceum Kiadó gondozásában
Kiadóvezető: Dr. Nagy Andor

Műszaki szerkesztő: Dr. Tómács Tibor
Megjelent: 2023. november

Contents
J. D. Balogh, A. Adamkó, eHealth and Smart Solutions framework for

health monitoring in the course of the pandemic 1
D. Ferenczi, M. Tóth, Static analysis for safe software upgrade 9
B. Fonyódi, N. Pataki, Á. Révész, Evaluation of scalability in the Fission

serverless framework . 20
E. Fülöp, A. Gyén, N. Pataki, Visualization of Read-Copy-Update syn-

chronization contexts in C code . 30
Z. Gal, Gy. Terdik, On the patterns of the nonstationary datagram based

fast communication processes . 41
M. Gencsi, B. G.-Tóth, The Fritz-John Condition System in Interval

Branch and Bound method . 56
P. Hatvani, L. J. Laki, Z. Gy. Yang, A pseudonymization tool for Hun-

garian . 69
Á. Kovács, T. Tajti, CAPTCHA recognition using machine learning algo-

rithms with various techniques . 81
G. Kusper, Z. Gy. Yang, B. Nagy, Using extended resolution to represent

strongly connected components of directed graphs 92
B. Nagy, On language classes accepted by stateless 5′ → 3′ Watson-Crick

finite automata . 110
A. Németh, T. Kozsik, Z. Zimborás, Vibronic spectra of molecules – an

experiment with a quantum computer simulator 121
P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál,

Three level benchmarking of Singularity containers for scientific calcu-
lations . 133

L. Szathmary, An incremental algorithm for computing the transversal hy-
pergraph . 147

Á. Tóth, J. Sztrik, Analysis of retrial queueing systems with two-way com-
munication and impatient customers using simulation 160

G. Vaughan, Á. Kovács, Z. Szűts, The educational challenges of ChatGPT . 170
Z. Gy. Yang, L. J. Laki, Enhancing machine translation with quality esti-

mation and reinforcement learning . 182

Submitted: July 30, 2023
Accepted: August 7, 2023
Published online: August 30, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 1–8
DOI: 10.33039/ami.2023.08.013
URL: https://ami.uni-eszterhazy.hu

eHealth and Smart Solutions framework
for health monitoring in the course of the

pandemic

János Dávid Balogha, Attila Adamkób

aDoctoral School of Informatics University of Debrecen, Debrecen, Hungary
balogh.janos.david.official@gmail.com

bDepartment of Information Technology University of Debrecen, Debrecen, Hungary
adamko.attila@inf.unideb.hu

Abstract. Our main objective focuses on the different design principles for
applications that can receive and store various data from smart devices, e.g.,
smart bands, smart watches, and smart homes, and could gain more infor-
mation about its users to some extent to their health. We would like to
collect this information, store it, then create understandable diagrams and
show them to the user in a modern, responsive environment. We placed
great emphasis on the underlying architecture, which holds the necessary
features (scalability and extensibility). We have followed the design process’s
standards, recommendations, and protocols. The result is an application
framework that fulfills the duty of an XXI. century smart solutions appli-
cation that could monitor people’s health and even help them live healthier
lives by avoiding chronic disorders, e.g., obesity and/or diabetes. We focused
on predicting and classifying COVID-19 disease according to the collected
information and research.
Keywords: smart solutions, smart devices, healthcare, architecture, data gath-
ering, data analysis, machine learning, covid, data model
AMS Subject Classification: AMS Subject Classifications

1. Data collection
Problem 1.1 (Data collection). The first problem is finding a solution to gather
health data from various IoT devices and send them to the main application. Every
device has its own structure, so we had to find a way to handle that.

https://doi.org/10.33039/ami.2023.08.013
https://ami.uni-eszterhazy.hu
mailto:balogh.janos.david.official@gmail.com
mailto:adamko.attila@inf.unideb.hu

Annal. Math. et Inf. J. D. Balogh, A. Adamkó

1.1. Smartwatch with SDK
Many smartwatches have more precise sensors to measure heart rate, distance,
stress level, and much more health information. These watches come out with
operating systems from the factory, and the manufacturers provide SDK. We could
develop an application that collects the above-mentioned health information over
time into one file and send it to our architecture via a REST API endpoint.

Also, these devices have default smartphone applications where we can export
data easily without our own application, and the users can share manually with
us.

Example 1.2. The Figure 1 shows the data we collected from our test device, a
Samsung Galaxy Watch 2. This spreadsheet focuses on heartbeat rate and displays
minimum and maximum heartbeat and the current measurements. Besides the
measurements, it informs us of the measurement date, device, and more useful
health information.

Figure 1. Health information from smartwatch.

1.2. Smart bands
We talked about the smartwatch solution, but these devices still are more expensive
than an average person could afford. That is why we shifted our focus to smart
bands, which are more affordable for larger crowds.

These devices are also equipped with sensors, maybe not the same precision
level as the smartwatch sensors, but they still could get information about the
health information we want to have.

The greatest disadvantage of smart bands is the lack of an open operating sys-
tem and SDK. We had to find a solution to collect the data from the devices.
Modern Xiaomi and Huawei devices offer a REST API endpoint where we autho-
rize ourselves and get the requested information. We used that endpoint in an
application where the user just adds their API key and authorization information
so we could get our hands on the data and send it to our architecture.

2

Annal. Math. et Inf. eHealth and Smart Solutions framework for health monitoring . . .

Example 1.3. As we can see in the Figure 2, the smart bands send less information
about the heartbeat rate compared to the smartwatch, but we still get what is
necessary, the date and the measurements, which are crucial to our research.

Figure 2. Health information from smartband.

1.3. Renaming
As we work with many types of devices, we are bumping into one great obstacle.
Different devices have various data storing structures containing the same type of
data, but the structure is different. If we would like to work with them effectively,
we should get them brought into a common structure. The above-mentioned figures
show what the problem is, the smartwatch heartbeat rate measurement has a long
specific name, but the smart band heartbeat rate is a simple one. We dedicated
a service which is between the receiving endpoint and the storing to handle these
various formats and produce them into our structure, but we do not lose important
information.

2. Database and storing

2.1. Database
We were taking account of the difference of smart devices and sensors, they gather
and deliver more or less the same data structure, but we wanted to make sure that
the varying data structure will not cause problems in storing these data. That is the
reason why we decided to use NoSQL database instead of the standard regular SQL
databases. The choice of ours was the MongoDB. It offers a flexible document data
model database which stores data in JSON format. Ad-hoc queries and secondary
indexing are supported which makes truly powerful ways to access our data. The

3

Annal. Math. et Inf. J. D. Balogh, A. Adamkó

database does not contain any business logic, on how to process the data. It has
only one job and it fulfills that perfectly. In our application we implemented a
service which handles the repository. The repository has the connection with the
database and is responsible for the CRUD operations and various queries This book
[4] guided us to implement a data model which will contain our sensitive data and
is memory effective.

2.2. Sorting out false measurements
When we are wearing the smart devices during our life the devices automatically
measure our health and sometimes they could get a false information when the
sensors are not touching well the user or any kind of problem. Iif this happens
they could record abnormally high heartbeat rae or zero value and we cannot work
with these false information, we need to find a way to get rid of these data.

We used the Simple Moving Average (SMA) to find out false measurements.
SMA attaches a value to every i-th element using the average of suum of all of i
elements. When this value is too high or low we label it as false measurements and
do not work with anymore.

Example 2.1. As the Figure 3 shows it means a lot when we are using SMA.
The red line represents the original measurements with false values and it clearly
points out what happens when it contains false information. The big spike is when
the heartbeat rate is too high and the downhill when it failed to measure any
heartbate. The blue line is after SMA and it is a more consistent representation
of the measurements so we could work with valid and supposedly true values after
storing in the database.

Figure 3. Diagram showing the sorting out.

3. Architecture

3.1. Goals
As we stated before one of our goals is a flexible data model which could be a
base of a general data managing platform. For this purpose, we relied on NoSQL
database MongoDB that is a document data model storing data in BSON objects.
A BSON object is a binary JSON object, this format helps in data storage and

4

Annal. Math. et Inf. eHealth and Smart Solutions framework for health monitoring . . .

network transfer. We could store sensor data with different structure easily and
even process them. In the backend we used the bson package and the Document
data type to work with the database.

Our other goal was to create an architecture which satisfies our needs. We
wanted to design a layered architecture that is scalable, modular, expandable.

Scalable, we would like to work with larger data inputs and more users so we
must be ready to receive more requests. To do that we must scale our architecture
without a problem, or we would suffer heavy data loss.

Modular, anytime we can decide which module is needed or not. We could wire
or unwire any module with ease.

Expandable, if any new requirements come in the picture, we could meet them
by adding new features and modules to the architecture.

For fulfilling these properties, we decided to implement a microservice architec-
ture. In our project we expanded it to see how it will work out. We studied [1] to
get more understand in modern software architecture engineering and [6] to learn
developing in Spring Boot which will support our goals.

3.2. Microservices
The microservices architecture is a collection of services that are highly maintain-
able and testable and independently deployable. Spring offers an opportunity if we
would like to wire many services together. All our services share the same database,
but they have different endpoints with REST API interface and business logic.

We chose this architecture because it is easy to expand later when we are adding
more and more services to the application.

Figure 4. The architecture.

5

Annal. Math. et Inf. J. D. Balogh, A. Adamkó

As the Figure 4 shows, we have two external entry point: the smart watch and
a browser. The smart watch sends the data through the REST API interface and
its service to the database

The browser can send data as exported file or/and manually. We provided
different services to them, and they handle the rest to the database. We query the
database in the creating diagrams, tools and machine learning services and their
results are shown in the browser.

3.3. Creating graphs
After we got data from the users and they are stored in our database, finally we
could work with them. First, we need to check if they are normalized. It means
none of them has a different format. If they do, we have to normalize them. The
main goal of the application is to provide value added services, give feedback and
motivation about the lifestyle change. For this reason, our illustrations are easily
readable. To create diagrams, we used the R script language. R is famous for its
data processing and plotting abilities, it is widely used in analytic, statistic works,
and Spring can invoke third party programs. Our script needs a dataset to work
with it. For this purpose, we wrote a query which collects the user’s relevant data
from the database. The script waits for a csv file, so a simple CSV writer class
writes the result into a csv file. The newly created csv file is passed into the script
as argument and runs. Creates diagrams such as calorie burn by date, heart rate
rating, graph of steps, calorie intake and burn by date and many more. These
diagrams are exported as images, and they are shown to the user by the frontend
part of the application.

3.4. Machine learning
The greatest feature should be our machine learning classification which will be
using our collected data to classifiy the user or the patient if they are infected with
any disease. Our personal approach was from our experience with the COVID-19
which caused lots of loss and trouble in our world. [5] helped ouur research to get
started to develop a model in machine learning in Python. The architecture will
pass the input values to the script and call it and will be waiting for it’s output.
We used the most popular algorithms to train our model and test it with the data
that we had and it looks like it was satisfying. According to this research [2] we
saw that if a person with COVID-19 produces more heartbeat even if the person is
sitting or in resting position. Because we collected heartbeat rate and more health
information we could classify if the user is dealing with COVID-19. This works as
a binary classification where we import the user’s data which contains heartbeat
rate and activity position and we calculate average heartbeat by day when they
are resting or sitting. The average heartbeats by days will be used as input data
and if they show increasing values day by day and they are out of normal person
heartbeat rate in resting position interval we could suppose they are infected with

6

Annal. Math. et Inf. eHealth and Smart Solutions framework for health monitoring . . .

the disease, we label them with true value. If the average values within the interval
and shows no increasing values they are healthy and we label them with false value.

In the future we would like to work with infected people to wear smart devices
to collect more precise information about their heartbeat and symptons to improve
our machine learning model to predict their condition.

3.5. HL7
Because our project works with healthcare, we found it worthwhile to use the
Health Level Seven standards. The Health Level 7 standards are a set of interna-
tional standards for transfer of clinical and administrative data between software
application used by various healthcare providers.

The name comes from using the application layer which is layer 7 in the OSI
model. The HL7 Standards are produced by Health Level Seven international and
used by bodies e.g., American National Standards institute and International Orga-
nization for Standards. [3] showed a way to implement and use the HL7 standards
to achieve communication between our architecture and healthcare providers.

Figure 5. Example XML for HL7.

We dedicated for a HL7 a new service which satisfies the standards for com-
munication between healthcare software applications. It is heavily relied on XML
documents because HL7 newer versions store the necessary data in it. It includes
the patient’s ID and status like body weight or other measurements such as heart
rate.

We want to develop a service in our general architecture where medical ap-
proaches could benefit from it, helping the digitalization of healthcare. We are still
working on it to be more precise with the data output from the smart watches,
but we have already found a way to process data from them and convert them into
XML to use HL7 Standards.

7

Annal. Math. et Inf. J. D. Balogh, A. Adamkó

We are trying to build a relationship with the Clinic of the University of De-
brecen to see how will work our solution in live environment where doctors take
part in our research. They will get 24/7 healthcare information about the patient
and if any trouble could occour they could take steps to prevent disease like the
COVID or give aid if necessary.

4. Conclusion
While developing this application we gained more knowledge and insight into mod-
ern application architecture, responsible websites and even healthcare a bit. We
would like to invest more in this project because we are dedicated in our goals to
improve people’s health using the instruments of technology.

We are planning to invite more people to the project using different smart
devices to collect more data. If we have more data, we can continue the machine
learning service because it requires more precise information about diet and service
and their results.

References
[1] N. Ford, M. Richards: Fundamentals of Software Architecture: An Engineering Approach,

O’Reilly Media, 2020.
[2] S. Kunal, M. K. Shetty, B. Shah, M. Girish, A. Bansal, V. Batra, S. Mukhopadhyay, J.

Yusuf, A. Gupta, M. Gupta: Heart Rate Variability in Post-COVID-19 Recovered Subjects
Using Machine Learning, Circulation (2021), doi: 10.1161/circ.144.suppl_1.14096.

[3] K. S. Mann, E. G. kaur: Generation of CDA/XML Schema from DICOM Images using
HL7 Standards, IAEME Publications (2013).

[4] L. Silverston: The Data Model Resource Book, Vol. 1: A Library of Universal Data Models
for All Enterprises Revised Edition, Wiley, 2001.

[5] P. Sodhi, N. Awashi, V. Sharma: Introduction to Machine Learning and Its Basic Ap-
plication in Python, Proceedings of 10th International Conference on Digital Strategies for
Organizational Success (2019).

[6] G. L. Turnquist: Learning Spring Boot 2.0, Packt Publishing Limited, 2017.

8

https://doi.org/10.1161/circ.144.suppl_1.14096

Submitted: July 28, 2023
Accepted: August 7, 2023
Published online: August 23, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 9–19
DOI: 10.33039/ami.2023.08.010
URL: https://ami.uni-eszterhazy.hu

Static analysis for safe software upgrade∗

Dániel Ferenczi, Melinda Tóth

ELTE, Eötvös Loránd University, Budapest, Hungary
{danielf,toth_m}@inf.elte.hu

Abstract. Having applications accessible without downtime is no longer an
exclusive requirement of mission-critical applications or traditional domains
like communications. Running applications also require changes in the source
code and upgrading live systems. Different approaches exist depending on the
used technology. Systems implemented in Erlang can take the advantage of
the underlying BEAM virtual machine and can be upgraded easily. However,
source code has to be developed carefully once an upgrade is needed to not
introduce run-time errors during the upgrade. We are developing a method
to statically check the source code of Erlang applications for constructs that
may lead to upgrading issues.
Keywords: Erlang, static analysis, software upgrade, hot code load
AMS Subject Classification: 68M15 Reliability, testing and fault tolerance of
networks and computer systems

1. Introduction
With the ever-increasing use of e-commerce, even the owner of a simple webshop
expects her site to operate without incidents all year round. Indeed, users expect
high availability in general, and services for banking, commerce, news, and enter-
tainment are expected to operate throughout the year with minimal disruptions.
Running applications also require changes, however, the need to fix security issues
or add new features and changes may happen at any time. An outage while a
change is applied thus results in customer dissatisfaction, or even broken SLAs,
and in the end, lost revenue. This presents a demand for seamless, “zero down-
time” upgrades. The facilities for such upgrades depend on the stack chosen for

∗Application Domain Specific Highly Reliable IT Solutions project has been implemented with
the support provided from the National Research, Development and Innovation Fund of Hungary,
financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges
Subprogramme) funding scheme.

https://doi.org/10.33039/ami.2023.08.010
https://ami.uni-eszterhazy.hu
mailto:{danielf, toth_m}@inf.elte.hu

Annal. Math. et Inf. D. Ferenczi, M. Tóth

the development and operation of the application. These choices also determine
what is possible during such an upgrade. Some tools [13] will launch new contain-
ers running a new version of the application in question, while slowly removing
the previous release and possibly leading to a lost state [1]. Other tools allow for
a more fine-grained approach, upgrading only the changed modules, and making
state preservation possible [13, 16]. Errors in the use of these tools will however
lead to unexpected behaviour or even downtime. This leads to the need to statically
analyse the code responsible for the upgrade.

In this work, we demonstrate such a static analysis made for the language Er-
lang [5]. Erlang is a general-purpose, dynamically typed, functional programming
language. It is designed to build distributed, concurrent, fault-tolerant computer
systems. Originally designed for writing software in the telecommunications do-
main, the language and BEAM, the virtual machine it runs on, now see use as
general tools for building fault-tolerant, concurrent, reliable software. Erlang was
designed with high availability in mind. If we look at Joe Armstrong’s, one of Er-
lang’s designer’s thesis [2], he notes that the option to “dynamically upgrade code”
should be a feature of the language itself. This contrasts with other tools, that
do not provide such feature and need additional tools to support code upgrades
without downtime.

The goal of our work is to support safe software upgrades for the Erlang pro-
gramming language by static program analysis. In this paper, we propose a method
to identify servers which might crash or produce faulty behaviour after a live up-
grade. We base our work on the static source code analyser and transformation
tool, RefactorErl [4].

The rest of the paper is structured as follows. In Section 2 we illustrate the
problem of upgrading through an example. In Section 3 we introduce RefactorErl
and the algorithm used for pattern detection. Section 4 presents a solution for the
problem in the context of gen_server behaviours. Sections 5 and 6 show possible
ways to continue our research based on our existing foundation and related work
respectively. We conclude our work in Section 7.

2. Problem statement
Erlang is distributed alongside the BEAM virtual machine, which compiles and runs
Erlang code. Support for doing zero-downtime upgrades (in Erlang terms, “hot
code loads”) is built into the BEAM environment. It allows for state-preserving
code changes on a module basis, in contrast to tools, like Kubernetes [9] that
typically route connections to containers running new software versions. BEAM
can keep two versions of the same module simultaneously. Code should thus be
written with care, as expressions can be written in a way, that make code in the
new version point to code in the previous version. Due to the limit in the number
of versions BEAM can store, this will eventually lead to calls to versions no longer
present in the virtual machine.

Avoiding these pitfalls requires care from the developer. For code meant to be

10

Annal. Math. et Inf. Static analysis for safe software upgrade

updated usually the intent is for such expressions to get updated as well during an
upgrade and point to code present in the new version of the module.

The code snippet in Figure 1 presents a typical example of problematic code
that cannot be upgraded. The module srv defines a server that can be started
with the srv:start/0 function call. The function spawns/creates a new process
and registers it with the server name. In the new process the init/1 function is
evaluated that initialises and starts the server’s tail-recursive loop function. This is
a standard way to develop a server in Erlang. The loop/1 process stores an integer
value and an updater function in its state. The process handles {num, ClientPid}
and upgrade messages. In the former case, it answers to the requester with the
updated counter value (line 19). In the latter one, it simply applies a qualified
recursive call (line 16) to handle the code change and upgrades itself.

Having function references in the loop’s state is dangerous however, as these
references might become outdated during module upgrades. A careful developer
will ensure that these references are fully qualified - which results in function calls

1 -module(srv).
2 -export([start/0,init/1,loop/1,
3 adder/1,getNum/0]).
4

5 start() ->
6 Pid = spawn(srv, init, [0]),
7 register(server, Pid).
8

9 init(InitNum) ->
10 Adder = fun adder/1,
11 srv:loop({InitNum, Adder}).
12

13 loop({InitNum, Adder}) ->
14 receive
15 upgrade ->
16 srv:loop({InitNum, Adder});
17 {num, ClientPid} ->
18 NewNum = Adder(InitNum),
19 ClientPid ! {num, NewNum},
20 loop({NewNum, Adder})
21 end.
22

23 adder(N) ->
24 N + 42.
25

26 getNum() ->
27 ClientPid = self(),
28 server ! {num, ClientPid},
29 receive
30 {num, Num} -> Num
31 end.

1 -module(srv).
2 -export([start/0,init/1,loop/1,
3 adder/1,getNum/0]).
4

5 start() ->
6 Pid = spawn(srv, init, [0]),
7 register(server, Pid).
8

9 init(InitNum) ->
10 Adder = fun srv:adder/1,
11 srv:loop({InitNum, Adder}).
12

13 loop({InitNum, Adder}) ->
14 receive
15 upgrade ->
16 srv:loop({InitNum, Adder});
17 {num, ClientPid} ->
18 NewNum = Adder(InitNum),
19 ClientPid ! {num, NewNum},
20 loop({NewNum, Adder})
21 end.
22

23 adder(N) ->
24 N + 42.
25

26 getNum() ->
27 ClientPid = self(),
28 server ! {num, ClientPid},
29 receive
30 {num, Num} -> Num
31 end.

Figure 1. Example Erlang server function. Note the differences in
line 10 on how the adder function is referred.

11

Annal. Math. et Inf. D. Ferenczi, M. Tóth

using the implementations in the latest version of the module. On the left-hand side
snippet, the reference at line 10 will keep its original value of the Adder function
through module upgrades, when execution reaches line 18. This will result in an
error as at this point the Adder symbol will eventually reference a version of the
function no longer present in the virtual machine.

The right-hand snippet presents a fix to this, by using a fully qualified reference
to the function in the fun expression. In Erlang using a fully qualified function
inside a fun expression has the fun module:function/arity syntax. Note the
difference in line 10 of the example. This, when called will reference the latest
version of the adder function.

Apart from the pattern in the example, other expressions will also make up-
grades unsafe in a similar fashion: a reference to an initial version of a function
added to the server loop’s state during the loop’s initialisation. This reference
eventually may become obsolete as the applications are upgraded.

Overall we have identified the patterns listed in Figure 2 as being unsafe.

• fun(Arg) -> Body end.
• fun function/Arity
• fun(Arg) -> module:function(Arg) end.

Figure 2. List of unsafe patterns.

In Erlang terms, we can say, that explicit fun expressions and non-fully qualified
implicit fun expressions are unsafe as they cannot be upgraded. These patterns can
also be present directly in state of the server, e.g. loop{InitNum, fun adder/1},
which also lead to undesired behaviour. Our method detects this, direct use as well.
Finally, it is important to note, that this risk is present all throughout the code,
e.g. clauses in receive blocks may also change the state, and can add references that
are unsafe for code upgrades. Our present work offers a detection method for such
patterns in RefactorErl. Other unsafe patterns also exist and are the scope of our
future work, details of which are described in Section 5.

3. Detection methodology
The mentioned upgrade-related issues can be detected before the execution of the
code, and during the development phase using static analysis techniques. In our
particular case, we want to analyse the contents of the state passed to server loops.
If the state contains function calls, they should be fully qualified, otherwise, code
upgrades during the operation of the program may lead to errors. For this analysis,
we are using RefactorErl [4] as a framework.

3.1. RefactorErl
RefactorErl is an open-source static analysis framework for Erlang. RefactorErl
allows for analysing source code represented and stored in its Semantic Program

12

Annal. Math. et Inf. Static analysis for safe software upgrade

Graph (SPG) [8]. The SPG is a three-layered rooted graph, containing lexical,
syntactic and semantic information about the analysed source code. Once the
source code is stored, the tool offers different options for analysis, through its
querying interfaces. The semantic query language provides an expressive language
for the programmer to analyse her code [15], but RefactorErl also offers the option
to run queries through a graph representation of the program. The more accessible
semantic queries are also implemented using these graph queries. In our work, we
have developed our algorithm in the graph query language and then exposed it as
a semantic query term for easier use.

RefactorErl also provides other functions: code transformations, static analysis
of security-related issues [3] and features for code comprehension but for the present
work, we will focus on targeted static analysis.

3.2. Detection algorithm
To find the code fragments that are not safe during an upgrade (such as the one
presented on Figure 1), we need to identify the arguments of the server function
(the state of the server) and point the local function references in the state. These
patterns might not be visible at the point of the server call. The state argument
could easily consist of variables having their values returned by other functions.
Figure 3 shows an example for this: in line 3 we do not know the exact values of
the state but the server loop is still initialised with an unsafe reference from line
6. In such cases considering solely syntactic information will not help us find the
possible value of the state.

1 init(InitNum) ->
2 Adder = srv:getAdder(),
3 srv:loop({InitNum, Adder}).
4

5 getAdder() ->
6 A = fun(N) -> N + 42 end,
7 A.

Figure 3. Example of a function returning a reference to a fun
expression.

To overcome this obstacle we rely on the intraprocedural dataflow analysis [14].
Using the first order dataflow relation we are able to calculate possible values of an
expression. RefactorErl builds the Dataflow Graph during the initial analysis, and
stores the direct dataflow edges in the Semantic Program Graph. The first order
dataflow reaching relation is implemented on the top of this graph. It allows us to
track information between functions, and provides a way to determine the possible
values of the state for our analysis.

When using our detection function, the developer is expected to provide a
function as an input for our query to check its arguments across every instance

13

Annal. Math. et Inf. D. Ferenczi, M. Tóth

where it is called. The algorithm will return the list of expressions where unsafe
(as in Figure 2) arguments are defined.

Algorithm 1 Finding unsafe expressions in state.
1: function find(F)
2: function_applications ← find_applications(F)
3: for all application ∈ function_applications do
4: argument_list ← get_arguments(application)
5: expression_list ← get_subexpressions(argument_list)
6: originating_exprs ← find_orig_exprs(expression_list)
7: unsafe_exprs ← filter_to_unsafe(originating_exprs)
8: end for
9: end function

Our detection algorithm finds these expressions as it is defined in Algorithm 1.
At first, we gather all instances of application of our function. Our goal is to deter-
mine the ‘safety’ of the arguments for each application. Thus, for each application
we gather the expressions used as arguments and find the originating expressions of
these with dataflow reaching. Finally, we determine whether individual originating
expressions are safe, and return them if they are not.

4. Analysing gen_server applications
Erlang distributions come bundled with a library called Open Telecom Platform.
This library provides a construct called behaviour, which allows for abstracting
away the complex, generic details of a pattern so that the developer only has to
take care of implementing the specific parts of her application. It allows for code
to follow common patterns which helps during the development life-cycle. OTP
comes bundled with some built-in behaviours which can be suited for distributed
applications: servers, state machines, event managers, and supervisors [6, 11]:

• gen_server: for implementing server applications

• gen_statem: for implementing state machines

• gen_event: for managing events and triggered actions

• supervisor: for adding fault tolerance

For the purposes of our research, it is worth looking at the gen_server be-
haviour, as server applications usually are implemented using it, rather than in
a way akin to the example shown before. A developer implementing her server
as a gen_server behaviour will have to write an Erlang module called in Erlang
terms a callback module. This module needs to implement the behaviour’s call-
back functions. The details of the implementation will of course depend on the

14

Annal. Math. et Inf. Static analysis for safe software upgrade

problem the developer is working on. The structure and purpose of a behaviours
callback functions is fixed however. For example, a server can be started with
the gen_server:start_link/4 function call that triggers a call to the callback
module’s init/1 function that returns the initialised state of the server. Sending
synchronous messages can be done through gen_server:call/2 function calls that
trigger a call to a handle_call/3 callback function that returns the reply to the
message and the modified state.

As gen_server behaviours split the implementation code to separate functions
that deal with initialisation and have their own code running between interface and
callback functions our solution will not work out of the box. An easy solution would
be to simply add the entirety of the OTP library to the RefactorErl database. This
would allow our dataflow analysis to traverse all relevant code, however, this comes
with the cost of having to analyse the OTP library itself unnecessarily, as it will
not contain code adding unsafe functions to the server state.

4.1. Example
A cleaner, more efficient solution would be to look at the behaviour functions and
their callbacks and determine the points where the state is set, use these points
as a basis for our analysis. This is possible, as behaviours enforce a structure, the
points where the state is set are defined. Figure 4 shows an abridged gen_server
implementation of the example from Figure 1.

1 -module(srvg).
2 -export([start_link/0, get_number/1]).
3 -export([init/1, handle_call/1]).
4 -behaviour(gen_server).
5 start_link() ->
6 gen_server:start_link({local, srvg}, srvg, [], []).
7

8 get_number() ->
9 gen_server:call(srvg, get_num).

10

11 init([]) ->
12 Adder = fun srvg:adder/1,
13 InitNum = 0,
14 {ok, {Adder, InitNum}}.
15

16 handle_call(get_num, _From, {Adder, Num}) ->
17 NewNum = Adder(Num),
18 {reply, NewNum, {Adder, NewNum}};
19 ...

Figure 4. Example of a behaviour. Note the definition of a “safe”
Adder in line 12.

This server can be started by calling the srvg:start_link/0 function that calls
the gen_server:start_link/4 function. The first argument is the type and name

15

Annal. Math. et Inf. D. Ferenczi, M. Tóth

of the server. The second argument of the call (srvg) defines the callback module.
The started server evaluates the init function from the srvg callback module. In
our example, the init function at line 11 initialises the server with the state in
line 14. The get_number/0 function at line 8 forwards the get_num request to the
server and it waits for the result. The behaviour eventually processes the request
with the handle_call/3 function in line 16, setting the new server state to the
{Adder, NewNum} tuple in line 18, and sends the NewNum value back to the caller
process. This value will be the return value of the gen_server:call/2 function
call in line 9.

4.2. Modified algorithm
Behaviours can set the state for example in the return expression of initialisation
or callback functions. In general, the values worth inspecting are those returned
by the callback functions required by the gen_server behaviour. In practice we
would have to change the input part defined in line 2 of Algorithm 1: server
state is no longer defined in the applications of a server loop, but in the return
value of the behaviour’s callback functions. Thus we expect the user to provide a
behaviour implementation, where we look for unsafe patterns in the return value
of the callback functions that are manipulating the state, such as handle_call/3,
handle_cast/2, handle_info/2, code_change/2 function definitions. The new
state is usually the last element of the returned tuple and we can use dataflow
reaching to calculate the possible values. Once we have these expressions, we can
filter out the non qualified function references.

The modified algorithm is preseneted in Algorithm 2. These modifications will
allow our method to be used for analysing unsafe fun expressions in gen_server
implementations.

Algorithm 2 Finding unsafe expressions in gen_server states.
1: function find(M)
2: callbacks ← find_callback_functions(M)
3: for all callback ∈ callbacks do
4: state ← get_server_state(callback)
5: expression_list ← get_subexpressions(state)
6: originating_exprs ← find_orig_exprs(expression_list)
7: unsafe_exprs ← filter_to_unsafe(originating_exprs)
8: end for
9: end function

5. Further work
In addition to unsafe fun expressions, other patterns might also introduce risk
to upgrades and are worth inspecting. Upgrades involving a change in the state

16

Annal. Math. et Inf. Static analysis for safe software upgrade

structure are a clear example, where we could analyse if function applications still
use the old state structure, or if there are references to elements removed from
the state. This can be also examined in gen_server implementations, where state
transformations for upgrades are handled by the code_change functions.

Analysing how modules depend on each other is another example. In order
for upgrades to be safe in such a setup, upgrades have to respect the order of
dependencies. Additionally, we could verify the existence of fully qualified self-
references in server loops, which are required for upgrades in the first place.

Upon identification of further patterns, these additional checkers can be imple-
mented using RefactorErl.

6. Related work
Apart from safe upgrades, code can be analysed for other properties that can
present issues during operation. RefactorErl itself can be used to check the code for
common vulnerabilities [3]. Ensuring safe upgrades is however a general problem,
present across technologies.

Past research [1] has demonstrated challenges and solutions to upgrading dis-
tributed, multi-version systems and reasoning about their correctness, although
their approach is not suited for preserving connection state.

HotSwap [16] presents a solution for software defined networks. Apart from
upgrading without disruptions, the authors also ensure that rules, blacklists stay
in effect by replaying events on the new version.

In the domain of modern container orchestration, Kustomize [10] includes tools
for ensuring correct configurations for the popular orchestration system, Kuber-
netes [7]. These system’s configuration is typically done in languages that lack
type safety, and present a risk for updates when changing several configuration
files.

Work has also been published as well on supporting zero-downtime releases
from a kernel level [12] on different protocols to allow fast and frequent updates.

It would be worth investigating how general these solutions are, their caveats,
and whether they can be applied to software stacks running Erlang.

7. Conclusion
In this work, we have looked at the importance of zero-downtime releases and sum-
marised different approaches for achieving them. We presented how it is achieved
in Erlang applications, and showed a potential cause for upgrade failures. To iden-
tify such problems before production we have extended the RefactorErl tool with
a checker for unsafe use of local fun expressions in server loops in Erlang. We have
also demonstrated how unsafe implementations can put upgrades at risk even in
gen_server implementations. We also have shown a way to efficiently search for
unsafe patterns when using behaviours.

17

Annal. Math. et Inf. D. Ferenczi, M. Tóth

Apart from local fun expressions in the state, other problems in the code might
also impede safe upgrades. Investigating further unsafe patterns and methods
for zero-downtime upgrades could be the topic of further studies, along with the
analysis of other software stacks.

References
[1] S. Ajmani, B. Liskov, L. Shrira: Modular software upgrades for distributed systems, in:

ECOOP 2006–Object-Oriented Programming: 20th European Conference, Nantes, France,
July 3-7, 2006. Proceedings 20, Springer, 2006, pp. 452–476.

[2] J. Armstrong: Making reliable distributed systems in the presence of software errors, PhD
thesis, 2003.

[3] B. Baranyai, I. Bozó, M. Tóth: Supporting Secure Coding with RefactorErl, Submitted
to the ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica (2020).

[4] I. Bozó, D. Horpácsi, Z. Horváth, R. Kitlei, J. Köszegi, T. M., M. Tóth: RefactorErl -
Source Code Analysis and Refactoring in Erlang, in: Proceedings of the 12th Symposium on
Programming Languages and Software Tools, ISBN 978-9949-23-178-2, Tallin, Estonia, Oct.
2011, pp. 138–148.

[5] F. Cesarini, S. Thompson: Erlang Programming: A Concurrent Approach to Software De-
velopment, O’Reilly Media, 2009, isbn: 9780596555856.

[6] F. Cesarini, S. Vinoski: Designing for scalability with Erlang/OTP: implement robust,
fault-tolerant systems, " O’Reilly Media, Inc.", 2016.

[7] B. Copy, M. Bräger, A. P. Koufidis, E. Piselli, I. P. Barreiro: Integrating IoT Devices
Into the CERN Control and Monitoring Platform, in: Proc. ICALEPCS’19 (New York, NY,
USA), International Conference on Accelerator and Large Experimental Physics Control
Systems 17, JACoW Publishing, Geneva, Switzerland, Aug. 2020, pp. 1385–1388, isbn: 978-
3-95450-209-7, doi: 10.18429/JACoW-ICALEPCS2019-WEPHA125.

[8] Z. Horváth, L. Lövei, T. Kozsik, R. Kitlei, A. N. Víg, T. Nagy, M. Tóth, R. Király:
Modeling semantic knowledge in Erlang for refactoring, in: Knowledge Engineering: Princi-
ples and Techniques, Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT 2009, vol. 54(2009) Sp. Issue, Studia Universitatis Babeş-
Bolyai, Series Informatica, Cluj-Napoca, Romania, July 2009, pp. 7–16.

[9] Kubernetes Documentation, Accessed: 2023-01-12, url: https://kubernetes.io/docs/home
/.

[10] Kustomize Documentation, Accessed: 2023-01-12, url: https://kubectl.docs.kubernetes
.io/references/kustomize/.

[11] M. Logan, E. Merritt, R. Carlsson: Erlang and OTP in Action, 1st, USA: Manning
Publications Co., 2010, isbn: 1933988789.

[12] U. Naseer, L. Niccolini, U. Pant, A. Frindell, R. Dasineni, T. A. Benson: Zero Down-
time Release: Disruption-Free Load Balancing of a Multi-Billion User Website, in: Proceed-
ings of the Annual Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, Virtual Event, USA: Association for Computing Machinery, 2020,
pp. 529–541, isbn: 9781450379557, doi: 10.1145/3387514.3405885.

[13] I. Neamtiu, T. Dumitraş: Cloud software upgrades: Challenges and opportunities, in: 2011
International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems, IEEE, 2011, pp. 1–10.

18

https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA125
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubectl.docs.kubernetes.io/references/kustomize/
https://kubectl.docs.kubernetes.io/references/kustomize/
https://doi.org/10.1145/3387514.3405885

Annal. Math. et Inf. Static analysis for safe software upgrade

[14] M. Tóth, I. Bozó: Static Analysis of Complex Software Systems Implemented in Erlang,
Central European Functional Programming Summer School – Fourth Summer School, CEFP
2011, Revisited Selected Lectures, Lecture Notes in Computer Science (LNCS), Vol. 7241,
pp. 451-514, Springer-Verlag, ISSN: 0302-9743, 2012.

[15] M. Tóth, I. Bozó, J. Kőszegi, Z. Horváth: Static Analysis Based Support for Program
Comprehension in Erlang, In Acta Electrotechnica et Informatica, Volume 11, Number 03,
October 2011. Publisher: Versita, Warsaw, ISSN 1335-8243 (print), pages 3-10.

[16] L. Vanbever, J. Reich, T. Benson, N. Foster, J. Rexford: HotSwap: Correct and Ef-
ficient Controller Upgrades for Software-Defined Networks, in: Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,
Hong Kong, China: Association for Computing Machinery, 2013, pp. 133–138, isbn: 978-1-
45032-178-5, doi: 10.1145/2491185.2491194.

19

https://doi.org/10.1145/2491185.2491194

Submitted: July 28, 2023
Accepted: August 7, 2023
Published online: August 8, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 20–29
DOI: 10.33039/ami.2023.08.002
URL: https://ami.uni-eszterhazy.hu

Evaluation of scalability in the
Fission serverless framework

Balázs Fonyódi, Norbert Pataki, Ádám Révész

Department of Programming Languages and Compilers,
Faculty of Informatics,

Eötvös Loránd University,
Budapest, Hungary

fonyodi1balazs@gmail.com
patakino@elte.hu

reveszadam@gmail.com

Abstract. The efficient code execution often requires concurrency, so many
programming languages, libraries and framework aim at parallelism. Based
on the granularity and abstraction level, many approaches of concurrency are
available. However, concurrency carries difficulties but modern ways try to
make it more convenient.

A rather new solution is cloud computing which enhances the concurrency
in a way that standalone virtual machines utilize the shared hardware. Con-
tainerization takes advantage of lightweight virtual machines called contain-
ers because they use a shared kernel of the operating system. Conteiner or-
chestration (e.g. Kubernetes) enables containerization among multiple hosts.
Serverless programming supports container orchestration for individual func-
tion so every trigerred function may run in a different container which is
inside a cluster of hosts.

In this paper, we briefly present the modern cloud computing ways of
concurrency. This subtle distributed approach requires a comprehensive eval-
uation. We take advantage of the open source Fission serverless framework
and implement some distributed algorithms in this realm using the Python
programming language. For a deeper comprehension, we measure and eval-
uate the scalability of Fission framework and the entire system. We execute
the distributed algorithms with different sizes of input and we fine-tune the
configuration of the Fission framework.
Keywords: Function-as-a-Service, serverless, Fission, distributed algorithms
AMS Subject Classification: 68W15 Distributed algorithms

https://doi.org/10.33039/ami.2023.08.002
https://ami.uni-eszterhazy.hu
mailto:fonyodi1balazs@gmail.com
mailto:patakino@elte.hu
mailto:reveszadam@gmail.com

Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

1. Introduction
Parallelism and concurrency play an important role in high performance comput-
ing. Based on the granularity, one can choose multithreaded, multicore or manycore
solution for a more efficient application [13]. Grid computing and distributed al-
gorithms are also available for a long time. On the other hand, these approaches
inflict many challenges (for instance, race conditions, deadlock, resource guarantees,
etc.) [6]. Programming languages, libraries and frameworks have been proposed,
but the developers are still eager for a convenient, elegant, safe approach which
supports the efficient concurrent execution of the code.

In recent years, cloud native computing became one of the most dominant
paradigms for building applications. This was sped up with Google releasing Ku-
bernetes in 2014, and the Cloud native trend does not seem to slow down any
time soon. In this rapidly evolving landscape, developers continuously seeking
new ways to optimize their infrastructure while reducing the complexity. One of
the newer forms of developing in this environment is called Function-as-a-Service
(FaaS). It is a so called serverless computing model where developers only write
and run individual functions in the cloud. One of the advantages is that to run
these event driven functions, it is not necessary to manage and understand the
underlying infrastructure. Another great thing about FaaS is the scalability and
reliability. Most of the FaaS platforms, such as AWS Lambda, Azure Functions or
even open source providers such as Fission provide automatic scaling capabilities.
They can dynamically allocate and deallocate resources as needed by the number
of incoming requests. These functions run in an isolated environment, meaning
that each function runs in its own container or pod. This means that the functions
cannot interfere with each other and they are not impacted by other processes and
so the risk of failures due to conflicts are reduced. This approach results in a very
sophisticated concurrency model.

The concurrency has some important questions that belong to the performance.
An intriguing one is how efficient to launch a new computation. What is the
cost of triggering a new subcomputation? What is the cost of the communication
between the subcomputations? A distributed algorithm should perform better,
but the algorithm improves the runtime only if these mentioned costs are cheap
enough [14].

In this paper, we take advantage of an open source FaaS platform called Fission.
We evaluate the concurrency aspect of this FaaS platform with the implementation
and the execution of recursive, distributed algorithms. We focus on the scalability
aspect of the performance. The cost of a triggered new subcomputation is based
on boot of a Docker container and communication over HTTP, thus it is valuable
to check.

The rest of this paper is organized as follows. We introduce the cloud-based
approaches from Docker to FaaS in Section 2. We present the environment of the
evalution in Section 3. We present the implementation details of the distributed
algorithms in Section 4. We discuss the result of the evaluation in Section 5.
Finally, this paper is concluded in Section 6.

21

Annal. Math. et Inf. B. Fonyódi, N. Pataki, Á. Révész

2. Approaches of the cloud computing
Containerization has become an emerging approach in modern software engineering
since it enables the shipping of the software artifacts and products with all required
dependencies in a platform-independent way [2]. Containerization eliminates the
virtualization costs of not used OS services and the kernel itself per container.
Moreover, containerization supports isolation effectively since the containers are
seem to be separate operating systems but they use a shared kernel [10].

The containers are lightweight and they enable the fast and simple deployment
and configurations. However, this approach is limited only one host. Kubernetes
is a container orchestration system which manages Docker containers over multiple
Docker hosts [8].

Function as a Service (FaaS) is a category of cloud computing services that
provides a platform allowing programmers to develop, maintain, operate, scale and
manage application functionalities without the complexity of building and main-
taining the infrastructure typically associated with developing and deploying an
application. This new abstraction approach eliminates further configuration and
deployment cost. Building an application following this model is one way of achiev-
ing a “serverless” architecture [3]. This serverless programming approach provides
the deployment of standalone function without launching any virtual machine or
container [12].

Serverless programming is a rather new approach, however, there are real-world
applications, for instance, Coca-Cola, Santander Bank and Expedia take advantage
of this new paradigm [4].

Many frameworks are available for serverless programming, OpenFaaS, Kube-
less and Fission to name a few open source tools [7]. Earlier, we defined our func-
tional approach for the Kubeless realm [11]. However, it is still an open source ar-
tifact, VMWare has decided to stop driving and updating Kubeless [15]. Moreover,
according to many aspects, Fission was evaluated as the most efficient serverless
framework [9]. Furthermore, it has a wide language support and provides autoscal-
ing which will be useful for measuring the speed of algorithms with different CPU
settings.

3. Environment

3.1. Kubernetes
The environment of this research is created in a Kubernetes cluster. Kubernetes
is the de facto standard in container orchestration systems. This paper might not
be about Kubernetes, but there are some important terms that should be shortly
introduced. Pods are the lowest level abstraction in a Kubernetes cluster. In this
environment, a Docker container basically equals to a pod. It describes one or more
containers in a shared network.

Our research focuses on the scalability of functions. These functions are running

22

Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

in pods and for scaling, we need more of these. Kubernetes has a solution for that.
A ReplicaSet is responsible for managing a set of identical Pods. When one creates
a ReplicaSet, the number of replicas is specified, along with a Pod template. The
template describes the specification of each Pod that the ReplicaSet should create
and manage. A ReplicaSet ensures that a specified number of identical Pods are
running at any given time by creating or deleting Pods as needed.

3.2. Fission
Fission is a Kubernetes native serverless framework. Fission can be deployed to any
Kubernetes cluster whether it is on a private cloud or a private computer. Develop-
ers can write short lived functions in multiple programming languages, such as Go,
Python, Java or NodeJS. These functions can be triggered with HTTP requests or
other event triggers. Functions can be easily deployed using one specific command
and the fast cold-start time ensures that the pods get ready quickly. Another fea-
ture of Fission is automatic scaling by CPU usage. This means that the system can
create or destroy instances when needed, so it does not use unnecessary resources.
Figure 1 is a flowchart that presents how Fission works inside a Kubernetes cluster.

Figure 1. The workflow in our environment.

The router can send a HTTP request to a specific function which forwards to the
Fission service. The service sends the HTTP response back to the router and the
router creates the output.

23

Annal. Math. et Inf. B. Fonyódi, N. Pataki, Á. Révész

4. Implementation and code overview

4.1. Karatsuba function
Karatsuba’s algorithm is a fast multiplication algorithm which multiplies two num-
bers while reducing the number of recursive calls that is needed for the default mul-
tiplication [5]. This is achieved by splitting the two numbers into smaller ones, thus
reducing them into subproblems in a divide and conquer manner and solving them
recursively. The algorithm has a time complexity of nlog2 3 instead of n2 for the
traditional multiplication algorithm. The libraries needed for this version of code
are Flask and Requests. The request subclass form flask enables the function to ob-
tain the JSON data containing the two numbers, while the requests library allows
the script to send HTTP requests to another instance of the same script to com-
pute subtasks recursively. The function is split into three subfunctions for better
readability. The main function handles the processing for the multiplication. This
function obtains the two numbers with the get_json() from the request object,
extracts the two numbers and passes both to the karatsuba function. The result
from that is returned as a string. The make_request function takes the JSON
data containing the two numbers and sends them to a URL as a post request.
The karatsuba function is the part that handles the multiplication, it receives the
two numbers and a string that represents the current recursion level. At first, the
function checks whether the two numbers are single digit numbers. If they are,
their product is returned, otherwise it computes the lengths of the two numbers,
finds the maximum length, and splits each number into two parts of roughly equal
length. The reason for this is to have three subproblems:

• Compute the product of the two upper halves of the numbers (ac)

• Compute the product of the two lower halves of the numbers (bd)

• Compute the product of the sum of the two halves of each number minus ac
and bd (ac_plus_bd).

The function then returns the sum of the aforementioned subproblems, shifted
accordingly to the required number of digits. The function has three recursive calls,
but instead of handling these locally, each recursive call makes a HTTP request.

4.2. Merge sort algorithm
Merge sort algorithm developed by John von Neumann is a classic algorithm for
sorting. The performance of this algorithm is typically evaluated in different con-
current situations.

This code also starts by importing the required Flask and requests modules.
When the client sends a POST request to the ’/merge’ route, the Flask app receives
it and triggers the main function. The application returns the sorted array as a
JSON response. The sorting is done by sending POST requests to the same Flask

24

Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

app to sort each half of the array in a recursive way, and then merging the sorted
halves using a standard merging algorithm.

The Python source code of the merge sort algorithm:

from flask import Flask, request, jsonify
import requests

app = Flask(__name__)

@app.route(’/merge’, methods=[’POST’])
def main():

data = request.get_json()
array = data[’array’]
call_id = data[’call_id’]
if len(array) > 1:

mid = len(array)
left = array[:mid]
right = array[mid:]
sorted_left = merge_sort_helper(left, f"{call_id}_left")
sorted_right = merge_sort_helper(right, f"{call_id}_right")
return merge(sorted_left, sorted_right)

else:
return jsonify(array)

def merge(sorted_left, sorted_right):
i = j = 0
merged_array = []
while i < len(sorted_left) and j < len(sorted_right):

if sorted_left[i] <= sorted_right[j]:
merged_array.append(sorted_left[i])
i += 1

else:
merged_array.append(sorted_right[j])
j += 1

while i < len(sorted_left):
merged_array.append(sorted_left[i])
i += 1

while j < len(sorted_right):
merged_array.append(sorted_right[j])
j += 1

return jsonify(merged_array)

def merge_sort_helper(array, call_id):
json_data = {’array’: array, "call_id": call_id}
try:

25

Annal. Math. et Inf. B. Fonyódi, N. Pataki, Á. Révész

headers = {’Content-type’: ’application/json’}
response = requests.post(’http://router.fission.svc/merge’,

json=json_data,
headers=headers)

return response.json()
except requests.exceptions.RequestException as e:

print(e)

if __name__ == ’__main__’:
app.run(debug=True)

5. Evaluation
The test environment was running on a home setup, using Windows with WSL,
Docker, Kubernetes and Fission. As of now, we only measured the runtime of each
function with different sized inputs with the time command. The first number
that is going to be printed out is the moment the user hits the Enter key until the
moment the function is completed.

5.1. Scalability
We have already discussed the concept of ReplicaSets. Fission by default creates
three pods for one function but first we scaled it only to one. The functions were
called different sized inputs, Karatsuba’s algorithm with a digit number of 10, 32,
64, 128 and 256 length numbers and the merge sort with an array size of 10, 64,
128, 256 and 512.

The code was implemented so that every recursive call starts a new instance,
this way, the resources are divided and in theory for very large numbers the runtime
should be faster. However, starting these pods have a cost, referred to as a cold
start which is about 100ms [1]. When a function is triggered, Fission starts the
predefined pods, so that time was not accounted for in the measurements. When a
recursive call happened, a new pod was started. Karatsuba’s algorithm has three
recursive calls, so even for small numbers, at least 4 or 5 pods started running,
which equals to about 0.4-0.5 seconds that was wasted. The bigger the number,
the more recursive calls happened which slowed down the algorithm significantly.
With more Replicas, Fission should share the resources. But because of the nature
of the code, the execution still starts more and more instances, as the size of inputs
increases.

5.2. Measurements and results
Evaluating the performance of merge sort, our theory that dividing functions this
way might not be the best approach on a small scale system, seems to prove us
right. Since merge sort only has two recursive calls, the number of instances being

26

Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

started lowers significantly, thus the runtime of the function does not grow as much
as with Karatsuba’s algorithm.

Figure 2 and Figure 3 show the runtime of the analized functions and their
runtime with different ReplicaSet configurations and with different input sizes.

Figure 2. The runtime of Karatsuba’s algorithm on multiple in-
stances with different amount of data.

Figure 3. The runtime of merge sort on multiple instances with
different amount of data.

An important thing to note is the starting number of the ReplicaSets. One
would think that more ReplicaSets equal faster runtime, since Fission can divide
the function into more resources. This is true until a certain amount of Replicas.
However, from the Figure 2 and Figure 3, it is clearly visible that after a certain

27

Annal. Math. et Inf. B. Fonyódi, N. Pataki, Á. Révész

number, the runtime does not decrease or might even increase a little bit. This
can occur because it actually takes time to divide the function to these resources.
Interesting to note, that sometimes the more is less. Starting more replicas does
not solve the runtime issue, it can even slow down the function execution a bit.

6. Conclusion
Cloud native computing provides high-level abstractions for concurrency that is
essential for an improved performance. These abstractions assist the developers in
a convenient way. FaaS services allow to deploy, maintain and operate separate
functions in a cloud using containerization and orchestration.

We utilize the Fission serverless programming framework and started to eval-
uate how this granularity of concurrency improves the runtime. We implemented
two classical algorithms (merge sort, Karatsuba’s algorithm) in a recursive manner
using the Python programming language. We measured the runtime with different
sizes of inputs and with different configurations of Fission. However, the compar-
ison and evaluation are not comprehensive, so our future work focuses on a more
detailed analysis. Right now, we found that our cases have a rather high cost of
the new subcomputation’s start and HTTP communication.

References
[1] D. Balla, M. Maliosz, C. Simon: Open Source FaaS Performance Aspects, in: 2020 43rd In-

ternational Conference on Telecommunications and Signal Processing (TSP), 2020, pp. 358–
364, doi: 10.1109/TSP49548.2020.9163456.

[2] D. Bernstein: Containers and Cloud: From LXC to Docker to Kubernetes, IEEE Cloud
Computing 1.3 (2014), pp. 81–84, doi: 10.1109/MCC.2014.51.

[3] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski: Serverless Programming (Function
as a Service), in: 2017 IEEE 37th International Conference on Distributed Computing Sys-
tems (ICDCS), Los Alamitos, CA, USA: IEEE Computer Society, June 2017, pp. 2658–2659,
doi: 10.1109/ICDCS.2017.305.

[4] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski: The Rise of Serverless Computing,
Commun. ACM 62.12 (Nov. 2019), pp. 44–54, issn: 0001-0782, doi: 10.1145/3368454.

[5] X. Fang, L. Li: On Karatsuba Multiplication Algorithm, in: The First International Sym-
posium on Data, Privacy, and E-Commerce (ISDPE 2007), 2007, pp. 274–276, doi: 10.1109
/ISDPE.2007.11.

[6] W.-m. Hwu, K. Keutzer, T. G. Mattson: The Concurrency Challenge, IEEE Design &
Test of Computers 25.4 (2008), pp. 312–320, doi: 10.1109/MDT.2008.110.

[7] K. Kritikos, P. Skrzypek: A Review of Serverless Frameworks, in: 2018 IEEE/ACM Inter-
national Conference on Utility and Cloud Computing Companion (UCC Companion), 2018,
pp. 161–168, doi: 10.1109/UCC-Companion.2018.00051.

[8] V. Medel, O. Rana, J. á. Bañares, U. Arronategui: Modelling Performance & Resource
Management in Kubernetes, in: Proceedings of the 9th International Conference on Utility
and Cloud Computing, UCC ’16, Shanghai, China: Association for Computing Machinery,
2016, pp. 257–262, isbn: 9781450346160, doi: 10.1145/2996890.3007869.

28

https://doi.org/10.1109/TSP49548.2020.9163456
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/ICDCS.2017.305
https://doi.org/10.1145/3368454
https://doi.org/10.1109/ISDPE.2007.11
https://doi.org/10.1109/ISDPE.2007.11
https://doi.org/10.1109/MDT.2008.110
https://doi.org/10.1109/UCC-Companion.2018.00051
https://doi.org/10.1145/2996890.3007869

Annal. Math. et Inf. Evaluation of scalability in the Fission serverless framework

[9] S. K. Mohanty, G. Premsankar, M. di Francesco: An Evaluation of Open Source Server-
less Computing Frameworks, in: 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2018, pp. 115–120, doi: 10.1109/CloudCom2018.2018
.00033.

[10] Á. Révész, N. Pataki: Containerized A/B Testing, in: Proceedings of the Sixth Workshop on
Software Quality Analysis, Monitoring, Improvement, and Applications, ed. by Z. Budimac,
Belgrade, Serbia: CEUR-WS.org, 2017, 14:1–14:8, url: http://ceur-ws.org/Vol-1938/pap
er-rev.pdf.

[11] Á. Révész, N. Pataki: LambdaKube - A Functional Programming Approach in a Dis-
tributed Realm, in: 2021 4th International Conference on Geoinformatics and Data Analysis,
ICGDA 2021, Marseille, France: Association for Computing Machinery, 2021, pp. 67–72,
isbn: 9781450389341, doi: 10.1145/3465222.3465233.

[12] Á. Révész, N. Pataki: Stack Traces in Function as a Service Framework, in: Proceedings of
the 11th International Conference on Applied Informatics (ICAI) (Eger, Hungary, Jan. 29–
31, 2020), ed. by I. Fazekas, G. Kovásznai, T. Tómács, CEUR Workshop Proceedings
2650, Aachen, 2020, pp. 280–287, url: http://ceur-ws.org/Vol-2650/#paper29.

[13] A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, B. Esbaugh: Parallelism via
Multithreaded and Multicore CPUs, Computer 43.3 (2010), pp. 24–32, doi: 10.1109/MC.201
0.75.

[14] M. Tóth, I. Bozó, T. Kozsik: Pattern Candidate Discovery and Parallelization Techniques,
in: Proceedings of the 29th Symposium on the Implementation and Application of Functional
Programming Languages, IFL ’17, Bristol, United Kingdom: Association for Computing
Machinery, 2017, isbn: 9781450363433, doi: 10.1145/3205368.3205369.

[15] Q. L. Trieu, B. Javadi, J. Basilakis, A. N. Toosi: Performance Evaluation of Serverless
Edge Computing for Machine Learning Applications, 2022, doi: 10.48550/ARXIV.2210.103
31, url: https://arxiv.org/abs/2210.10331.

29

https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1109/CloudCom2018.2018.00033
http://ceur-ws.org/Vol-1938/paper-rev.pdf
http://ceur-ws.org/Vol-1938/paper-rev.pdf
https://doi.org/10.1145/3465222.3465233
http://ceur-ws.org/Vol-2650/#paper29
https://doi.org/10.1109/MC.2010.75
https://doi.org/10.1109/MC.2010.75
https://doi.org/10.1145/3205368.3205369
https://doi.org/10.48550/ARXIV.2210.10331
https://doi.org/10.48550/ARXIV.2210.10331
https://arxiv.org/abs/2210.10331

Submitted: July 30, 2023
Accepted: August 7, 2023
Published online: August 8, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 30–40
DOI: 10.33039/ami.2023.08.003
URL: https://ami.uni-eszterhazy.hu

Visualization of Read-Copy-Update
synchronization contexts in C code

Endre Fülöp, Attila Gyén, Norbert Pataki

Department of Programming Languages and Compilers
Eötvös Loránd University

Budapest, Hungary
gamesh411@gmail.com
gyenattila@gmail.com

patakino@elte.hu

Abstract. The Read-Copy-Update (RCU) mechanism is a way of synchro-
nizing concurrent access to variables with the goal of prioritizing read perfor-
mance over strict consistency guarantees. The main idea behind this mecha-
nism is that RCU avoids the use of lock primitives while multiple threads try
to read and update elements concurrently. In this case, elements are linked
together through pointers in a shared data structure. RCU is used in the
Linux kernel, but there are user-space libraries which implement the tech-
nique as well. One of the user-space solutions is liburcu that is a C language
library. Earlier, we defined our code comprehension framework for easing the
development of RCU solutions. In this paper, we present our visualization
techniques for the Microsoft’s Monaco Editor.
AMS Subject Classification: 68W10 Parallel algorithms

1. Introduction
Read-copy-update (RCU) mechanism is used for synchronizing memory access in a
way that guarantees deterministic read-access even during concurrent writes to the
same memory region [4]. Unsynchronized access from multiple threads can lead to
the evaluation of completely unexpected values, which in turn almost negates the
programmers ability to reason about possible outcomes [11].

There are multiple families of solutions to this problem. One traditional solution
is locking, where multiple threads are sequentially ordered at runtime, thus accesses
to a memory region are mutually exclusive among threads. This can, however, lead

https://doi.org/10.33039/ami.2023.08.003
https://ami.uni-eszterhazy.hu
mailto:gamesh411@gmail.com
mailto:gyenattila@gmail.com
mailto:patakino@elte.hu

Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

to performance degradations, live- and deadlock problems. Locking solutions use
synchronization primitives like mutexes and various kinds of locks [5]. Another
possible solution is lock-free programming, where synchronization is solved without
explicit exclusion, eliminating most locking issues [9]. Many lock-free solutions use
memory barriers and atomic variables [15]. RCU is a solution of higher abstraction
level than those mentioned before. RCU can be implemented in the kernel- or in
the user-space. Linux kernel uses data structures with RCU implementation since
2002 [13].

RCU can also be implemented in the user-space, one such library is liburcu
written in C [3]. In order to provide synchronization using the liburcu library, the
user must intersperse the application code with calls to library functions. In effect
the side-effects of these invocations produce a context along the execution paths
where accesses to a memory region are guaranteed to have desired properties. To
help the comprehension of the synchronization provided by the library, we have
devised a visualization technique. The goal of the proposed technique is to provide
the users of the library a visual and interactive way of exploring the code, thus fa-
cilitating the correct and intended usage of the library. There is no silver bullet in
software engineering [2]. However, visualization is an important aspect [6]. Visual-
ization improves the comprehension in many ways [18]. Code comprehension often
requires visualization on the top of the source code [10]. However, subtle details
are in-use for more sophisticated approaches [16]. Our previous work presented our
framework for the code comprehension of RCU contexts [7]. In the previous paper,
we focus on framework, more precisely, the static analysis and Monaco Editor-
related techniques. Unfortunately, the actual visualization has not been presented
properly. In this paper, the major contribution belongs to the visualization of the
contexts.

This rest of this paper is organized as follows. In Section 2, we provide a brief
overview on related work. We present the Userspace RCU implementation and our
static analysis methods in Section 3. Section 4 provides a brief explanation how
the backend analysis techniques are defined in our earlier work. We present the
approach of visualization in Section 5, and finally, this paper concludes in Section 6.

2. Related work
Visualizing concurrency aspects of programs can have the goal of assessing perfor-
mance aspects of a particular solution [17]. One category of tools used to measure
performance is sampling- and instrumenting profilers which are for both single- and
multithreaded programs. These profilers produce aggregated performance statis-
tics and/or traces of events which can be used for detailed performance analysis
[1]. These statistics are consequently converted into visual representations like bar-
charts and flamegraphs to provide an overview and highlight the proportions of each
program parts contribution to a given metric. Compared to these visualizations,
we propose a technique based on static analysis instead of dynamic profiling to
reason about the structure of the RCU implementation. Another important aspect

31

Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

is that the analysis done by the RCU visualization technique is more qualitative in
nature.

3. Userspace RCU implementation

3.1. RCU overview
RCU is implemented in program code as a set of API calls (free function calls in case
of the liburcu C library), which implements concurrent publication of modifications
on shared data, subscription for insertion into shared data structures, waiting for
readers to complete their executions and finally to maintain different versions of
the same data [4]. This API is geared towards read-heavy uses, where updates
of values and structured data are relatively less frequent, and where consistency
guarantees are not critical. Memory usage is another concern, as multiple version
of the same data can lead to overuse.

Concurrent access to variables is done by associating regions of code with parts
of programs executions, which read shared values (readers) [12]. These sections are
called read critical sections. Read critical sections interact with synchronization
points, which are usually used as part of the update part of the program executions
(updaters). Readers subscribe to a specific version of the data they are reading,
which is the one available at the beginning of the critical section. The end of a
critical section is explicit in the code, which is needed for the updaters to detect if
there is no more reading activity for a specific piece of data. Read critical sections
does not enforce ordering inside a single section, nor do multiple sections between
each other.

3.2. RCU contexts in liburcu
Userspace-implemented RCU library librcu is a compile- and link-time solution for
using RCU primitives in arbitrary C software without depending on kernel features
of the operating system (OS) [12]. The library supports multiple implementations
of the RCU semantics, the API consists of free functions with prefixes corresponding
to the name of the technique (urcu) and the implementation technique (i.e. mb
for memory barrier, qsrb for quiescent state-based reclamation or signal for using
posix signals). By default, API calls are implemented as external linkage functions,
and the generated IR code therefore contains explicit references to the mentioned
free functions. Using optimizations which cause the functions to be inlined will
render the solution described here unusable. Inlining small functions can be the
result of link-time optimization or by defining the URCU_INLINE_SMALL_FUNCTIONS
preprocessor symbol before including the library headers.

Another limitation is that debug information must be generated alongside with
the IR code. An example of an API function which is used for opening a read-side crit-
ical section by using memory barriers as implementation is urcu_mb_read_lock().

There are two API functionalities, which must be used in pairs. For reg-
istering threads, one would used the urcu_<flavor>_register_thread() and

32

Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

urcu_<flavor>_unregister_thread(). These are used in a non-nested way (call-
ing register while already registered is an error), but the other pair of API func-
tions signifying the read-side critical sections can be nested indefinitely. These are
the urcu_<flavor>_read_lock() and urcu_<flavor>_read_unlock() functions.
The solution presented here is tailored towards the nestable usage, and can be
extended to consider the non-nestable case. There are API calls which can only
be safely used inside the context of registered threads (the majority of the librcu
API) and there are API calls, which have special meaning when inside a read-side
critical section (like defer_rcu() or synchronize_rcu()). The intended usage of
the solution presented here is to provide information about the potential execution
paths that are potentially enclosed in the mentioned API calls. It would help the
software’s discoverability, changeability, and maintainability to know which part of
the code potentially contributes to the synchronization structure.

4. Code comprehension framework
Our earlied work proposed a code comprehension framework for the RCU syn-
chronization contexts [7]. We have developed a static analysis solution based on
the Clang compiler. Our static analysis tool takes advantage of the LLVM IR
(Intermediate Representation) which is generated from the source code.

For context detection, the iterative algorithm of forward dataflow analyses uses
reverse postorder traversal of the control-flow graph (CFG) elements in case of
forward analysis in order for performance reasons. This results in a scalable method
for gaining an overview about the synchronization aspects of the software. The
modular nature of the approach lends itself to distributed use.

The transfer function saves the interesting locations (the instructions that can
be used to get the locations), by appending them to the basic block level global
fact, but only if this global fact is does not already contain them. In addition, if
a context ending API call is detected, the exit state of the instruction set to the
current global state of the basic block. The reverse postorder visitation guarantees,
if a context starting instruction then happens to precede a context ending one, there
is path in the CFG from the starter to the ending one. The set-like nature of the
list in turn allows for the halting of the fixed-point algorithm in finite steps, as
there are a finite amount of interesting locations inside a program.

The meet function is responsible for merging the exit states of multiple incoming
dataflow facts. This is defined as the concatenation of the dataflow fact lists in a
manner, that guarantees uniqueness of elements inside the resulting list, and the
preservation of relative ordering among the interesting locations.

5. Visualization of the contexts
Monaco Editor is maintained by Microsoft and available worldwide for free [14].
It has a playground with full of interactive examples and provides wide access to

33

Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

the editor and it supports feature like colorize the editor line-by-line, add different
error and warning messages or add a hover message when the cursor is hovered over
the text. Doing all this with JavaScript programming language for the dynamic
parts, CSS for styling and HTML to build the raw frame [8]. It gives full access
to the Document Object Model (DOM) supplemented by its own special elements.
However, it sets up some limitations.

The figures below show the four aspects of Monaco Editor that we consider to
be the most important. We would like to note that this is our implemented version
of the code parser and the Monaco Editor. The C++ code is approximately the
same in all four figures, with minimal changes in place, which were necessary in
order to be able to present the different possible appearance methods.

Figure 1. Visualization of an RCU thread registration.

In order to make it easier to distinguish different visualization parts, we used

34

Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

separate colors to display the individual methods and code parts. Figure 1 shows
a thread registration process. The editor highlights precisely the part of the code
where an urcu_memb_register_thread() registration takes place, the end of which
is indicated by urcu_memb_unregister_thread(). The editor highlights this part
of the code sections in yellowish color.

Figure 2. Visualization of an RCU lock snippet.

In Figure 2, we highlight another part of the previous code snippet where a read
lock was created. Its registration starts at the urcu_memb_read_lock() line and
ends with the urcu_memb_read_unlock() line. It is important to note that we can
set the highlighting of these blocks ourselves, which should be in focus, as shown
in Figure 1 and Figure 2 separately. We also have the option to display them at
the same time. In this case, the different layers in the editor will be aligned.

The algorithm detects deficiencies that can cause problems at the code level,

35

Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

such as the unregistration of registered threads or locks. The editor also draws the
user’s attention to such cases, as shown in the Figure 3. It also reveals which part
of the code is missing, and if there are several errors in the code, it shows how
many errors are in the editor in total. We can use the up and down arrows on
the right side of the error bar to jump back and forth between errors. With this
feature, real-time errors can be displayed to users, thereby avoiding the occurrence
of runtime problems.

Figure 3. Visualization of an alert.

In Figure 4, one can see the highlighting of a code fragment that uses a RCU
function that uses a shared variable outside the locking code snippet at runtime,
potentially causing an error that could arise due to shared memory. By highlighting
this, the user can better check whether the given piece of code has been provided
with the appropriate error handling or threading methods, which can be used to
avoid runtime problems due to shared memory space.

Figure 5 presents the comprehensive visualization of an RCU-based code snippet
in the Monaco Editor. This approach makes many aspects of the RCU usage more

36

Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

comprehensible. Our solution makes the debugging procedure, and bug fixes easier.
In addition to these, the Monaco Editor visualization implementation we cre-

ated is able to highlight potential runtime problems, such as over-indexing on the
array or highlighting different ranges and displaying hover messages.

Figure 4. Visualization of shared data’s usage outside the locking
snippet.

6. Conclusion
Despite RCU is a very powerful mechanism and in a sense simplifies thread handling
in order for someone to understand what is going on in the background, a deeper
understanding of the topic is required. The visualization tool does not answer

37

Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

Figure 5. Comprehensive visualization in the Monaco Editor.

all questions, but it helps to comprehend the background processes better. Our
previous work includes a code comprehension framework for RCU. This paper
presents the visualization approach based on the framework. The visualization
is implemented in the Microsoft’s Monaco Editor that is a modern, customizable
solution for high-level code comprehension.

References
[1] R. Bell, A. D. Malony, S. Shende: ParaProf: A Portable, Extensible, and Scalable Tool

for Parallel Performance Profile Analysis, in: Euro-Par 2003 Parallel Processing, ed. by H.
Kosch, L. Böszörményi, H. Hellwagner, Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 17–26, isbn: 978-3-540-45209-6.

38

Annal. Math. et Inf. Visualization of Read-Copy-Update synchronization . . .

[2] M. Danisovszky, T. Nagy, K. Répás, G. Kusper: Western Canon of Software Engineering:
The Abstract Principles, in: 2019 10th IEEE International Conference on Cognitive Infocom-
munications (CogInfoCom), 2019, pp. 153–156, doi: 10.1109/CogInfoCom47531.2019.90899
99.

[3] M. Desnoyers, P. E. McKenney: Userspace RCU, https://liburcu.org/.
[4] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, J. Walpole: User-Level

Implementations of Read-Copy Update, IEEE Transactions on Parallel and Distributed Sys-
tems 23.2 (2012), pp. 375–382, doi: 10.1109/TPDS.2011.159.

[5] M. Drocco, V. G. Castellana, M. Minutoli: Practical Distributed Programming in C++,
in: Proceedings of the 29th International Symposium on High-Performance Parallel and Dis-
tributed Computing, HPDC ’20, Stockholm, Sweden: Association for Computing Machinery,
2020, pp. 35–39, isbn: 9781450370523, doi: 10.1145/3369583.3392680.

[6] E. Fülöp, A. Gyén, N. Pataki: A Framework for C++ Exception Handling Assistance, in:
Proceedings of the Ninth Workshop on Software Quality Analysis, Monitoring, Improvement,
and Applications, ed. by Z. Budimac, CEUR Workshop Proceedings 3237, 2022, 4:1–4:13,
url: http://ceur-ws.org/Vol-3237/paper-ful.pdf.

[7] E. Fülöp, A. Gyén, N. Pataki: Code Comprehension for Read-Copy-Update Synchroniza-
tion Contexts in C Code, in: Geoinformatics and Data Analysis, ed. by S. Bourennane,
P. Kubicek, Cham: Springer International Publishing, 2022, pp. 187–200, isbn: 978-3-031-
08017-3, doi: 10.1007/978-3-031-08017-3_17.

[8] E. Fülöp, A. Gyén, N. Pataki: Monaco Support for an Improved Exception Specification
in C++, IPSI Transactions on Internet Research 19.1 (Jan. 2023), pp. 24–31, doi: 10.5824
5/ipsi.tir.2301.05, url: http://ipsitransactions.org/journals/papers/tir/2023jan
/p5.pdf.

[9] T. E. Hart, P. E. McKenney, A. D. Brown, J. Walpole: Performance of memory recla-
mation for lockless synchronization, Journal of Parallel and Distributed Computing 67.12
(2007), Best Paper Awards: 20th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2006), pp. 1270–1285, issn: 0743-7315, doi: 10.1016/j.jpdc.2007.04.010,
url: https://www.sciencedirect.com/science/article/pii/S074373150700069X.

[10] B. Kot, B. Wuensche, J. Grundy, J. Hosking: Information Visualisation Utilising 3D
Computer Game Engines Case Study: A Source Code Comprehension Tool, in: Proceedings
of the 6th ACM SIGCHI New Zealand Chapter’s International Conference on Computer-
Human Interaction: Making CHI Natural, CHINZ ’05, Auckland, New Zealand: Association
for Computing Machinery, 2005, pp. 53–60, isbn: 1595930361, doi: 10.1145/1073943.10739
54.

[11] G. Márton, I. Szekeres, Z. Porkoláb: Towards a High-level C++ Abstraction To Utilize
The Read-Copy-Update Pattern, Acta Electrotechnica et Informatica 18.3 (2018), pp. 18–26,
doi: 0.15546/aeei-2018-0021.

[12] P. E. McKenney: Is Parallel Programming Hard, And, If So, What Can You Do About It?
(Release v2021.12.22a), 2021, arXiv: 1701.00854 [cs.DC], url: https://arxiv.org/abs/17
01.00854.

[13] P. E. McKenney, J. Walpole: What is RCU, fundamentally?, 2007, url: https://lwn.ne
t/Articles/262464/.

[14] Microsoft: Monaco Editor, https://microsoft.github.io/monaco-editor/.
[15] G. Nagy, Z. Porkoláb: Read-Copy-Update as a Possible Locking Strategy in Scala, in: Pro-

ceedings of the Seventh Workshop on Software Quality Analysis, Monitoring, Improvement,
and Applications, ed. by Z. Budimac, CEUR Workshop Proceedings 2217, 2018, 12:1–12:8,
url: http://ceur-ws.org/Vol-2217/paper-nag.pdf.

[16] Z. Porkoláb, T. Brunner: Advanced Code Comprehension using Version Control Infor-
mation, IPSI Transactions on Internet Research 16.2 (July 2020), pp. 47–54.

39

https://doi.org/10.1109/CogInfoCom47531.2019.9089999
https://doi.org/10.1109/CogInfoCom47531.2019.9089999
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1145/3369583.3392680
http://ceur-ws.org/Vol-3237/paper-ful.pdf
https://doi.org/10.1007/978-3-031-08017-3_17
https://doi.org/10.58245/ipsi.tir.2301.05
https://doi.org/10.58245/ipsi.tir.2301.05
http://ipsitransactions.org/journals/papers/tir/2023jan/p5.pdf
http://ipsitransactions.org/journals/papers/tir/2023jan/p5.pdf
https://doi.org/10.1016/j.jpdc.2007.04.010
https://www.sciencedirect.com/science/article/pii/S074373150700069X
https://doi.org/10.1145/1073943.1073954
https://doi.org/10.1145/1073943.1073954
https://doi.org/0.15546/aeei-2018-0021
https://arxiv.org/abs/1701.00854
https://arxiv.org/abs/1701.00854
https://arxiv.org/abs/1701.00854
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
http://ceur-ws.org/Vol-2217/paper-nag.pdf

Annal. Math. et Inf. E. Fülöp, A. Gyén, N. Pataki

[17] Z. Porkoláb, T. Brunner: The CodeCompass Comprehension Framework, in: Proceedings
of the 26th Conference on Program Comprehension, ICPC ’18, Gothenburg, Sweden: Asso-
ciation for Computing Machinery, 2018, pp. 393–396, isbn: 9781450357142, doi: 10.1145/3
196321.3196352.

[18] W. Steingartner, M. Haratim, J. Dostál: Software visualization of natural semantics of
imperative languages - a teaching tool, in: 2019 IEEE 15th International Scientific Conference
on Informatics, 2019, pp. 000509–000514, doi: 10.1109/Informatics47936.2019.9119290.

40

https://doi.org/10.1145/3196321.3196352
https://doi.org/10.1145/3196321.3196352
https://doi.org/10.1109/Informatics47936.2019.9119290

Submitted: July 27, 2023
Accepted: August 7, 2023
Published online: August 15, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 41–55
DOI: 10.33039/ami.2023.08.001
URL: https://ami.uni-eszterhazy.hu

On the patterns of the nonstationary
datagram based fast communication

processes∗

Zoltan Gal, Gyorgy Terdik

Faculty of Informatics,
University of Debrecen,

Hungary
gal.zoltan@inf.unideb.hu

terdik.gyorgy@inf.unideb.hu

Abstract. Nowadays expectations against modern communication services
involve not just Quality of Service (QoS) enhancement for real-time applica-
tions but also increased transmission rate between the storing and processing
of Big Data nodes. Transmission Control Protocol (TCP) has strict flow con-
trol of the data stream providing automatic adaptation to the path load of the
process-to-process communication. User Datagram Protocol (UDP) based so-
lutions are proposed to settle the communication efficiency. In this paper,
we analyse the effect of three independent communication parameters on the
efficiency of looped UDP communication: the size of the Maximum Transfer
Unit (MTU), the bandwidth of the end-to-end session, and the segment size
of the UDP protocol data unit. The usage of nonstationary multi-resolution
methods helps to identify three characteristic patterns offering identification
of the objective qualitative features of the looped datagram communication
services.

Keywords: datagram, high-speed network, nonstationarity, Fourier transform,
nonlinearity, Wavelet transform, Empirical Mode Decomposition, Variational
Mode Decomposition

AMS Subject Classification: 62J02, 62P30, 68M11, 68M12, 93B17

∗This work has been supported by QoS-HPC-IoT Laboratory and project TKP2021-NKTA of
the University of Debrecen, Hungary. Project no. TKP2021-NKTA-34 has been implemented with
the support provided by the National Research, Development, and Innovation Fund of Hungary,
financed under the TKP2021-NKTA funding scheme.

https://doi.org/10.33039/ami.2023.08.001
https://ami.uni-eszterhazy.hu
mailto:gal.zoltan@inf.unideb.hu
mailto:terdik.gyorgy@inf.unideb.hu

Annal. Math. et Inf. Z. Gal, Gy. Terdik

1. Introduction

Intensive flow control of the TCP transport layer mechanism provides process-to-
process service with low-efficiency usage of the communication paths resources like
links, buffers and processors of the intermediary nodes [9]. The lack of justification
for this strict connection-oriented mechanism implies technological reconsideration
in practice. The strict limit of the TCP segment header of 40 bytes, the extreme
complexity of multipath TCP evolution, the slow upgrade method of the new stacks,
and the missing TCP header encryption make this forty years old mechanism not
optimal for the next period. These issues opened development steps toward the
usage of simpler and faster UDP extended with reliable services [7]. UDP is a
connectionless transport layer mechanism and functions like any other datagram
type service on the other positions of the communication stack: IEEE 802.3 on the
datalink layer, Internet Protocol (IP) on the network layer and Simple Network
Management Protocol (SNMP) on the application layer. All of these mechanisms
function without prior setup or later acknowledgment phase of the corresponding
protocol data unit (PDU) transmission. The absence of the PDU acknowledg-
ment makes faster the transmission but leaves the layer service without dataflow
control possibility. Communication mechanisms based on any of the datagram ser-
vices require extra intelligence to provide reliability and security. The complexity
and resource usage intensity of these extra solutions determines the efficiency and
behavior of the applications.

The performance research works of the UDP show the necessity of a new trans-
port layer mechanism combining the advantages of the TCP and UDP network
services. The potential solution is QUIC with future development possibilities al-
lowed by the Request for Comments (RFCs) standards created by the Internet
technology responsible organization, Internet Engineering Task Force (IETF).

Methods of classical statistical time series analysis can evaluate the properties of
data communication services by considering stationary features of the data. Time
series which is captured from fast communication sessions shows nonstationarity of
the real data transfers frequently. This property is caused by the network conditions
changing rapidly and unpredictably over time. This is due to a variety of factors
such as network congestion, varying traffic loads, and changes in the topology of
the network. In high-speed networks the amount of traffic can vary significantly
from moment to moment, leading to changes in network congestion and packet
loss rates. Similarly, the network topology can change due to the addition or
removal of network nodes or links, leading to changes in the routing paths and
delays. Moreover, high-speed networks often use sophisticated network protocols
and mechanisms such as congestion control and flow control to manage the flow of
data and ensure efficient services. These mechanisms can also introduce variability
and nonstationarity into the network conditions, as they can adjust the behaviour
of the network dynamically based on the current traffic and congestion levels.

High-speed networks are nonlinear because their behaviour is not proportional
to the input signal or traffic load. Instead, the response of the network can be

42

Annal. Math. et Inf. On the patterns of the nonstationary datagram . . .

highly nonlinear, meaning that small changes in the input signal can result in large
and unpredictable changes in the behaviour of the network. One of the primary
causes of non-linearity in high-speed networks is congestion. When a network be-
comes congested, packets can be dropped or delayed, leading to nonlinear changes
in network behaviour. A small increase in the traffic load can lead to a dispropor-
tionate increase in packet loss rates or delays, resulting in a nonlinear response.
Another factor that can contribute to nonlinearity in high-speed networks is the
use of complex network protocols and mechanisms such as congestion control and
flow control. These mechanisms can introduce non-linearities into the network
behaviour by adjusting the flow of traffic based on the current network conditions.

Overall, the nonstationary and nonlinear nature of high-speed networks poses
significant challenges for network design and management. That is why the use of
advanced techniques and algorithms to ensure reliable and efficient communication
over time is dispatched requirement today. Advanced modelling and simulation
techniques are needed to predict the behaviour of the network accurately and op-
timize its performance. It also requires the development of novel algorithms and
protocols that can manage the nonlinear response to changes in traffic load and
congestion.

Highlights of this paper are the following:

• General, nonlinear and nonstationary properties of the packet-switched data-
gram mechanisms belonging to different logical layers (L2-datalink: Ethernet;
L3-network: IP; L4-transport: UDP) are proved.

• Overview is given of the nonlinear and nonstationary methods used to analyse
time series of the network traffic.

• Properties of the looped communication mechanism based on User Datagram
Protocol are presented using captured data series from real network traffic.

• Clusterization of loop-based UDP traffics is made in function of the maximum
transfer unit, the bandwidth of the end-to-end session and the segment size.

The structure of the rest of the paper is described as follows: related works
on the efficiency of transport layer mechanisms are listed in section two. Section
three gives an overview of the applied methodologies that have been considered and
proven to be useful for us in this context of analysing nonstationary and nonlinear
time series. The results and interpretation of the analysis are listed in chapter four.
Finally, we conclude and give the possible continuation of the problems related to
this research work.

2. Related work of the UDP performance evalua-
tion

There have been developed several studies on the performance of the UDP in
various scenarios. Testbed is applied to compare the performance of TCP and

43

Annal. Math. et Inf. Z. Gal, Gy. Terdik

UDP in terms of throughput, delay, and packet loss for different network conditions
[16]. It was found that UDP outperforms TCP in terms of throughput for small
data transfers, while TCP is more efficient for large data transfers. However, TCP
experiences significant delay and packet loss under heavy network load, while UDP
suffers from higher packet loss in all network conditions. It discusses the impact
of Quality of Service (QoS) mechanisms on the performance of TCP and UDP, as
well. It is found that QoS mechanisms can improve the performance of both TCP
and UDP, but their effectiveness depends on the specific application and network
conditions.

Another comparison of the performance of TCP and UDP protocols in various
simulation scenarios was executed with ns-2 simulator [4]. The study evaluates
the performance of TCP and UDP in terms of throughput, delay, and packet loss
under different network conditions, including different traffic loads and network
topologies. It was stated that the choice of the congestion control algorithm and
the buffer size can significantly affect the performance of TCP and UDP and that
different algorithms and buffer sizes may be more suitable for different network
scenarios.

An experimental study of the throughput performance for UDP and VoIP traffic
in IEEE 802.11 wireless networks is given in [10]. The study aims to investigate the
impact of network parameters such as distance, packet size, and channel conditions
on the throughput performance of UDP and VoIP traffic. The paper conducts a
series of experiments using a testbed consisting of a set of wireless access points and
clients. They measure the throughput performance of UDP and VoIP traffic under
different network conditions, including varying the distance between the access
point and the client, the packet size, and the channel conditions. The results
show that the throughput performance of UDP and VoIP traffic is significantly
affected by the network parameters. The throughput performance of UDP traffic
decreases as the distance between the access point and the client increases, while
the throughput performance of VoIP traffic remains relatively stable.

A research work proposes a new protocol called Performance Adaptive UDP
(PA-UDP) for high-speed bulk data transfer over dedicated links [6]. The study
aims to overcome the limitations of traditional UDP, which suffers from high packet
loss and delay under heavy network load. PA-UDP is designed to adapt its per-
formance to the network conditions by dynamically adjusting the packet size and
transmission rate based on feedback from the receiver. The protocol uses a feed-
back mechanism that allows the receiver to inform the sender about the status of
the network and adjust the packet size and transmission rate accordingly. The
results of the work show that PA-UDP outperforms both TCP and UDP in terms
of throughput and delay under heavy network load while maintaining low packet
loss.

The research paper [13] proposes a new UDP-based protocol called UDT (UDP-
based Data Transfer) for high-speed data transfer over wide area networks (WANs).
This study aims to overcome the limitations of traditional TCP, which is not well-
suited for high-speed data transfer over WANs due to its congestion control mech-

44

Annal. Math. et Inf. On the patterns of the nonstationary datagram . . .

anism and its reliance on a reliable transport layer. UDT is designed to provide
reliable and high-speed data transfer over WANs by using a congestion control
algorithm that is optimized for high-speed networks, and by integrating several
features such as error detection and recovery, flow control, and adaptive data rate
control. The protocol also uses a feedback mechanism that allows the receiver to
inform the sender about the status of the network and adjust the transmission rate
accordingly.

A new protocol called Reliable Blast UDP (RBUDP) for high-speed bulk data
transfer over wide area networks (WANs) is proposed [14]. The study aims to ad-
dress the limitations of traditional UDP, which suffers from high packet loss and
delay under heavy network load, and traditional TCP, which is not well-suited
for high-speed data transfer over WANs due to its congestion control mechanism.
RBUDP is designed to provide reliable and predictable high-speed bulk data trans-
fer over WANs. It uses a combination of several techniques, including a reliability
mechanism that ensures the reliable delivery of data, and an adaptive congestion
control mechanism that adjusts the transmission rate based on the feedback from
the receiver. The packet-blasting technique allows the sender to send multiple
packets without waiting for an acknowledgment.

A paper that evaluates the security and performance of the QUIC (Quick UDP
Internet Connections) protocol is [19]. The study aims to provide a comprehensive
analysis of the protocol security features and performance characteristics to better
understand the benefits and limitations of using QUIC. It provides an overview of
the QUIC protocol and its key features, including the use of encryption, multiplex-
ing, and congestion control. Then the security of QUIC is evaluated by analyzing
its resistance to various types of attacks, including network-level attacks, crypto-
graphic attacks, and protocol-level attacks. It compares the security of QUIC to
that of other transport layer protocols such as TCP and Transport Layer Security
(TLS). The performance of QUIC is evaluated in terms of throughput, latency, and
fairness. They compare the performance of QUIC to that of TCP and other trans-
port layer protocols using a testbed and several real-world scenarios. They analyze
the impact of various network conditions, including network congestion and loss,
on the performance of QUIC. The results show that QUIC provides better secu-
rity than TCP and TLS, as it is less vulnerable to attacks such as network-level
attacks and cryptographic attacks. The authors also found that QUIC performs
better than TCP, especially in scenarios with high packet loss and network conges-
tion. However, they observe that QUIC can be unfair in some scenarios, as it may
prioritize traffic from certain connections over others.

Novelty in this paper is the usage of nonlinear and nonstationary empirical
evaluation methods to evaluate looped data transfer traffic running on a datagram
communication stack. Interpretation of the number of zero-crossings of the decom-
posed signal using the Fourier transform is another result of this research work.

45

Annal. Math. et Inf. Z. Gal, Gy. Terdik

3. Applied methodology
Since the UDP-based communication mechanisms are nonstationary and nonlinear
processes we give an overview of the most important related statistical analysis
methods of such time series. We will include Discrete Fourier Transform (DFT),
Short Time Fourier Transform (STFT), Discrete Wavelet Transform (DWT), Em-
pirical Mode Decomposition (EMD), and Variational Mode Decomposition (VMD)
methods. In each case, we consider a time series x(t) ∈ R and x[k], k = [0, 1, . . . , N−
1] denotes its observations in N equidistant discrete time points. The common ap-
proach of these methods is to decompose the inter-arrival time (IAT) series of the
UDP-based traffic denoted by x(t) into a sum of orthogonal or approximately or-
thogonal modes and residual res(t). The exact or approximate orthogonality of the
modes depends on the method applied and in the case of exact orthogonality, the
residual is null. The number of modes k also depends on the method applied and
the proper value of it can determine exactly with closed formula or approximate
with an algorithm. The decomposition formula is given in the following equation:

x(t) =
k∑

i=1
modei(t) + res(t). (3.1)

These modes belong to frequency bands being disjunct or nearly disjunct de-
pending on the decomposition method applied [2, 18]. The main properties of the
discussed decomposition methods are given in Table 1.

Table 1. Main properties of the decomposition methods.

Property DFT STFT DWT EMD VMD
Time domain aspect No Yes Yes Yes Yes
Frequency domain aspect Yes Yes Yes Yes Yes
Filtering aspect Global Linear Dyadic Dyadic Linear

It should be mentioned that each method listed except DFT has both time
and frequency domain aspects. Despite this fact, the importance of the DFT is
indisputable in the characterization of stationary modes. The discrete Fourier
transform of signal x(t), is:

F{x[n]} = X[k] =
N−1∑

n=0
x[n]e−i2πkn/N , k = 0, 1, . . . , N − 1,

see [3]. The inverse discrete Fourier transform of the sequence X[k] is:

F−1{X[k]} = x[n] = 1
N

N−1∑

k=0
X[k]ei2πkn/N , n = 0, 1, . . . , N − 1.

46

Annal. Math. et Inf. On the patterns of the nonstationary datagram . . .

The module square |X[k]|2 of X[k] is called periodogram which leads to the power
spectral density (spectrum) estimate of x(t). Terms WN = ei2π/N ∈ C are the
complex N th roots of unity, where i =

√
−1. FFT is the fast algorithm for com-

puting the DFT taking 2r-points (r ∈ N) for sequences with length N = 2r. DFT
has many important features that we mention here just the Convolution Theorem
for two sequences x1[n] and x2[n]:

F{x1[n] ∗ x2[n]} = F{x1[n]} · F{x2[n]}.

The STFT is a signal processing technique that analyzes the frequency of signal
content over time [12]. It does this by breaking the signal into small, overlapping
segments and performing a Fourier transform on each segment. It uses a window
function w[n] that is brief in duration. It has value one in the interval [0, Nw − 1]
and zero elsewhere. The SFTF of the signal x(t) is given by the following formula:

X[n, k] =
n∑

m=n−(Nw−1)

w[n−m]x[n]e−i 2π
N km.

STFT examines the frequency content of a signal over time, which can be useful
for analyzing changes in the frequency content of the signal.

The DWT is a type of transform that involves breaking a signal down into
different frequency bands or scales using wavelet functions making it possible to
analyze the signal in both time and frequency domains simultaneously [11]. DWT
is based on the mother wavelet Ψ(t) ∈ L2(F), which fulfills following condition:

∞∫

0

|F{Ψ(k)}|2 dk
k
< ∞,

where F{·} represents the Fourier transform. Another requirement against the
mother wavelet is to have vanishing moments for M ≥ 1, i.e.:

∞∫

−∞

tmΨ(t) dt = 0, m = 0, 1, 2, . . . ,M.

Discrete wavelets are created from the mother wavelet by the following formula:

ψj,k(t) = 1√
2j

Ψ
(
t

2j
− k

)
,

where j and k are called scaling factor and displacement in time, respectively. DWT
of the signal x(t) is given by the following formula:

DWT{x(t)}[j, k] =
∞∫

−∞

x(t)ψj,k(t) dt.

47

Annal. Math. et Inf. Z. Gal, Gy. Terdik

The orthogonal wavelet basis functions are typically designed to be localized in
both time and frequency, which makes them well-suited for analyzing signals at
multiple resolutions. This method is useful for detecting and analyzing localized
features of different sizes, shapes, spikes or transitions.

Figure 1. Measurement scenario of the looped UDP traffic.

EMD is a signal processing technique used to extract the underlying oscillatory
components of a complex signal [15]. It decomposes a signal x(t) into a set of
intrinsic mode functions (IMFs) that represent the different oscillatory modes of
the signal, from high-frequency components to low-frequency components. The
EMD algorithm identifies the local maxima and minima of the signal and then
fits an envelope to the signal by connecting these extrema using cubic splines.
The difference between the original signal and the envelope is called a “residue”
or “detail” signal, which represents the high-frequency components of the signal.
The process is repeated on the residue signal, generating a new IMF and a new
residue signal. This process continues until the residue signal can no longer be
decomposed into further IMFs. The resulting IMFs are ordered by their frequency
content, with the highest frequency components appearing in the first IMFs and the
lowest frequency components appearing in the last IMFs. The Hilbert transform
H{x(t)} of the signal x(t) is given by the following formula:

H{x(t)} = y(t) = 1
π
P

∞∫

−∞

x(τ)
t− τ

dτ,

where P is the Cauchy principal value. Hilbert transform is finite for each real
function of class Lp. Based on x(t) and y(t) an analytic signal, z(t) ∈ C is created
as:

z(t) = x(t) + iy(t) = a(t)eiθ(t),

where a(t) and θ(t) are the amplitude and the phase, respectively defined by:

a(t) = [x2(t) + y2(t)]1/2, θ(t) = arctan
(
y(t)
x(t)

)
.

48

Annal. Math. et Inf. On the patterns of the nonstationary datagram . . .

The instantaneous frequency ω(t) of the signal x(t) is given by the formula:

ω(t) = dθ(t)
dt .

The resulting decomposition of signal x(t) has the expression that conforms to
equation (3.1). The number of modes k usually is less than twenty and these
modes are just approximately orthogonal. The last residual is a monotone function
in time. EMD is a data-driven method and does not rely on any predefined basis
functions, making it suitable for analyzing nonstationary and nonlinear signals,
such as those found in networking, biomedical and financial data, etc.

(a) (b)

Figure 2. a) Data Interarrival time series x(t); b) Autocorrelation
function of x(t). File transfer case: (MTU, BW, SSize) = (1070 B,

52 %, 58 kB).

Variational Mode Decomposition (VMD) is another signal processing technique
that, like EMD, it is used to extract the underlying oscillatory components of a
complex signal [5]. The signal x(t) is decomposed into a set of stationary functions
by solving an optimization problem that seeks to find a set of complex-valued modes
that satisfy a sparsity constraint given by:

min{modek},{ωk}

{∑

k

∥∥∥∥∂t[(δ(t) + i

πt
) ∗ modek(t)]e−iωkt

∥∥∥∥
2

2

}
,

where ωk are instantaneous frequencies, ∂t is the partial derivative with respect to
time, δ(t) is the Dirac delta function and ∥·∥2

2 represents the square of Frobenius
norm 2. The optimization problem is solved using an iterative algorithm that alter-
nates between updating the mode functions and updating the sparsity constraint.

The resulting VMD modes are ordered by their frequency content, with the
highest frequency components appearing in the first modes and the lowest frequency
components appearing in the last modes. In this case, the modes conform to
equation (3.1) are orthogonal. VMD has been shown to be effective in extracting
the intrinsic modes of nonstationary and nonlinear signals, such as those found in
audio, image, and biomedical data. VMD also has some advantages over EMD,
such as better noise suppression and faster convergence.

49

Annal. Math. et Inf. Z. Gal, Gy. Terdik

4. Measurement scenario and basic features of the
looped UDP data traffic

A UDP-based communication session with a loop was used to upload 1080 times a
fixed-size data file to a test server with different combinations of the independent
parameter triplets: Maximum Transfer Unit (MTU) of the interface card, Band-
width at the application layer (Bw) and UDP segment size (SSize). The rule of the
UDP loop is the following: at the reception of the data segment by the server one
acknowledgment is sent back to the client. This control information sent to the
client contains two main elements: i) binary status information about the successful
reception or failure of the IP packets belonging to the UDP segment; ii) timestamp
of the server. The status information is used for the retransmission of the wrong
IP packets. The timestamp keeps track of the application-level bandwidth usage.

(a) (b)

Figure 3. a) VMD (in [ms] scale) of data IAT series; b) Spectrum
(frequency in [Hz]) of VMD of data IAT series. File transfer case:

(MTU, BW, SSize) = (1070 B, 52 %, 58 kB).

The size of the file was 10 MB and the values of the network parameters were:
MTU[i] = 510 + i · 80 [B], i = 1, 2, . . . , 12, Bw[j] = 37 + j · 6 [%], j = 1, 2, . . . , 9 and
SSize = −2 + k · 6 [kB], k = 1, 2, . . . , 10. IAT time series of the fast communication

50

Annal. Math. et Inf. On the patterns of the nonstationary datagram . . .

services (see figure 2a) have nonstationary characters (see figure 2b). Decomposed
modes of the IAT serve to determine characteristic time patterns in multi-resolution
frequency scales.

To characterize IAT processes in time-frequency domains we used the Hilbert
transform of the modes. To extract the DC component applied the following prop-
erty of the Hilbert transform: the H{x(t)} is the phase shift by π/2 of the original
signal x(t). The remaining AC components serve to determine the spectrum of
the signals and extract patterns. We processed the EMD and VMD of the data
and acknowledged IAT time series of the traffics. The number of modes is limited,
k ≤ 20 and based on it mode components were determined (see VMD figures 3a
and 4a).

It is an important feature of the VMD that the Fourier transform of the modes
have disjunct intensities in the function of the frequency and this dependence is
close to being linear (see VMD figures 3b and 4b). The EMD of the data and
acknowledgment traffic have different behaviour from the VMD. The EMD modes
have nonlinear dependence on time and frequency. They are mentioned by the
majority of scientific papers to be dyadic filters [1, 8, 17, 20].

(a) (b)

Figure 4. a) VMD (in [ms] scale) of acknowledgment IAT series;
b) Spectrum (frequency in [Hz]) of VMD of acknowledgment IAT
series. File transfer case: (MTU, BW, SSize) = (1070 B, 52 %,

58 kB).

51

Annal. Math. et Inf. Z. Gal, Gy. Terdik

Because the EMD and VMD modes are symmetrical, independent and sta-
tionary time functions the zero-crossing rates represent a proper measure of the
frequencies. For a clear view of this dependence see figures 5a and 5b.

(a) (b)

Figure 5. a) Zero-crossings of EMD of data IAT series; b) Zero-
crossings of EMD of observed IAT series. File transfer case: (MTU,

BW, SSize) = (1070 B, 52 %, 58 kB).

It was found that for all cases the zero-crossing rate of EMD and VMD modes
for both data and acknowledgment traffic have their own exponential and linear
relations, respectively:

EMDRateT x(k) = aT x · e−k·bT x , EMDRateRx(k) = aRx · e−k·bRx ,

VMDRateT x(k) = aT x · k + bT x, VMDRateRx(k) = aRx · k + bRx,

where fit parameters aT x, bT x, aRx and bRx depend on the traffic case determined
by the triplet (MTU, BW, SSize).

(a) (b)

Figure 6. a) Zero-crossings of VMD of data IAT series; b) Zero-
crossings of VMD of acknowledgment IAT series. File transfer case:

(MTU, BW, SSize) = (1070 B, 52 %, 58 kB).

52

Annal. Math. et Inf. On the patterns of the nonstationary datagram . . .

Each range of the MTU, BW and SSize was divided into lower (L) and higher
(H) half, resulting in eight 3D subspaces of the independent parameter combina-
tions: LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH (see figures 7a and 7b).
Should mention here a very important aspect: the functions of zero-crossing rates
of the EMD representing the frequencies of the modes are exponential functions of
base different than 2 (see figure 7a). Most bases of exponent of transmit data are
in the range (1.7, 3.5) and bases values of acknowledgments are in the range (2, 2.8)
with the mean 2.3. This fact modifies the slightly the dyadic filter property of the
EMD method. The corresponding slope of the linear fitting parameters of VMD
is converged around a∗ = 0.05 = 1/20 = 1/kmax which is caused by the maximum
value of VMD modes k ≤ 20 (see figure 7b).

Based on the position of mass points of each parameter subspace three clusters
as group of traffic patterns can be identified: [C1, C2, C3] = [xxL,LxH,HxH],
where character x has the meaning of neuter effect of the corresponding parameter
(i.e. xxL = LLL ∨ LHL ∨HLL ∨HHL, where ∨ is the logical operator OR).

(a) (b)

Figure 7. a) Scatter plot of data and acknowledgment EMD ex-
ponents; b) Scatter plot of data and acknowledgment VMD slopes.

Having this clusterization property of the zero-crossing rate fitting parameters
we can affirm that in the case of looped UDP services, we have three traffic patterns
groups in the function of the maximum transfer unit, the bandwidth of the traffic
and UDP segment size:

C1) When the segment size, SSize is low the value of the other two parameters
has no significant effect on the traffic. In this situation, the intensity of IP packet
fragmentation is low at the data sender. The character of the traffic is stochastic
with the bandwidth close to the limit set by the Bw parameter.

C2) When the maximum transfer unit, MTU is low and the UDP segment
size, SSize is high the bandwidth parameter, Bw has no strong effect on the traffic.

53

Annal. Math. et Inf. Z. Gal, Gy. Terdik

Intensive fragmentation is executed at the IP layer because large data segments are
sent through short Ethernet frames. The character of the UDP traffic is dominated
by fragmentation. The ratio of data frames over acknowledgment frames is the
largest in these cases.

C3) When the maximum transfer unit, MTU, and UDP segment size, SSize
are high, the bandwidth parameter, Bw has no significant effect on the traffic
behaviour. The intensity of the fragmentation at the IP layer is moderate, and the
fluctuation of the bandwidth below the maximum is mostly reduced.

5. Summary of the results
A data file of 10 MB size was uploaded 1080 times with different traffic parame-
ter triplets: maximum segment size, application bandwidth, and segment size of
looped UDP traffic. An overview of the nonlinear and nonstationary analysis meth-
ods based on the decomposition of the interarrival times of the data upload and
acknowledgment download traffics was given in the paper. It was found that the
modes determined by Empirical Mode Decomposition and Variational Mode De-
composition belong to different frequency bands making it possible to characterize
these stationary modes by the ratio of zero-crossing. The zero-crossing rates have
an exponential and linear dependence on the number of modes of the Empirical
Mode Decomposition and Variational Mode Decomposition, respectively. The Em-
pirical Mode Decomposition is in the general b-base filter with bget2. The upload
data traffic of the looped UDP has three groups of traffic patterns in the function of
traffic parameter triplets (MTU, Bw, SSize), while the download acknowledgment
traffic is a result of b-base filter with b∗ = 2.3 instead of a dyadic filter (b = 2.0)
published in a lot of scientific papers until now. More analyses are required to de-
termine the dependence of the value b of the b-basis filter in the case of Empirical
Mode Decomposition. Similarly, the dependence of the slope a in Variational Mode
Analysis should continue to interpret.

References
[1] M. B. Abd-el-Malek, S. S. Hanna: Using filter bank property to simplify the calculations

of Empirical Mode Decomposition, Communications in Nonlinear Science and Numerical
Simulation 62 (2018), pp. 429–444, issn: 1007-5704, doi: 10.1016/j.cnsns.2018.02.035.

[2] R. Bazi, T. Benkedjouh, H. Habbouche, S. Rechak, N. Zerhouni: A hybrid CNN-
BiLSTM approach-based variational mode decomposition for tool wear monitoring, The In-
ternational Journal of Advanced Manufacturing Technology 5 (2022), pp. 3803–3817, doi:
10.1007/s00170-021-08448-7.

[3] P. Bloomfield: Fourier analysis of time series: an introduction, John Wiley & Sons, 2004.
[4] F. T. AL-Dhief, N. Sabri, N. A. Latiff, M. Abbas, A. Albader, M. A. Mohammed, R. N.

AL-Haddad, Y. D. Salman, M. Khanapi, et al.: Performance comparison between TCP
and UDP protocols in different simulation scenarios, International Journal of Engineering
& Technology 7.4.36 (2018), pp. 172–176.

54

https://doi.org/10.1016/j.cnsns.2018.02.035
https://doi.org/10.1007/s00170-021-08448-7

Annal. Math. et Inf. On the patterns of the nonstationary datagram . . .

[5] K. Dragomiretskiy, D. Zosso: Variational Mode Decomposition, IEEE Transactions on
Signal Processing 62.3 (2014), pp. 531–544, doi: 10.1109/TSP.2013.2288675.

[6] B. Eckart, X. He, Q. Wu: Performance adaptive UDP for high-speed bulk data transfer
over dedicated links, in: 2008 IEEE International Symposium on Parallel and Distributed
Processing, IEEE, 2008, pp. 1–10.

[7] Fast transport layer protocol: QUIC, Official web site of IETF QUIC Working Group, url:
https://quicwg.org/.

[8] P. Flandrin, G. Rilling, P. Goncalves: Empirical mode decomposition as a filter bank,
IEEE Signal Processing Letters 11.2 (2004), pp. 112–114, doi: 10.1109/LSP.2003.821662.

[9] Z. Gál, G. Kocsis, T. Tajti, R. Tornai: Performance evaluation of massively parallel
and high speed connectionless vs. connection oriented communication sessions, Advances in
Engineering Software 157-158 (2021), p. 103010, issn: 0965-9978, doi: 10.1016/j.advengso
ft.2021.103010.

[10] S. Garg, M. Kappes: An experimental study of throughput for UDP and VoIP traffic in
IEEE 802.11 b networks, in: 2003 IEEE Wireless Communications and Networking, 2003.
WCNC 2003. Vol. 3, IEEE, 2003, pp. 1748–1753.

[11] J. Gilles: Empirical Wavelet Transform, IEEE Transactions on Signal Processing 61.16
(2013), pp. 3999–4010, doi: 10.1109/TSP.2013.2265222.

[12] D. Griffin, J. Lim: Signal estimation from modified short-time Fourier transform, IEEE
Transactions on Acoustics, Speech, and Signal Processing 32.2 (1984), pp. 236–243, doi:
10.1109/TASSP.1984.1164317.

[13] Y. Gu, R. L. Grossman: UDT: UDP-based data transfer for high-speed wide area networks,
Computer Networks 51.7 (2007), pp. 1777–1799.

[14] E. He, J. Leigh, O. Yu, T. A. DeFanti: Reliable blast UDP: Predictable high performance
bulk data transfer, in: Proceedings. IEEE International Conference on Cluster Computing,
IEEE, 2002, pp. 317–324.

[15] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C.
Tung, H. H. Liu: The empirical mode decomposition and the Hilbert spectrum for nonlinear
and non-stationary time series analysis, Proceedings of the Royal Society of London A:
mathematical, physical and engineering sciences 454.1971 (1998), pp. 903–995.

[16] H. K. Rath, A. Karandikar: Performance analysis of TCP and UDP-based applications in
a IEEE 802.16 deployed network, in: 2011 The 14th International Symposium on Wireless
Personal Multimedia Communications (WPMC), 2011, pp. 1–5.

[17] G. Rilling, P. Flandrin: One or Two Frequencies? The Empirical Mode Decomposition
Answers, IEEE Transactions on Signal Processing 56.1 (2008), pp. 85–95, doi: 10 . 1109
/TSP.2007.906771.

[18] R. C. Sharpley, V. Vatchev: Analysis of the Intrinsic Mode Functions, Constructive Ap-
proximation 24 (2006), pp. 17–47, doi: 10.1007/s00365-005-0603-z.

[19] M. Soni, B. S. Rajput: Security and performance evaluations of QUIC protocol, in: Data
Science and Intelligent Applications: Proceedings of ICDSIA 2020, Springer, 2021, pp. 457–
462.

[20] Y. Yang, J. Deng, D. Kang: An improved empirical mode decomposition by using dyadic
masking signals, Signal, Image and Video Processing 9.6 (2015), pp. 1259–1263, issn: 1863-
1711, doi: 10.1007/s11760-013-0566-7.

55

https://doi.org/10.1109/TSP.2013.2288675
https://quicwg.org/
https://doi.org/10.1109/LSP.2003.821662
https://doi.org/10.1016/j.advengsoft.2021.103010
https://doi.org/10.1016/j.advengsoft.2021.103010
https://doi.org/10.1109/TSP.2013.2265222
https://doi.org/10.1109/TASSP.1984.1164317
https://doi.org/10.1109/TSP.2007.906771
https://doi.org/10.1109/TSP.2007.906771
https://doi.org/10.1007/s00365-005-0603-z
https://doi.org/10.1007/s11760-013-0566-7

Submitted: July 30, 2023
Accepted: August 7, 2023
Published online: August 8, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 56–68
DOI: 10.33039/ami.2023.08.005
URL: https://ami.uni-eszterhazy.hu

The Fritz-John Condition System in
Interval Branch and Bound method

Mihály Gencsi, Boglárka G.-Tóth

University of Szeged
{gencsi,boglarka}@inf.u-szeged.hu

Abstract. The Interval Branch and Bound (IBB) method is a good choice
when a rigorous solution is required. This method handles computational
errors in the calculations. Few IBB implementations use the Fritz-John (FJ)
optimality condition to eliminate non-optimal boxes in a constrained non-
linear programming problem. Applying the FJ optimality condition implies
solving an interval-valued system of equations. In the best case, the solution
is an empty set if the interval box does not contain an optimizer point. Solv-
ing this system of equations is complicated or unsuccessful in many cases.
This problem can be caused by the interval box being too wide, the defined
system of equations containing unnecessary constraints, or the solver being
unsuccessful. These unsuccessful attempts have a negative outcome and only
increase the computation time. In this study, we propose some modifications
to reduce the running time and computational requirements of the Interval
Branch and Bound method.
Keywords: Global Optimization, Interval Arithmetic, Fritz-John condition,
Branch and Bound method, Optimality condition
AMS Subject Classification: 90C26, 65G30, 90C30

1. Introduction
There are many applications in which we are looking for a rigorous solution to
a mathematical problem. For example, in physics or chemistry, we look for the
stability point of a substance. Sometimes we obtain a stability point, but in this
environment, the material is very unstable; it can fall apart even with a small
change.

In this study, we focus on solving the constrained nonlinear programming prob-
lems with inequality and general bound constraints. We deal with the following

https://doi.org/10.33039/ami.2023.08.005
https://ami.uni-eszterhazy.hu
mailto:{gencsi,boglarka}@inf.u-szeged.hu

Annal. Math. et Inf. The Fritz-John Condition System . . .

n-dimensional nonlinear problem,

minimize
x ∈ yyy ⊆ Rn

f(x)

subject to gi(x) ≤ 0, i = 1, . . . , m,
(1.1)

where f : Rn → R and gi : Rn → R, i = 1, . . . , m are continuously differen-
tiable nonlinear functions, and the interval box yyy = [y, y] denotes a general bound
constraint. We search for the global optimum using a guaranteed method, the
Interval Branch and Bound (IBB) method. Solving a constrained nonlinear pro-
gramming problem is, in general, very difficult. Sometimes we can only solve a
low-dimensional instance or a smaller subproblem. In the IBB method, we replace
the problem with smaller subproblems. We try to discard a subproblem by calcu-
lating upper and lower bounds and checking the feasibility or optimality. One of
the best ways to rigorously compute the bounds for the subproblem is using inter-
val arithmetic (IA). In IA, the rounding error or imprecision of the parameters is
automatically taken into account by replacing the numbers with intervals. Today,
several implementations of the IBB can be found in the literature. However, many
of them do not use Fritz-John (FJ) or Karush-Kuhn-Tucker (KKT) optimality con-
ditions to discard non-optimal subproblems. These mean solving an interval-valued
system of equations. In this study, we use the improved version of IBB, which can
solve both the unconstrained and the constrained cases in a reasonable time. We
also study the solvability of the interval FJ optimality conditions, which are more
general than the interval KKT optimality conditions.

In the following section, we introduce the basic terms and concepts of IA and
the solution method for the interval-valued system of equations. We also describe
the prototype of the IBB method. In Section 3, we study the FJ Condition System
(FJ-CS) and extend it to intervals by defining the Normalized Interval Fritz-John
Condition System (NIFJ-CS). In Section 4, we consider four methods to solve NIFJ-
CS, analyze them, and present some additional improvements to reduce the running
time of the methods. We compare the methods described using computational
experiments in Section 5. Finally, in Section 6, we summarize this study and make
suggestions for future directions.

2. Interval Branch and Bound method
In this section, we introduce the basic concepts of Interval Arithmetic (IA). We
demonstrate the methods for solving interval-valued systems of equations, which
we use to solve the NIFJ-CS. We also briefly introduce the prototype of the Interval
Branch and Bound (IBB) method.

2.1. Interval arithmetic
Interval arithmetic is the basis of the Interval Branch and Bound method, in
which numbers are replaced by a range of numbers called an interval. In this

57

Annal. Math. et Inf. M. Gencsi, B. G.-Tóth

way, rounding and measurement errors are avoided by enclosing the number in
intervals. Following the basic notation used in the literature [8], the intervals are
denoted by xxx = [x, x], where x and x describe the lower and upper bounds of
the interval, respectively. Therefore, we can define n-dimensional interval vectors
as xxx = (xxx1, . . . ,xxxn) ∈ In = I × · · · × I, which can be called intervalbox or box,
where I is the set of intervals. In addition, we define some properties of the inter-
vals. For example, the midpoint of an interval xxx is denoted by mid(xxx) = 1

2 (x + x)
or the width of the interval xxx by wid(xxx) = x − x. We can extend this to boxes
as well, as follows. The midpoint of a n-dimensional box xxx = (xxx1, . . . ,xxxn)T is
given by mid(xxx) = (mid(xxx1), . . . , mid(xxxn))T and the width of the box by wid(xxx) =
max{wid(xxxi) : i = 1, . . . , n}.

Operations such as addition, multiplication, subtraction, and division can be
extended to intervals. The interval arithmetic operations are defined by xxx ⊙ yyy =
{x⊙ y : x ∈ xxx, y ∈ yyy} for xxx,yyy ∈ I, where ⊙ ∈ {+,−, ·, /} and xxx/yyy is defined only if
0 /∈ yyy.

Furthermore, f : In → I is an inclusion function for f : Rn → R if it satisfies
{f(x) : x ∈ xxx} ⊆ f(xxx) for all interval boxes xxx ⊂ In within the domain of f . In
many cases, the inclusion function is wider than the image of the function because
it is overestimated. Note that if f is an inclusion function, we can obtain the lower
and upper bounds on f taking f(xxx) and f(xxx), respectively.

Elementary functions (such as sin, cos, exp, etc.) are easily extended to in-
tervals. The simplest inclusion function is called natural interval extension, which
means that we replace the numbers x by the box xxx at each occurrence in the function
f and compute the inclusion function in interval terms. One of the most commonly
used inclusion functions is the centered form, which is a better approximation of the
inclusion function than the natural interval extension but takes more time to com-
pute. We compute the centred form using equation fc(xxx) = f(c) +∇f(xxx) · (xxx− c),
where c ∈ xxx is usually the centre of the box and ∇f(xxx) is the inclusion of the
gradient of f over xxx. We use Automatic Differentiation (AD) to compute the in-
clusion of gradients [12]. In this method, only the derivative rules are needed for
the calculation, and we calculate the function value and the derivative at the same
time. The interested readers can find more information about Interval Arithmetic
methods in [3, 5].

2.2. Solvers for interval-valued system of equations
By solving an interval-valued system of equations, we want to find an enclosure
of all possible solutions within a starting box. However, if the enclosures of the
coefficients are too wide, we cannot remove any part of the box. Sometimes we
can improve the solvability of the methods by using preconditioners. This simply
means that we transform the system of equations to be more suitable for the solver
by using a transformation matrix. We use the midpoint preconditioner, which can
be found in [7], along with other preconditioners. To solve the NIFJ-CS we use an
iterative method, the Interval Gauss-Seidel method (IGS), and a direct method,
the Interval LU decomposition (ILUD). These two methods are straightforward

58

Annal. Math. et Inf. The Fritz-John Condition System . . .

extensions of methods to solve the real system of equations. The interested reader
can find more information about these two methods and their implementations
in [1, 13].

2.3. The prototype of the Interval Branch and Bound method
Branch and Bound is a framework for solving optimization problems in which the
main problem is divided into subproblems and an attempt is made to discard the
subproblems that do not contain the optimal point using some discarding rules.
IBB is based on Interval Arithmetic and Branch and Bound concepts. All steps
are extended to intervals. These steps must be specified for a particular implemen-
tation, and their choice can have a large impact on the efficiency of the method.
Since we will only focus on one discarding test (the Fritz-John optimality test), the
remaining steps are done in the usual way.

In an IBB method [6, 10], there are five main steps: selection, bounding, discard-
ing, division, and termination. The prototype algorithm is shown in Algorithm 1.

Algorithm 1 Prototype Interval Branch and Bound method
Lwork ← {xxx}; Lresult ← {};
while Lwork ̸= ∅ do

Select a box xxx from Lwork ▷ Selection Rule
Compute bounds for f(xxx), gi(xxx),∀i ∈M ▷ Bounding Rule
if xxx cannot be discarded then ▷ Discarding Tests

Divide xxx into subboxes xxx1, . . . ,xxxr ▷ Division Rule
for i = 1 to r do

if TerminationCriterion(xxxi, ε) then ▷ Termination Rule
Store xxxi in Lresult

else
Store xxxi in Lwork

end if
end for

end if
end while
return Lresult

First, we initialize the working list (Lwork) with the bound constraint and the
result list (Lresult) with an empty set. We stop the method when the working list is
an empty set. In each iteration, we select a box xxxselected from the working list with
some selection rules. The selection rules can be LIFO, FIFO, or the lowest lower
bound. In our implementation, we use the lowest lower bound selection rule. In
the next step, we bound the objective of the box xxxselected by computing the natural
interval extension or the centered form. Sometimes, in the unconstrained case, we
can discard the selected box, because it is monotone, concave, or does not contain

59

Annal. Math. et Inf. M. Gencsi, B. G.-Tóth

an optimal point (Interval Newton test), by using higher-order information, e.g.
gradient. When we solve a constrained nonlinear problem, we can add two more
tests. The first is the feasibility test, where we investigate whether the selected box
is a subset of the feasible area by computing the bounds on the constraints. In this
test, there are three possible cases: the undetermined case when some computed
bounds contain zero (∃i ∈ 1, . . . , m: 0 ∈ gi(xxxselected)), the infeasible case when one
of the lower bounds of the computed bounds is greater than zero (∃i ∈ 1, . . . , m:
gi(xxxselected) > 0), and the strictly feasible case, when all the upper bounds of the
constraints are less than zero (gi(xxxselected) < 0,∀i = 1, . . . , m). To examine the
optimality of the box, we can use the FJ or KKT optimality tests. If the selected
box is not discarded and satisfies the termination rule, we can move it to the result
list. The termination rule usually examines the width of the interval or the width of
the inclusion function. Otherwise, we divide the selected box xxxselected into subboxes
xxx1, . . . ,xxxr using the division rule. The division rule can be bisection, trisection,
multisection, etc. In this work, we use bisection as a division rule, dividing the box
into two subboxes along the widest dimension.

In the next section, we will discuss the interval version of the FJ optimality
conditions in more detail. We will examine and compare four possible solution
methods.

3. The Interval Fritz-John Condition System
The Fritz John conditions are necessary conditions for a solution to be optimal in
nonlinear programming. For problem (1.1), the FJ optimality conditions [9] for a
given point x are the equations

µ0∇f(x) +
∑

i∈Mb

µi∇pi(x) +
∑

j∈Mc

µj∇gj(x) = 0 (3.1)

µipi(x) = 0, i ∈Mb (3.2)
µjgj(x) = 0, j ∈Mc (3.3)

µi ≥ 0, i ∈Mb ∪Mc ∪ {0}, (3.4)

where µi are the Lagrange multipliers, Mb and Mc is the set of the bound con-
straints and the general constraints, respectively. Thus, µ0 is the Lagrange multi-
plier of the objective function. If the system can be solved, we confirm that x can
be the optimal solution. Note that we can easily formulate a bound constraint for
xi as piu(x) = xi−yi and pil

(x) = yi−xi, where yi and yi are the upper and lower
bounds of the general bound constraint, respectively.

The straightforward extension of the Fritz John optimality conditions (3.1)–
(3.4) for a given box xxx are the interval-valued system of equations

µµµ0∇f(xxx) +
∑

i∈Mb

µµµi∇pi(xxx) +
∑

j∈Mc

µµµj∇gj(xxx) = 0 (3.5)

µµµipi(xxx) = 0, i ∈Mb (3.6)

60

Annal. Math. et Inf. The Fritz-John Condition System . . .

µµµjgj(xxx) = 0, j ∈Mc (3.7)
µµµi ≥ 0, i ∈Mb ∪Mc ∪ {0}, (3.8)

where f(xxx), pi(xxx), gj(xxx) are the inclusion functions, ∇f(xxx), ∇pi(xxx), ∇gj(xxx) are
the inclusions of the gradients of f(x), pi(x), gj(x), respectively. Note that we
can reduce the number of equations in the system by considering only the active
constraints. We consider a constraint active if the inclusion of the constraint,
pi(xxx), gj(xxx), contains zero. Let B and C be the set of active bound constraints
and active constraints, respectively. We can formalize the equations (3.5)–(3.8) for
active constraints by replacing Mb with B and Mc with C.

3.1. The normalization of the Lagrange multipliers

The Interval FJ-CS usually does not include a normalization condition. One pos-
sible way to normalize Lagrange multipliers, following [2], is to use the equation
µ0 +

∑
i∈B∪C µi = 1. We can easily formulate it as an interval-valued function,

r(µµµ) = µµµ0 +
∑

i∈B∪C

µµµi − 1 = 0. (3.9)

Moreover, adding this condition to the FJ-CS does not remove any solution, and
we can replace the interval µµµi ≥ 0 with [0, 1] for all Lagrange multipliers, which
improves the success rate of the IGS.

3.2. The Normalized Interval Fritz-John Condition System

As before, B and C are the set of active bound constraints and active constraints,
respectively. Let N = 1 + n + |B| + |C| be the dimension of the system, where n
is the dimension of the problem. Set the Lagrange multipliers, µµµi i ∈ B ∪C ∪ {0},
to the interval [0, 1]. When formalizing the system of equations, we consider the
normalization function r(µµµ) extended to the intervals defined in (3.9). Denote all
the variables by ttt = [xxx,µµµ]T , which is N -dimensional. Thus, for the box ttt, we
formalize the Normalized Interval Fritz-John Condition System (NIFJ-CS) as

ϕϕϕ(ttt) =




r(µµµ)
µµµ0 · ∇f(xxx) +

∑

i∈B

µµµi · ∇pi(xxx) +
∑

j∈C

µµµj · ∇gj(xxx)

µµµi · pi(xxx) i ∈ B

µµµj · gj(xxx) j ∈ C




= 0. (3.10)

Note that this NIFJ-CS is equivalent to the (3.9), (3.5)–(3.7) interval-valued system
of equations.

61

Annal. Math. et Inf. M. Gencsi, B. G.-Tóth

4. Solving the Normalized Interval Fritz-John Con-
dition System

When we solve an interval-valued optimality condition system, we can discard the
box if the solution is an empty set. However, if the enclosures of the gradients
are too wide, we cannot remove any part of the box. One possible way to solve
the system of equations ϕϕϕ(ttt) = 0 is to apply the Newton method. Applying the
Newton method as in [2], we obtain the system of equations

J(ttt) · (ttt− t0) = −ϕϕϕ(t0), (4.1)

where J(ttt) is the Jacobian matrix for ϕϕϕ(ttt), i.e. Jij(ttt) = ∂∂∂
∂∂∂tttj

ϕϕϕi(ttt) i, j = 1, . . . , N ,
and t0 is an interior point of the box ttt. Note that for t0 we use the midpoint of
the interval ttt. In addition, we also use the midpoint preconditioner matrix, with
which we transform (4.1) to the system of equations

P · J(ttt) · (ttt− tmid) = −P ·ϕϕϕ(tmid), (4.2)

where P = mid(J(ttt))−1. We solve the system of equations only if one bound con-
straint is active in each dimension. Otherwise, we skip solving NIFJ-CS, reducing
the probability of an unsuccessful Newton method, as the system otherwise be-
comes too large. To solve (4.2), we use IGS, because this method is more efficient
than the ILUD method. However, for IGS we need an initial box ttt, but xxx is given,
and µµµi can be set to [0, 1] for all Lagrange multipliers. Note that since an unsuc-
cessful IGS step significantly increases the runtime of the IBB method, we apply
the Newton method only once.

4.1. Estimating the Lagrange multipliers
In many cases, IGS cannot reduce or discard the box xxx because the initial bound of
ttt is too large, that is, it contains many possible solutions. One way to reduce this
problem is to estimate the Lagrange multipliers before applying the IGS method,
and initialize µµµ with the estimated bounds. The Lagrange multipliers can be ap-
proximated by solving the interval equations

r(µµµ) = 1
µµµ0 · ∇f(xxx) +

∑

i∈B

µµµi · ∇pi(xxx) +
∑

j∈C

µµµj · ∇gj(xxx) = 0 (4.3)

Note that (4.3) are the first two equations of (3.10). To solve these equations,
we use the ILUD method mentioned in Section 2.2.

4.2. Methods
To solve the NIFJ-CS (4.2), we investigate four methods based on the Newton
method, where we modify one or more steps for each variant.

62

Annal. Math. et Inf. The Fritz-John Condition System . . .

4.2.1. The naive NIFJ-CS method

In the naive NIFJ-CS method, we formalize the Newton step directly as a system
of equations (4.1) and solve with IGS. We initialize the first n component of ttt with
the examined box xxx and the remaining components with the interval [0, 1] (initial
bounds for the Lagrange multipliers). In the best case, we obtain an empty set;
that is, there is no solution in the examined box xxx. Thus, we can discard the box xxx.
Sometimes we obtain as a solution a tighter box within xxx. In this case, we reduce
the box xxx to it. In many cases, however, it is not possible to reduce the size of the
box because it is overestimated. In this case, we obtain many boxes as solutions,
as IGS splits each component where the diagonal coefficient interval contains zero.
In general, we only divide the components µµµ into subboxes and leave the box xxx
unchanged. If the box xxx is unchanged, the Newton step was unsuccessful. If we
obtain subboxes divided in the part of the box xxx, we exchange xxx to these subboxes.
Note that we do not store the estimated Lagrange multipliers because we do not
want to increase the required memory for the IBB. We want to point out that in
most cases the box xxx cannot be reduced or discarded.

4.2.2. Lagrange estimator method

In the Lagrange estimator method, we solve (4.3) using the ILUD method. In this
case, we do not need initial bounds on the Lagrange multipliers. We solve it if the
system is independent, but not underdetermined. We want to use these bounds to
decide whether or not to discard the examined box. We can use the ILUD method
only if the system is squared. In an overdetermined case, we solve the system using
only the first 1+ |B|+ |C| equations. First, we check if there are upper bounds less
than 0. If so, the box is discarded because some estimated Lagrange multipliers
are negative. If we have more equations than variables, after the first check, we
solve the remaining equations with the obtained µµµ. If the Lagrange multipliers do
not satisfy all the equations, we discard the examined box.

4.2.3. Lagrange estimator + NIFJ-CS method

In this method, we first estimate the Lagrange multipliers using the method in
Section 4.2.2. We might discard the box by the Lagrange estimator method. If
we cannot discard the box, the estimated bounds on the Lagrange multipliers
are truncated with [0, 1]. We solve the system of equations with the calculated
multipliers as described in Section 4.2.1. As a result, we can discard the box xxx or
reduce it by the Newton method.

4.2.4. Taylor expansion of the NIFJ-CS

This method is very similar to the naive NIFJ-CS method in Section 4.2.1. How-
ever, in this case, we replace some intervals in the Jacobian matrix with their
midpoints. We use the Jacobian of ϕϕϕ(xxx) as Jij(ttt) = ∂∂∂

∂∂∂tttj
ϕϕϕi(ttt1, . . . , tttj , tj+1, . . . , tN)

i, j = 1, . . . , N , where the N − j components are real numbers. This reduction is

63

Annal. Math. et Inf. M. Gencsi, B. G.-Tóth

valid, since the Taylor expansion of ϕϕϕ(ttt) is done for each variable one by one. It
might produce a tighter inclusion; however, the computational cost of the Jacobian
is much higher. The interested reader can find more information on the background
of this method in [3].

4.3. Additional improvements
As a further development, we examine the success of the methods based on the
order of the equations and the variables. Ordering the variables does not have
a huge effect on the solvability of the NIFJ-CS. It only increases the required
computation time. Sorting the equations in descending order by

oi = gi(xxx)
gi(xxx)− gi(xxx)

,

we can improve the success rate of the methods described in Sections 4.2.1 and
4.2.3 without significantly increasing the computation time.

5. Computational experiments
In this section, we compare the four methods together with the IBB method without
NIFJ-CS. We implemented the IBB method with the following discarding tests:
Newton, midpoint, cutoff, concavity, monotonicity, feasibility, and FJ test.

In detail, we use the bisection method as the division step. The termination
criterion for any box xxx is wid(xxx) < ε or wid(f(xxx)) < ε, where ε = 10−6. We sort
the working list in ascending order by the lower bound and delete any box whose
lower bound is greater than the current upper bound (cutoff test). We select the
first element from the working list. We stop the algorithm when the working list
is empty or when we reach the maximum running time (7 200 seconds).

We implement the IBB method in Matlab R2020a version 8 [4] and use Intlab
11 [11]. From Intlab, we used only the IA, AD, and ILUD methods. We imple-
ment other tests, methods, and functions. The complete project can be found on
GitLab1. The abbreviations of the five methods can be seen in Table 1.

Table 1. Abbreviations of the methods.

IBBWO IBB without FJ optimality conditions
NFJ IBB with the naive NIFJ-CS method (see Section 4.2.1)
Lag IBB with the Lagrange estimator method (see Section 4.2.2)
Lag + NFJ IBB with the Lagrange estimator + NIFJ-CS (see Section 4.2.3)
Tay + NFJ IBB with Taylor expansion of the NIFJ-CS (see Section 4.2.4)

1The IBB with Optimality condition - Intlab: https://gitlab.com/gencsimiska27/the-ibb
-with-optimality-condition-intlab

64

https://gitlab.com/gencsimiska27/the-ibb-with-optimality-condition-intlab
https://gitlab.com/gencsimiska27/the-ibb-with-optimality-condition-intlab

Annal. Math. et Inf. The Fritz-John Condition System . . .

Table 2. Computation time.

Test name IBBWO NFJ Lag Lag + NFJ Tay + NFJ
circle 21.4 30.6 13.7 12.7 61.1
ex14_1_1 755.5 4 321.1 774.2 750.5 5 565.4
ex14_1_4 266.2 764.3 218.9 201.5 836.7
ex14_1_8 41.9 84.6 51.1 48.8 181.7
ex2_1_2 496.3 597.9 55 58.3 4 331.3
ex2_1_4 � � � � �

ex2_1_6 346.9 1 762.7 361.8 355.7 2 463.7
ex3_1_2 680.8 1 543.9 87.4 80.5 2 240
ex3_1_3 � � 225.4 201.8 �

ex3_1_4 620.3 563.4 181.8 142.5 374
ex4_1_9 � 6 843.4 5 032.5 4 501.1 5 836.1
ex7_2_3 � � � � �

ex7_2_4 � � � � �

ex7_3_2 62 133.0 26.3 14.3 296.2
Gomez Levy 3.2 3.8 3.9 4.5 8.8
Mishra’s Bird 0.7 0.9 0.6 0.6 0.7
Rbrock (disk) 0.8 1.5 0.9 0.9 1.7
Rbrock (cube) 0.7 1.4 0.9 1 2.4
Simionescu 64.4 10.2 4.2 5 132.8
Hansen Test 0.5 1.7 0.8 0.9 4.3
Avg. Comp. Time 1 968.2 2 273.4 1 432 1 399.1 2 556.9

We used two benchmarks to compare the methods. The first benchmark is
the GLOBALLib2, from which we chose 14 constrained nonlinear programming
test cases having only inequality constraints. The second benchmark is called
Test Functions for Constrained Optimization from the Wikipedia website3, which
contains five two-dimensional test cases. In some cases, general bound constraints
were not given. Thus, we used a large interval, [−10 000, 10 000], which encloses
the optimum points in these cases. All runs were performed on an AMD Ryzen 7
3800X 8-Core Processor with 32 GB RAM. In addition, we use an additional test
case from [2], named the Hansen test.

The running time for each test case and method can be seen in Table 2. The
symbol � means that we cannot reach the required accuracy in 7 200 seconds, but
we still have possible solutions in the result list. We can see that we can reduce the

2GLOBALLib: http://www.gamsworld.org/global/globallib.htm
3Test Functions for Constrained Optimization: https://en.wikipedia.org/wiki/Test_funct

ions_for_optimization

65

http://www.gamsworld.org/global/globallib.htm
https://en.wikipedia.org/wiki/Test_functions_for_optimization
https://en.wikipedia.org/wiki/Test_functions_for_optimization

Annal. Math. et Inf. M. Gencsi, B. G.-Tóth

required computation time for the IBB methods by using the optimality conditions
in most cases. Only a few small problems cannot be improved with them. The
NFJ method takes equal to or more time to compute than the other methods. It is
because we try to solve an interval-valued system of equations with overestimated
variables (initial bounds for Lagrange multipliers, overestimated enclosures of the
gradients) and in many cases we are not able to reduce or discard the studied
box. The calculation time of the Tay + NFJ method is sometimes long but almost
always better than NFJ due to the sharper gradient enclosures. However, it takes
more time to calculate the gradient with different input boxes.

In average time, the best method is the Lag + NFJ method, which takes 1 399.1
seconds on average for 20 test cases, but the Lag method comes very close. The
small difference is due to the fact that the NIFJ-CS method is solved with estimated
bounds on the Lagrange multipliers.

Table 3. Relative deviations of the Weighted Function Evaluations
from the best results (in bold).

Test name IBBWO NFJ Lag Lag + NFJ Tay + NFJ
circle 142% 384% 26 464 327% 2 185%
ex14_1_1 1 057 048 784% 100% 101% 981%
ex14_1_4 165 154 618% 132% 194% 1 036%
ex14_1_8 37 518 693% 121% 180% 761%
ex2_1_2 1 807% 4 282% 19 719 118% 10 127%
ex2_1_4 2 519 349 150% 124% 122% 239%
ex2_1_6 116 566 2 038% 100% 101% 2 809%
ex3_1_2 728% 3 993% 69 215 185% 7 905%
ex3_1_3 525% 2885% 164 486 155% 3 299%
ex3_1_4 482% 473% 153 782 141% 260%
ex4_1_9 171% 219% 4 719 013 126% 114%
ex7_2_3 3 835 776 536% 122% 130% 695%
ex7_2_4 1 311 026 185% 144% 153% 651%
ex7_3_2 209% 1 613% 51 862 273% 3 552%
Gomez Levy 1 416 374% 110% 116% 216%
Mishra’s Bird 179% 138% 102% 103% 120%
Rbrock (disk) 613 497% 117% 122% 210%
Rbrock (cube) 888 336% 129% 158% 360%
Simionescu 1 270% 140% 2 826 107% 2274%
Hansen Test 1 276 161% 113% 141% 660%
Avg. WFE 121% 361% 817 505 113% 477%

In Table 3, we compare the weighted function evaluations (WFE), computed

66

Annal. Math. et Inf. The Fritz-John Condition System . . .

as WFE = Feval + n ·Geval + n2

2 ·Heval, where n is the dimension of the problem,
Feval, Geval, Heval are the number of function, gradient and Hessian evaluations,
respectively. We report the best results in bold, and the relative deviation for the
rest. One can see that, on average, the Lag method requires the least number of
function evaluations. The evaluation for IBBWO, Lag, and Lag + NFJ is very close,
and these three methods solve the problems with the least function evaluations.
The other two methods require more evaluations, because many times solving NIFJ-
CS is unsuccessful.

The relative deviations of the averages for the methods can be seen in Table 4.
We compare the five methods in five aspects: computation time, weighted number
of function evaluations (WFE), number of result boxes, number of iterations, and
number of NIFJ-CS tests, respectively. Furthermore, we study the success rate
of IBB methods that include NIFJ-CS. We can see that the Lag + NFJ method
is the best in terms of computation time (1 399.1 s), number of results boxes (4),
and FJ test (15 551). The success rate of this method is 49%, which is very high
compared to the rest. IBBWO is worst in all aspects compared to the best results.
The NFJ method is sometimes worse than the IBBWO method, which is caused
by the high number of unsuccessful NIFJ-CS. The Lag method requires the least
function evaluation because we do not solve the NIFJ-CS. The Tay + NFJ method
requires the least number of iterations, but the number of function evaluations is
significantly higher, increasing its computation time.

Table 4. The relative average deviations.

Method IBBWO NFJ Lag Lag + NFJ Tay + NFJ
Computation time 141% 162% 102% 1 399.1 183%
WFE 121% 361% 817 505 113% 477%
No. result boxes 4 4 4 4 4
No. iterations 238% 320% 243% 239% 21 340
No. FJ Test - 157% 104% 15 551 143%
FJ Success Percentage - 7% 38% 49% 25%

6. Summary
We studied the applicability of optimality conditions in Interval Branch and Bound
method to constrained problems. We introduced the NIFJ-CS, which is based on
the Fritz-John optimality conditions. We found that the naive NIFJ-CS is difficult
to solve. This is due to the overestimation of the Lagrange multipliers and the
enclosure of the gradients. We studied four versions (NFJ, Lag, Lag + NFJ, Tay
+ NFJ) for solving the NIFJ-CS, and compared their efficiency together with the
IBB method without optimality conditions in 20 test cases from the literature.
We found that the best method for solving NIFJ-CS is the Lag + NFJ method.
The average time required for this method is 1 399.1 seconds, and the success rate
is 49%.

67

Annal. Math. et Inf. M. Gencsi, B. G.-Tóth

In the future, we want to improve the success rate of the Lag + NFJ method by
introducing a preliminary test before trying to solve NIFJ-CS. The preliminary test
should discard the box, which certainly does not contain an optimal point, within
a short computation time. In addition, we plan to use constraint propagation
to reduce the box as much as possible. We also want to extend the methods to
problems with equality constraints.

References
[1] A. Goldsztejn, G. Chabert: A Generalized Interval LU Decomposition for the Solution of

Interval Linear Systems, in: Aug. 2006, pp. 312–319, isbn: 978-3-540-70940-4, doi: 10.1007
/978-3-540-70942-8_37.

[2] E. Hansen, G. Walster: Bounds for Lagrange multipliers and optimal points, Computers
& Mathematics with Applications 25.10 (1993), pp. 59–69, issn: 0898-1221, doi: 10.1016/0
898-1221(93)90282-Z.

[3] E. Hansen, G. W. Walster: Global Optimization Using Interval Analysis: Revised And
Expanded, CRC Press, 2003, p. 728, isbn: 0824740599, doi: 10.1201/9780203026922.

[4] T. M. Inc.: MATLAB version: 9.13.0 (R2022a), Natick, Massachusetts, United States, 2022,
url: https://www.mathworks.com.

[5] L. Jaulin, M. Kieffer, O. Didrit, E. Walter: Applied Interval Analysis with Examples in
Parameter and State Estimation, Robust Control and Robotics, Aug. 2001, isbn: 1852332190,
doi: 10.1108/k.2002.06731eae.002.

[6] R. B. Kearfott: An Interval Branch and Bound Algorithm for Bound Constrained Opti-
mization Problems, Journal of Global Optimization 2 (1992), pp. 259–280, doi: 10.1007/BF0
0171829.

[7] R. B. Kearfott: Preconditioners for the Interval Gauss–Seidel Method, SIAM Journal on
Numerical Analysis 27.3 (1990), pp. 804–822, doi: 10.1137/0727047.

[8] R. Kearfott, M. Nakao, A. Neumaier, S. Rump, S. Shary, P. Van Hentenryck: Stan-
dardized notation in interval analysis, Vychislitel’nye Tekhnologii 15 (Jan. 2010).

[9] O. Mangasarian, S. Fromovitz: The Fritz John necessary optimality conditions in the
presence of equality and inequality constraints, Journal of Mathematical Analysis and Ap-
plications 17.1 (1967), pp. 37–47, doi: 10.1016/0022-247X(67)90163-1.

[10] L. Pál, T. Csendes: INTLAB implementation of an interval global optimization algorithm,
Optimization Methods and Software 24.4-5 (2009), pp. 749–759, doi: 10.1080/10556780902
753395.

[11] S. Rump: INTLAB - INTerval LABoratory, in: Developments in Reliable Computing, ed. by
T. Csendes, http://www.tuhh.de/ti3/rump/, Dordrecht: Kluwer Academic Publishers,
1999, pp. 77–104.

[12] H. J. S., A. Griewank, G. F. Corliss: Automatic Differentiation of Algorithms: Theory,
Implementation, and Application, Mathematics of Computation 62.205 (Jan. 1994), p. 434,
doi: 10.2307/2153424.

[13] S. P. Shary: Interval Gauss-Seidel Method for Generalized Solution Sets to Interval Linear
Systems, Reliable Computing 7.2 (Apr. 2001), pp. 141–155, issn: 1573-1340, doi: 10.1023
/A:1011422215157.

68

https://doi.org/10.1007/978-3-540-70942-8_37
https://doi.org/10.1007/978-3-540-70942-8_37
https://doi.org/10.1016/0898-1221(93)90282-Z
https://doi.org/10.1016/0898-1221(93)90282-Z
https://doi.org/10.1201/9780203026922
https://www.mathworks.com
https://doi.org/10.1108/k.2002.06731eae.002
https://doi.org/10.1007/BF00171829
https://doi.org/10.1007/BF00171829
https://doi.org/10.1137/0727047
https://doi.org/10.1016/0022-247X(67)90163-1
https://doi.org/10.1080/10556780902753395
https://doi.org/10.1080/10556780902753395
http://www.tuhh.de/ti3/rump/
https://doi.org/10.2307/2153424
https://doi.org/10.1023/A:1011422215157
https://doi.org/10.1023/A:1011422215157

Submitted: July 31, 2023
Accepted: August 7, 2023
Published online: August 19, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 69–80
DOI: 10.33039/ami.2023.08.009
URL: https://ami.uni-eszterhazy.hu

A pseudonymization tool for Hungarian

Péter Hatvaniab, László János Lakib, Zijian Győző Yangb

aPázmány Péter Catholic University Faculty of Humanities and Social Sciences,
Doctoral School of Linguistics

hatvani.peter@hallgato.ppke.hu
bHungarian Research Centre for Linguistics

{yang.zijian.gyozo,laki.laszlo}@nytud.hu

Abstract. In today’s world, the volume of documents being generated is
growing exponentially, making the protection of personal data an increas-
ingly crucial task. Anonymization plays a vital role in various fields, but its
implementation can be challenging. While advancements in natural language
processing research have resulted in more accurate named entity recognition
(NER) models, relying on an NER system to remove names from a text
may compromise its fluency and coherence. In this paper, we introduce a
novel approach to pseudonymization, specifically tailored for the Hungarian
language, which addresses the challenges associated with maintaining text
fluency and coherence. Our method employs a pipeline that integrates var-
ious NER models, morphological parsing, and generation modules. Instead
of merely recognizing and removing named entities, as in conventional ap-
proaches, our pipeline utilizes a morphological generator to consistently re-
place names with alternative names throughout the document. This process
ensures the preservation of both text coherence and anonymity. To assess
the efficacy of our method, we conducted evaluations on multiple corpora,
with results consistently indicating that our pipeline surpasses traditional
approaches in performance. Our innovative approach paves the way for new
pseudonymization possibilities across a diverse range of fields and applica-
tions.
Keywords: Pseudonymization, Named entity recognition (NER), Morpholog-
ical generation
AMS Subject Classification: 68T50, 68T07

https://doi.org/10.33039/ami.2023.08.009
https://ami.uni-eszterhazy.hu
mailto:hatvani.peter@hallgato.ppke.hu
mailto:{yang.zijian.gyozo, laki.laszlo}@nytud.hu

Annal. Math. et Inf. P. Hatvani, L. J. Laki, Z. Gy. Yang

1. Introduction
The GDPR (General Data Protection Act) [3] of the European Union enforces
stricter than ever rules on handling personal information and information that can
be traced back to the subject. Luckily, data can not only be stored in a completely
anonymised way but also in a pseudoanonymised way, still, as per the definition of
the law:

‘pseudonymization’ means the processing of personal data in such a
manner that the personal data can no longer be attributed to a specific
data subject without the use of additional information, provided that
such additional information is kept separately and is subject to technical
and organisational measures to ensure that the personal data are not
attributed to an identified or identifiable natural person;

The most important aspect of the pseudoanonymisation is that after the process
direct identification can not remain in the text. As for indirect identification -
location, title, martial status - these information can remain and will remain in the
text in our implementation.

The paper introduces a pseudononymization tool for Hungarian that integrates
different named entity recognition, morphological parsing and generation modules.
Instead of simply recognizing and removing named entities, the tool replaces found
names with other names consistently throughout a given document. The tool uses
huSpacy [14] and emMorph [11], a Hungarian morphological analyzer, to ensure
that the results are consistent in several testing corpora. The tool is designed to
be used for various use cases such as legal, medical documents and other types
of sensitive texts. However, the testing of the model has been limited to crawled
comments, excerpt from programmes of the Hungarian Kossuth Radio, excerpts
from NerKor [17] from the news and the wikipedia parts and Hungarian literature,
which serves as a proof of concept for the ability of the tool to maintain coherence
and fluency in the anonymized text.

Our pseudononymization pipeline tool is freely available in our github site1 with
Apache 2.0 license.

2. Related works
Anonymization is an important task in many fields, with healthcare being one of
the main areas where it is essential. In medical documents, anonymization methods
need to be applied to protect patients’ privacy [1, 2, 15, 16]. For Hungarian, Kinga
Mátyus [7] conducted rule-based anonymization in a sociolinguistic research.

Various approaches have been proposed for anonymizing medical data. In one
study [1], an enhanced method utilizing asymmetric encryption was suggested to
separate the duties of pseudonymization and de-pseudonymization. This method

1https://github.com/nytud/pseudo-anonimization

70

https://github.com/nytud/pseudo-anonimization

Annal. Math. et Inf. A pseudonymization tool for Hungarian

proposed a secure and controlled process that allows authorized third parties (om-
budsmen) to de-pseudonymize patients when necessary, thereby bridging the gap
between bench and bedside in translational research while preserving patient pri-
vacy.

Another study [16] focused on the use of pseudonymization for retrospective
research, quality assurance, and education. By replacing all person-related data
within a data record with an artificial identifier, pseudonymization allows for the
linking of medical data and patient identification data under specific, predefined,
and controllable conditions. Consequently, medical data can be shared with third
parties without enabling them to identify the individual patients.

A third study [15] introduced a system called PIPE (pseudonymization of infor-
mation for privacy in e-health), which securely integrates primary and secondary
usage of health data, addressing the shortcomings of existing approaches. PIPE
can serve as a foundation for implementing secure electronic health record (EHR)
architectures or as an extension to current systems, effectively preventing health
data misuse while enhancing communication between healthcare providers and, in
turn, improving patient care quality and reducing costs.

Anonymisation based on NER model and morphological tools are rare. For
Hungarian, HuSpacy [14] is a spaCy library providing industrial-strength Hun-
garian language processing facilities. The huSpacy pipeline contains a tokenizer,
a sentence splitter, a lemmatizer, a morphological tagger, a dependency parser
and a named entity recognition module. The morphological analyzer achieved
approximately 90% accuracy in token classification tasks, and the NER module
achieved 80.75 F1 score on NerKor [17]. From the heaps of morphological ana-
lyzers for Hungarian we have chosen to use huSpacy and emMorph (eMagyar2).
The emMorph [11] is an Hungarian morphological analyzer that uses Humor [10]
unification morphology. The advantage of the spaCy tool is that it is fast and it
can produce results without GPU acceleration as well as with it. Three different
models are present of HuSpacy, two of them are based on the huBERT [9] model.
One of the best Hungarian morphological annotation tool is the PurePos 2.0 [13]
that uses emMorph morphology analyzer. The PurePos achieved 96.72% accuracy
on part-of-speech recognition tasks. Also emBERT [8] is a framework that was
used with a multlimodal BERT model to finetune NER and noun phase recogni-
tion (NP) models. On NerKor, the emBERT could achieve 92.09 F1 score, due
to time constraints emBERT fell out of this round of comparison, but it showed
promise being a freely available NER model that finetuned by [22] on NerKor and
gained a 90.18 F1 score.

There are some morphological analyzers for Hungarian that can be used for
generation as well. HunSpell can be used for this task in two ways: it generates word
forms by typing the lemma and the features, or typing the lemma and an example
word. Hunmorph [19] and Morphdb.hu [20] are also suitable for morphological
generation. Hunmorph-foma3 uses the morphological tagset of HunMorph and it is

2https://e-magyar.hu
3https://github.com/r0ller/hunmorph-foma

71

https://e-magyar.hu
https://github.com/r0ller/hunmorph-foma

Annal. Math. et Inf. P. Hatvani, L. J. Laki, Z. Gy. Yang

based on the foma generator [4]. The main problem of these tools that they are not
freely available or use a different tagset than emMorph or Universal Dependencies
(UD).

In our research, we used two neural morphological generators [6] (an emMorph
and an UD model) that was trained by the Hungarian Research Centre for Lin-
guistics.

3. Corpora
Names corpus: The names were gathered from the list of names that can be
registered as given names [12]. This list is updated monthly and the local version
of the corpus was cached in October of 2022. The corpus itself is divided into
two parts, male and female given names. This distinction is important, because
certain gender implying words, such as father, mother etc. in the sentence can be
connected to the swapped name and in many cases the gender of the word can
disambiguate the context for the conversation.

Family names: Unfortunately no ready made corpora are available of Hungarian
family names, Only the most used one hundred [5] second names are published. As
a fall back if an unknown family name is present the replacing algorithm was tasked
to replace the unknown name with a male name rather than guessing a family name.

(1) a. Maga
Formal personal pronoun third person singular

‘Oneself’
b. Fodor Kriszta

Name that can be interpreted as two given names
c. Budai Krisz

Nickname
d. Pálma Veresné Berta

Out of order name
e. Bihar Megyei Tanács

Name of an institution

f. BRÜLL ADÉLNAK
All capital name

g. Aranycsapat
Name of a collective

72

Annal. Math. et Inf. A pseudonymization tool for Hungarian

Evaluation corpora: Three texts were chosen for evaluating the pipeline. All
of them are contemporary variations of the language and are in line with the use
cases connected to journalism and the media:

• reporting on social media: “comments”: scraped comments from a social
media post, especially hard text for its noisy nature

• reporting on legal documents “Ady letters”: letters from Endre Ady, selected
for the usage of capitalized pronouns (1a) and full capital names (1f)

• official reporting “spok”: excerpt from MNSZ [21]

• reporting on historical documents “huwiki”: mixed sentences from the Hun-
garian Wikipedia

• reporting on not spoken news “newscrawl”: crawled news from reputable
journalists collected in NerKor [17]

These corpora contained many opportunities for the models to fail: capitalized
personal pronouns (1a), reverse ordered names (1d), nicknames (1c), names that
have given names as first name (1b), all capitalized names (1f) names of collective
(1g), place and institution names (1e).

4. Pipeline architecture and modules

4.1. Modules
In our pipeline we have five main modules:

1. Preprocessing: For preprocessing, HuSpaCy and emMorph was used. The
input text is splitted into sentences and tokenized.

2. Morphological analyzer: HuSpaCy and emMorph modules were inte-
grated. Morphological analysis can be performed with either HuSpaCy in
UD format or EmMorph in emMorph code format.

3. NER: For named entity recognition, a fine-tuned huBERT model [22] was
used. The model was tested on NerKor that achieved 90.04 precision, 91.17
recall and 90.60 F1 scores.

4. Name databases: The names were collected from the official list of Hun-
garian surnames that are recognised [12] and the first one hundred most used
family names [5].

5. Morphology genarator: Two neural-based Hungarian morphology genera-
tors were used that provided by the Hungarian Research Centre for Linguis-
tics [6]. One emMorph and one UD morphology generator. The generator
models were trained with Marian neural machine translation system. The
eMagyar model could gain more than 96% accuracy and the UD model could
achieve more than 94% accuracy.

73

Annal. Math. et Inf. P. Hatvani, L. J. Laki, Z. Gy. Yang

4.2. Architecture
The pipeline serves as an integration of various modules, which are introduced in
the Modules section. This section provides an overview of the pipeline architecture.
As illustrated in Figure 1, a module may be utilized multiple times throughout the
process. For example, the morphological analyzers are employed for both tokeniza-
tion of the raw text and subsequent morphological analysis.

Figure 1. Structure diagram of the pseudononymization Tool.

As illustrated in Figure 2, the anonymization process is inherently sequential
and challenging to parallelize. The names must first be identified, followed by
selecting suitable replacement names, and finally performing the name swapping.
This swapping process introduces a conundrum: not only is the identification of
names potentially inaccurate, but the original and new names may also have differ-
ent lengths, requiring the delta of lengths to be stored alongside with the mapping
of the name to the pseudonym which will be mapped in the text.

Figure 2. Activity diagram of the pseudononymization Tool.

74

Annal. Math. et Inf. A pseudonymization tool for Hungarian

Furthermore, neural models typically perform best when processing smaller text
portions, similar to the complete sentences they were trained on. Consequently,
the input text is first divided into sentences, which are then processed in a pagi-
nated manner using the NER system to identify potential named entities and their
positions.

5. Results and evaluation
In our first experiment, we evaluated the performance of our NER model on person
names. Using NerKor corpus, the NER model achieved 96.25 F1 score on person
names (words tagged with [PER]).

In our second experiment, we evaluated the performance of eMagyar and UD
morphology generators on named entities using the NerKor corpus. We collected
the morphologically analyzed tokens from NerKor, filtered and extracted the unique
names, and applied morphology generators to these names. The results of our
evaluation are presented in Table 1. The ‘all’ column shows the performance of the
models on all names, but this result may be biased as nearly 86% (eMagyar: 85.62%;
UD: 86.07%) of names are in nominative case. Therefore, we also evaluated the
performance of the models on non-nominative cases, which is shown in the ‘filtered’
column.

Table 1. Performance of morphology generators on named entities.

all filtered
emMorph 95.10% 84.51%
UD 92.85% 79.39%

For further evaluation we have established an ideal scenario, when all names
are successfully replaced and no false positives are present, and a worst case, when
no names are recognized and every other word gets replaced but the names. These
scenarios are significantly distinct from either the eMagyar or the huSpacy morpho-
logical analyzers when compared with Student’s t-test [18]. The evaluation metrics
used are as follows:

1. True Positive: The number of actual named entities (real names) found by
the pipeline.

2. False Positive: The number of incorrect named entities identified by the
pipeline that are not real names.

3. False Negative: The number of real named entities that were not identified
by the pipeline.

4. All: The total number of named entities (both correctly identified and incor-
rectly identified) in the text.

75

Annal. Math. et Inf. P. Hatvani, L. J. Laki, Z. Gy. Yang

The p-values indicate the probability of obtaining the observed results if there is no
significant difference between the pipelines. The hypothesis being tested is whether
there is a significant difference in performance between the two pipelines. In the
spok corpus with the eMagyar analyzer the distinction from the worst (p = 0.0001)
and the ideal (p = 0.0029) are hairly distinct compared to the huSpacy analyzed
which is not significantly distinct (p = 0.5933). The same can be observed with the
analysis of the two other corpora. However, the similarity of the same pipeline on
different texts is not as close as one might think eMagyar “spok” and “comments”
are not close (p = 0.0001), only the Ady letter text and the spok corpus with the
huSpacy pipeline was close (p = 0.0454), but they still differed significantly.

The pipelines yielded results with many false positives, such as reporting a
name in the middle of a word or finding the name in two separate parts, but in
such a way that the two findings are next to each other without even a character
of difference. In such cases, as a remedy, a unification algorithm was used, which
extended the first hit and deleted the second. Even with this measure, the false
positive percentage of all found names is high, especially in the “comments” corpus
(Table 2).

Table 2. Performance of pseudo anonymization or eMagyar mor-
phological analyzer.

text True Positive False Positive False Negative All
spok 7 8 2 13

comments 42 25 9 67
Ady letters 11 4 9 20

huwiki 85 2 0 87
newscrawl 103 2 0 105

Table 3. Performance of pseudo anonymization or huSpacy mor-
phological analyzer.

text True Positive False Positive False Negative All
spok 6 5 5 11

comments 58 19 3 77
Ady letters 6 5 9 15

huwiki 85 0 4 86
newscrawl 103 2 1 128

When analyzing the data from the huwiki and newscrawl corpora, both are col-
lected from NerKor [17], it is evident that the false positive rates for these datasets
are generally lower than those observed in the “comments” corpus. For instance,
the eMagyar pipeline had only 2 false positives in both huwiki and newscrawl cor-

76

Annal. Math. et Inf. A pseudonymization tool for Hungarian

pora, while the huSpacy pipeline showed no false positives in the huwiki corpus
and only 2 in the newscrawl corpus (Tables 2 and 3). This suggests that the per-
formance of both pipelines in terms of false positives may vary depending on the
specific corpus being analyzed, and further research or fine-tuning may be required
to optimize the pipelines for each individual corpus.

Table 4. Performance of NerKor with different tokenization
pipelines.

corpus pipeline All Positives (True + False) All real names All words
spok emagyar 24 10 735
spok HuSpacy 24 10 735

comments emagyar 128 67 876
comments huspacy 126 67 876
Ady letters emagyar 37 20 1369
Ady letters huspacy 32 20 1369

huwiki emagyar 85 87 2785
huwiki huspacy 85 86 2785

newscrawl emagyar 103 105 4551
newscrawl huspacy 103 128 4551

Table 4 shows the performance of NerKor with two tokenization pipelines on dif-
ferent datasets. In general, both pipelines perform similarly, identifying named en-
tities in the corpora. However, in the “newscrawl” dataset, the “Huspacy” pipeline
outperforms “emagyar” in identifying named entities (128 vs. 103). The total word
count remains consistent across all corpora and tokenization pipelines.

(2) a. 751
751
751
751

SCHÖPFLIN
SCHÖPFLIN
Schöpflin
Schöpflin

ALADÁRNAK
to Aladar
Ilájnak
to Ilja

b. Édes,
Sweet,
Édes,
Sweet,

Drága,
Precious,
Drága,
Precious,

áldott
blessed
áldott
blessed

Adélom,
my Adel,
Darlám,
my Darla,

c. ima
prayer
ima
prayer

által
through
által
through

kapcsolatba
get
kapcsolatba
get

lépünk
connected
lépünk
connected

Istennel,
with God,
Gyárfással,
with Gyárfás,

In Example 2 the proper form generation can be observed in action. These
examples are from the ‘Ady letters’ corpus and they were generated from form
tokenized and analyzed by the eMagyar pipeline. As you can see the case stayed the

77

Annal. Math. et Inf. P. Hatvani, L. J. Laki, Z. Gy. Yang

same and even the sound assimilation was generated properly. The last example
showcases a certain error that poses a great challenge whereas the NER system
identifies collectives or supernatural beings as persons and treats them with great
respect regarding their privacy.

‘Benjámin Somogyi’
‘Benjámin Somogyi’
‘Magatokon lehetne a legtöbbet spórolni, de arról hallani sem akartok!
Az egyes élelmiszer hatósági árát, a kereskedőknek kell köszönni, nem
nektek!,’
‘It would be possible to save the most on yourselves, but
you don’t even want to hear about it! The regulatory
price of individual food products should be credited to the
traders, not you!’
‘Hegedűsné Krizsák Barbara’,
‘Mrs. Hegedűsné Krizsák Barbara’,
‘Benjámin Somogyi így igaz.’,
‘Benjámin Somogyi that’s true.’,
‘Száváné nagy Balzsam’,
‘Száváné Nagy Balzsam’,
‘Benjámin Somogyi A kereskedők nem maguktól találták ezt ki. Majd
hülyék lennének maguk ellen dolgozni.’
‘Benjámin Somogyi The traders didn’t come up with this
on their own. They would be fools to work against them-
selves.’

The previous quote demonstrates the pipeline in action on the comments corpus.
One of the main features is the consistency of names. All the given names were
typeset bold for the quote to show how the same person, who should be known
as Benjámin according to the pipeline and wears the family name of Somogyi, is
consistently swapped to be Benjámin. However, an error is also present in this
presentation. The family name “Nagy” is mistakenly replaced with all lower case
and part of the tagging is also present for now, as this error is under investigation.

6. Conclusion
We have presented a pseudononymization pipeline with a command line interface
and a web service, tailored for the Hungarian language. All the tools used in
the pipeline, as well as the pipeline itself, are freely available and open source.
Instructions for local deployment can be found in the git repository, ensuring easy
reproducibility. Our approach achieved impressive results as the first of its kind,
extending beyond traditional use cases in medicine and legal documents. We believe
that anonymization is equally important in media and business contexts, where
noise is more prevalent than in the aforementioned fields. The testing corpora
posed significant challenges, yet our models were able to effectively handle them,

78

Annal. Math. et Inf. A pseudonymization tool for Hungarian

demonstrating the potential for broader applications of our pseudononymization
approach.

7. Further work
In the future we want to expand this tool with the ability to create a database
with which the pseudonymized text can be deanonymized with ease, this should
be provided with a switch to the command line interface and a separate endpoint
for the web server. Additionally more models could be incorporated to expand the
possibility to find the best model for this task.

References
[1] H. Aamot, C. D. Kohl, D. Richter, P. Knaup-Gregori: Pseudonymization of patient

identifiers for translational research, BMC Medical Informatics and Decision Making 13
(2013), pp. 1472–6947.

[2] H. Dalianis: Pseudonymisation of Swedish Electronic Patient Records Using a Rule-Based
Approach, in: Proceedings of the Workshop on NLP and Pseudonymisation, Turku, Finland:
Linköping Electronic Press, Sept. 2019, pp. 16–23, url: https://aclanthology.org/W19-65
03.

[3] European Commission: Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation) (Text with EEA relevance), 2016, url: https://eur
-lex.europa.eu/eli/reg/2016/679/oj.

[4] M. Hulden: Foma: a Finite-State Compiler and Library, in: Proceedings of the Demon-
strations Session at EACL 2009, Athens, Greece: Association for Computational Linguistics,
Apr. 2009, pp. 29–32, url: https://aclanthology.org/E09-2008.

[5] M. of Interior Deputy State Secretariat for Data Registers: Most common 100
family names, data retrieved from Ministry of Interior Deputy State Secretariat for Data
Registers, https://www.nyilvantarto.hu/letoltes/statisztikak/kozerdeku_csaladnev
_2022.xlsx, 2022.

[6] L. J. Laki, N. Ligeti-Nagy, N. Vadász, Z. Gy. Yang: Neural Morphological Generators for
Hungarian, in: XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023), Szeged,
Hungary: Szegedi Tudományegyetem, Informatikai Intézet, 2023, pp. 331–340.

[7] K. Mátyus: Anonimizálási gyakorlat?, in: IX. Magyar Számítógépes Nyelvészeti Konferencia,
Szeged: Szegedi Tudományegyetem, 2013, pp. 338–342.

[8] D. M. Nemeskey: Egy emBERT próbáló feladat, in: XVI. Magyar Számítógépes Nyelvészeti
Konferencia, Szeged: Szegedi Tudományegyetem, 2020, pp. 409–418.

[9] D. M. Nemeskey: Introducing huBERT, in: XVII. Magyar Számítógépes Nyelvészeti Konfer-
encia, Szeged, Magyarország: Szegedi Tudományegyetem, Informatikai Intézet, 2021, pp. 3–
14.

[10] A. Novák: A New Form of Humor – Mapping Constraint-Based Computational Morpholo-
gies to a Finite-State Representation, in: Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14), ed. by N. Calzolari, K. Choukri, T.
Declerck, H. Loftsson, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, S. Piperidis,
Reykjavik, Iceland: European Language Resources Association (ELRA), May 2014, isbn:
978-2-9517408-8-4.

79

https://aclanthology.org/W19-6503
https://aclanthology.org/W19-6503
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://aclanthology.org/E09-2008
https://www.nyilvantarto.hu/letoltes/statisztikak/kozerdeku_csaladnev_2022.xlsx
https://www.nyilvantarto.hu/letoltes/statisztikak/kozerdeku_csaladnev_2022.xlsx

Annal. Math. et Inf. P. Hatvani, L. J. Laki, Z. Gy. Yang

[11] A. Novák, B. Siklósi, Ch. Oravecz: A New Integrated Open-source Morphological Analyzer
for Hungarian, in: Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016), ed. by N. Calzolari, K. Choukri, T. Declerck, S. Goggi,
M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis,
Portorož, Slovenia: European Language Resources Association (ELRA), May 2016, isbn:
978-2-9517408-9-1.

[12] N. K. Nyelvművelő és Nyelvi Tanácsadó Kutatócsoport: Bejegyzésre alkalmasnak
minősített utónevek jegyzéke, 2022, url: http://www.nytud.hu/oszt/nyelvmuvelo/uton
evek/index.html (visited on 10/25/2022).

[13] Gy. Orosz, A. Novák: PurePos 2.0: a hybrid tool for morphological disambiguation, in: Pro-
ceedings of the International Conference Recent Advances in Natural Language Processing
RANLP 2013, Hissar, Bulgaria: INCOMA Ltd. Shoumen, BULGARIA, Sept. 2013, pp. 539–
545, url: https://aclanthology.org/R13-1071.

[14] Gy. Orosz, Z. Szántó, P. Berkecz, G. Szabó, R. Farkas: HuSpaCy: an industrial-strength
Hungarian natural language processing toolkit, Szeged, 2022.

[15] B. Riedl, V. Grascher, S. Fenz, T. Neubauer: Pseudonymization for improving the Pri-
vacy in E-Health Applications, in: Proceedings of the 41st Annual Hawaii International Con-
ference on System Sciences (HICSS 2008), 2008, pp. 255–255, doi: 10.1109/HICSS.2008.366.

[16] B. Schütze: Use of medical treatment data outside of the patient supply: best way pseudonymi-
sation, Dtsch Med Wochenschr 137(16) (2012), pp. 844–850.

[17] E. Simon, N. Vadász: Introducing NYTK-NerKor, A Gold Standard Hungarian Named
Entity Annotated Corpus, in: Text, Speech, and Dialogue - 24th International Conference,
TSD 2021, Olomouc, Czech Republic, September 6-9, 2021, Proceedings, ed. by K. Ekstein,
F. Pártl, M. Konopík, vol. 12848, Lecture Notes in Computer Science, Springer, 2021,
pp. 222–234, doi: 10.1007/978-3-030-83527-9_19.

[18] Student: The probable error of a mean, Biometrika (1908), pp. 1–25.
[19] V. Trón, G. Gyepesi, P. Halácsy, A. Kornai, L. Németh, D. Varga: Hunmorph: open

source word analysis, in: Proceedings of the ACL 2005 Software Workshop, ed. by M. Jan-
sche, Ann Arbor: ACL, 2005, pp. 77–85.

[20] V. Trón, P. Halácsy, P. Rebrus, A. Rung, P. Vajda, E. Simon: Morphdb.hu: Hungar-
ian lexical database and morphological grammar, in: Proceedings of the Fifth International
Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy: European Lan-
guage Resources Association (ELRA), May 2006, url: http://www.lrec-conf.org/proceed
ings/lrec2006/pdf/683_pdf.pdf.

[21] T. Váradi: The Hungarian National Corpus, in: Proceedings of the Third International Con-
ference on Language Resources and Evaluation (LREC-2002), Las Palmas de Gran Canaria:
European Language Resources Association, 2002, pp. 385–389.

[22] Z. Gy. Yang, T. Váradi: Training language models with low resources: RoBERTa, BART
and ELECTRA experimental models for Hungarian, in: Proceedings of 12th IEEE Inter-
national Conference on Cognitive Infocommunications (CogInfoCom 2021), Online: IEEE,
2021, pp. 279–285.

80

http://www.nytud.hu/oszt/nyelvmuvelo/utonevek/index.html
http://www.nytud.hu/oszt/nyelvmuvelo/utonevek/index.html
https://aclanthology.org/R13-1071
https://doi.org/10.1109/HICSS.2008.366
https://doi.org/10.1007/978-3-030-83527-9_19
http://www.lrec-conf.org/proceedings/lrec2006/pdf/683_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/683_pdf.pdf

Submitted: August 31, 2023
Accepted: November 9, 2023
Published online: November 10, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 81–91
DOI: 10.33039/ami.2023.11.002
URL: https://ami.uni-eszterhazy.hu

CAPTCHA recognition using machine
learning algorithms with various

techniques

Ádám Kovácsab, Tibor Tajtia

aEszterházy Károly Catholic University
kovacs2.adam@uni-eszterhazy.hu

tajti.tibor@uni-eszterhazy.hu
bUniversity of Debrecen, Doctoral School of Informatics

Abstract. In this paper, we present research results on the recognition of
text-based CAPTCHA tests using advanced machine learning algorithms and
techniques. Text-based CAPTCHAs serve as a crucial security measure to
prevent automated access to various web services, but their effectiveness de-
pends on their resistance to sophisticated recognition techniques. To this
end, we focus on evaluating and enhancing the performance of recognition
models using a Convolutional Neural Network (CNN) as the base model. We
propose an integrated approach, which incorporates a systematic parame-
ter optimization strategy using Grid Search Cross-Validation (Grid Search
CV) and the Ensemble Voting Method to improve the performance of the
recognition model. The use of Grid Search CV enables us to fine-tune the
hyperparameters of the CNN model, leading to an optimal configuration.
Further, we investigate the effectiveness of the Ensemble Voting Method to
aggregate the predictions from multiple CNN models, each with a set of the
optimal parameters obtained from the Grid Search CV. The methods’ per-
formance was evaluated through multiple learning sessions, assessing their
effectiveness in recognizing text-based CAPTCHAs under various scenarios.
Keywords: Machine learning, CAPTCHA recognition, neural networks, hy-
perparameter optimization, ensemble methods

1. Introduction
CAPTCHA, or Completely Automated Public Turing Test to tell Computers and
Humans Apart, is a widely used security measure designed to differentiate between

https://doi.org/10.33039/ami.2023.11.002
https://ami.uni-eszterhazy.hu
mailto:kovacs2.adam@uni-eszterhazy.hu
mailto:tajti.tibor@uni-eszterhazy.hu

Annal. Math. et Inf. Á. Kovács, T. Tajti

human and machine users [18]. However, with recent advancements in artificial
intelligence, traditional CAPTCHAs are becoming increasingly susceptible to au-
tomated system bypassing.

Convolutional Neural Networks (CNNs) are a category of deep learning algo-
rithms that are generally used for processing and analyzing visual data, such as
images and videos. Their distinctive architecture leverages spatial hierarchies and
local patterns within the data, enabling the automatic learning of complex and
abstract features. While CNNs are highly applicable to a range of computer vi-
sion tasks, including image recognition, object detection, and segmentation, they
can also be employed in other domains, such as time series prediction and speech
recognition. The use of CNNs to recognize distorted characters has exposed the
vulnerability of existing CAPTCHA systems, emphasizing the need for more so-
phisticated and resilient alternatives [7].

Grid Search Cross-Validation (Grid Search CV) is a hyperparameter optimiza-
tion technique in machine learning models [9]. The use of Grid Search CV entails
a comprehensive search across a defined range of hyperparameter values, with the
performance of each combination assessed via cross-validation (CV). This approach
aids in determining the optimal set of hyperparameters, resulting in superior model
performance. Grid Search CV is crucial for developing robust models, as it ensures
that they are fine-tuned and capable of generalizing effectively to unseen data.

Ensemble methods comprise a collection of powerful machine learning tech-
niques that focus on integrating multiple models to achieve enhanced predictive
performance compared to individual models. The core concept underlying ensem-
ble methods are to exploit diversity among various models, which assists in reducing
prediction errors, increasing stability, and bolstering generalization capabilities. By
aggregating the predictions of several models, ensemble methods can counterbal-
ance the limitations of individual models, ultimately yielding more accurate and
robust predictions. Ensemble voting can be effective using learners with the same
model [13], but also using various models for the voters [6].

1.1. Dataset
Figure 1 illustrates two text-based CAPTCHAs from the dataset, each subjected
to different noise levels and distortions.

Figure 1. Random elements of the dataset.

These alterations serve to increase the CAPTCHAs’ complexity for automated
systems, consequently augmenting the security of the protected system. The pres-
ence of diverse distortions and noise levels in the dataset challenges the automated
systems to adapt and recognize characters under varying conditions, thereby testing
their robustness and reliability in solving CAPTCHAs [3].

82

Annal. Math. et Inf. CAPTCHA recognition using machine learning algorithms . . .

The dataset consists of a total of 1,070 images, predominantly in the PNG
format, with a few files in the JPG format [17]. Each of the images is in grayscale,
featuring five alphanumeric characters that may include both letters and numbers.
The dimensions of these images are 200 pixels in width and 50 pixels in height.

1.2. Model
Figure 2 shows the pre-existing model that we utilized for text-based CAPTCHA
prediction, with an input layer for 50 × 200 grayscale images [10].

Figure 2. Representation of the layers.

It features three Conv2D layers, each followed by a MaxPooling2D layer for
feature extraction, and a BatchNormalization layer for improved stability [16].
The output is flattened, and the model branches into five separate paths, each
responsible for predicting one CAPTCHA character. Each branch consists of a
Dense layer, a Dropout layer, and a final Dense layer with output neurons matching
the number of possible characters. The activation function for the last Dense layer
is the softmax function, which calculates probabilities for each possible character.

83

Annal. Math. et Inf. Á. Kovács, T. Tajti

1.3. Voting method
One of the most prominent ensemble methods is the voting method [2, 5, 15]. In
this approach, multiple model instances are trained on the same dataset. These
trained models are then used to make predictions for new data points, and the final
prediction is determined by aggregating the individual models’ predictions using a
voting scheme.

Various voting schemes can be employed in the voting method, such as:

• Plurality voting: The final prediction is the class (or value) that receives the
most votes from the individual models.

• Fuzzy average voting: For classification tasks, the final prediction is deter-
mined by averaging the predicted class probabilities from each model and
selecting the class with the highest average probability.

In practical applications, the voting method has been shown to be highly ef-
fective in a wide range of problems, such as image and speech recognition, natural
language processing, and bioinformatics [1, 14]. Besides the Voting approach, other
ensemble methods like Bagging and Boosting can also be applied to improve pre-
dictive performance [8].

2. Experiments and results

2.1. Performance evaluation framework
We conducted our evaluation utilizing AMD GPU in conjunction with the Tensor-
Flow framework. Additionally, we employed the Keras library alongside Tensor-
Flow to facilitate more straightforward and rapid implementation of neural net-
works.

To address the stochastic nature of the algorithms and potential discrepancies
across learning sessions, we employed the k-fold Cross Validation method. We
divided the dataset into 10 equal-sized subsets, and for each learning session, one
fold served as the validation set while the other nine were used for training. In each
learning session, every model with different parameter combinations was run 10
times and then the average performance was calculated across the 10 validation sets.
To further enhance the reliability of our results, we repeated the entire procedure
ten times, each time using a different random seed to shuffle the dataset before
dividing it into folds. This generated a total of 100 validation sets (10 folds × 10
repetitions), and we tested all parameter combinations on these sets.

This rigorous validation technique ensured scientifically accurate and statisti-
cally reliable results, minimizing random variations and providing a solid basis for
our conclusions.

For the analysis, we leveraged the Python-based Numpy and Pandas libraries
to handle and manipulate the data. In addition to these libraries, we employed the
matplotlib library for data visualization purposes, enabling a more comprehensive

84

Annal. Math. et Inf. CAPTCHA recognition using machine learning algorithms . . .

understanding of the model’s performance and facilitating the evaluation of the
results.

Throughout our experiments, we utilized a CNN with the optimal set of param-
eters to achieve the best possible performance. Initially, we conducted a thorough
search for the best parameters for the CNN model, ensuring that our chosen model
exhibited the highest performance. After identifying the optimal parameters, we
proceeded to apply the selected model for the voting method.

In the voting method, we employed various numbers of models for prediction,
which allowed us to evaluate the performance of our approach across different en-
semble sizes. This strategy not only provided valuable insights into the robustness
and reliability of our selected CNN model but also enabled us to identify the op-
timal number of models to use in our ensemble for achieving the best possible
results.

2.2. Hyperparameter optimization
To ensure that our CNN model achieved the best possible performance, we con-
ducted an extensive hyperparameter optimization process. We employed the Grid
Search CV technique from the sci-kit learn library to systematically explore the hy-
perparameter space and identify the optimal combination of hyperparameters for
our model. The following hyperparameters and their respective candidate values
were included in the grid search:

• Batch size: 16, 32, 64

• Epochs: 50

• Activation function for the convolutional layers: ReLU, ReLU6, Swish

• Number of neurons used in the penultimate dense layer: 32, 64, 128

• Activation function for the first output layer: ReLU, ReLU6, Swish

• Dropout rate: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

• Activation function for the second output layer: Softmax

• Optimizer: Adam

The grid search was conducted with 10-fold CV to ensure that the selected hyper-
parameters were robust and generalizable across different subsets of the dataset.
This approach provided a reliable estimate of the model’s performance and reduced
the risk of overfitting.

Table 1 shows the best performance with the Rectified Linear Unit (ReLU) and
Rectified Linear Unit 6 (ReLU6) activation functions. Thus, we focused on them,
excluding the Swish function due to its lower performance. Based on this, we chose
the optimal hyperparameters for our CNN model, which guided the experiments
and ensemble methods.

85

Annal. Math. et Inf. Á. Kovács, T. Tajti

Table 1. The 5 best performing models with varying parameter
combinations using Grid Search CV.

Function Batch Size Dropout Rate Units Mean Test Score
ReLU6 64 0.5 128 0.841061
ReLU6 32 0.4 64 0.840389
ReLU 16 0.5 64 0.840010
ReLU 16 0.4 64 0.839632
ReLU 32 0.4 64 0.839001

The outcomes of our experiments with different batch sizes, neuron numbers,
and dropout rates are illustrated in Figures 3, 4, and 5.

These figures provide a comprehensive overview of the mean test scores achieved
with various combinations of these hyperparameters, assessed using Grid Search
CV. In these results, the ReLU6 is used as an activation function for the convolu-
tional layers and the first output layer. This choice was based on our preliminary
analysis, which indicated that ReLU6 outperformed other activation functions in
our specific problem setting.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dropout Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CV
 A
ve

ra
ge

 S
co

re

Number of Units: 32
Number of Units: 64
Number of Units: 128

Figure 3. Mean test scores with batch size of 16
using Grid Search CV.

Figure 4 shows that as the batch size increases, the model can learn with a higher
dropout rate, enabling more effective regularization and improved generalization
performance. This observation is consistent with the idea that a larger batch size
provides more accurate gradient estimates, allowing the model to handle the higher

86

Annal. Math. et Inf. CAPTCHA recognition using machine learning algorithms . . .

levels of noise introduced by dropout.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dropout Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
CV

 A
ve

ra
ge

 S
co

re

Number of Units: 32
Number of Units: 64
Number of Units: 128

Figure 4. Mean test scores with batch size of 32
using Grid Search CV.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dropout Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CV
 A
ve

ra
ge

 S
co

re

Number of Units: 32
Number of Units: 64
Number of Units: 128

Figure 5. Mean test scores with batch size of 64
using Grid Search CV.

The higher the number of units in the model, the more effectively it can learn
and utilize a higher dropout rate. This is likely because a larger number of neurons

87

Annal. Math. et Inf. Á. Kovács, T. Tajti

enable the model to represent more complex functions, counterbalancing the effect
of dropout.

Figure 4 and 5 show that using a dropout rate equal to or greater than 0.7
does not result in any significant improvement in the model’s performance. In
fact, dropout rates of 0.7 or higher may lead to degraded performance due to
excessive noise in the learning process, which could hinder the model from capturing
important patterns in the data.

The 0.4 and 0.5 dropout rates produced the best results, providing a good
balance between introducing noise to promote generalization and maintaining suf-
ficient signals for the model to learn the underlying patterns. The optimal neuron
numbers for our model were 64 and 128. These values yielded the best results across
various batch sizes and dropout rates, indicating that they provide an appropriate
level of model complexity to learn from the data without overfitting.

2.3. Performance of voting functions
By employing various voting schemes to combine the predictions of various models
trained on the same dataset, the ensemble approach effectively reduces errors, in-
creases stability, and enhances generalization capabilities. It is important to note
that the models involved in this ensemble approach do not differ in their architec-
ture or parameters; the differences between them arise from the individual training
processes they undergo. As previously discussed in Section 1.3, the plurality voting
function selects the prediction with the highest number of votes, while the fuzzy
average voting function calculates the average of all predictions.

Table 2 presents the results of an experiment conducted to evaluate the perfor-
mance of two voting schemes, plurality and fuzzy average voting functions. The
experiment was performed 10,000 times, with each iteration involving a varying
number of models, ranging from 2 to 30. The number of models used in the exper-
iment increased incrementally by two in each iteration, providing a detailed view
of the performance trends as the ensemble size grew.

In total, 60 models were used, and for each iteration, a random selection of the
required number of models was made from these models. The models’ predictions
were based on the same dataset.

From the analysis of Figure 6, it can be observed that there is a gradual im-
provement in the performance of both the plurality voting function and the fuzzy
average voting function as the number of models increases. This indicates that the
ensemble of models can effectively leverage the strengths of individual models to
reduce errors and increase stability. The voting functions tend to perform better
when there is more diversity among the models, as it allows for a more robust
decision-making process.

Further analysis reveals that as the number of models increases, the achieved
results also improve, indicating higher accuracy in predictions. The fuzzy aver-
age voting function consistently outperforms the plurality voting function. This
advantage is more noticeable with fewer models, but beyond 14–16 models, this

88

Annal. Math. et Inf. CAPTCHA recognition using machine learning algorithms . . .

Table 2. Performance comparison of plurality and fuzzy average
voting functions across different numbers of models.

Models Plurality Voting Function Fuzzy Average Voting Function
2 0.887717 0.906253
4 0.908664 0.915228
6 0.914723 0.918222
8 0.917318 0.919663
10 0.918746 0.920627
12 0.919694 0.921418
14 0.920391 0.922023
16 0.920961 0.922385
18 0.921416 0.922765
20 0.921691 0.923070
22 0.921951 0.923260
24 0.922246 0.923641
26 0.922408 0.923862
28 0.922506 0.924067
30 0.922789 0.924160

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Voters

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

Ac
cu
ra
cy

Plurality Voting Function
Fuzzy Average Voting Function

Figure 6. The performance results of voting functions by 2–30
voters on test data.

89

Annal. Math. et Inf. Á. Kovács, T. Tajti

superiority stabilizes to a consistent advantage of approximately 0.001 to 0.0015 in
favor of the fuzzy average voting function.

The stable advantage suggests that the fuzzy average voting function, by con-
sidering the average of predictions rather than just the most frequent one, pro-
vides more accurate results. However, from 14–16 models onwards, the rate of
improvement in the results seems to decrease somewhat for both voting functions,
suggesting that while incorporating more models can enhance performance, there
may be diminishing returns beyond a certain point. The greater accuracy of the
fuzzy average voting function may be attributed to its ability to incorporate more
information from the models’ outputs compared to the plurality voting function.

3. Conclusions
In conclusion, our results suggest that a careful choice of batch size, number of neu-
rons in the penultimate dense layer, and dropout rates can significantly impact the
performance of deep learning models. By employing grid search cross-validation,
we were able to identify optimal combinations of these hyperparameters, leading
to improved generalization and higher mean test scores. Furthermore, the exper-
iment demonstrates that the choice of the voting scheme can have a considerable
impact on the performance of an ensemble of models trained on the same dataset.
While both plurality and fuzzy average voting functions can provide some bene-
fits, the plurality voting function appears to offer more consistent improvements in
performance as the number of models increases.

To further advance the field and enhance model performance, future research
could explore the following developments: employing segmentation techniques to
refine the input data, exploring the potential benefits of using fuzzification tech-
niques for refining binary class membership values during model training, inves-
tigating alternative ensemble methods that may provide additional benefits, ex-
perimenting with different datasets to assess the robustness of the models, and
incorporating various machine learning models, such as recurrent neural networks,
to address the specific challenges of the task [4, 11, 12]. While the results pre-
sented in this study are promising, it is important to conduct additional research
and analysis to fully comprehend the behavior and potential of these models, as
this understanding can ultimately lead to more accurate and reliable methods.

References
[1] R. Atallah, A. Al-Mousa: Heart Disease Detection Using Machine Learning Majority

Voting Ensemble Method, in: 2019 2nd International Conference on new Trends in Computing
Sciences (ICTCS), 2019, pp. 1–6, doi: 10.1109/ICTCS.2019.8923053.

[2] M. Brill, R. Freeman, S. Janson, M. Lackner: Phragmén’s voting methods and justified
representation, Mathematical Programming (2023), doi: 10.1007/s10107-023-01926-8.

90

https://doi.org/10.1109/ICTCS.2019.8923053
https://doi.org/10.1007/s10107-023-01926-8

Annal. Math. et Inf. CAPTCHA recognition using machine learning algorithms . . .

[3] E. Bursztein, M. Martin, J. Mitchell: Text-based CAPTCHA strengths and weaknesses,
in: Proceedings of the 18th ACM conference on Computer and communications security,
2011, pp. 125–138.

[4] J. Chen, X. Luo, Y. Liu, J. Wang, Y. Ma: Selective Learning Confusion Class for Text-
Based CAPTCHA Recognition, IEEE Access 7 (2019), pp. 22246–22259, doi: 10.1109/ACCE
SS.2019.2899044.

[5] T. G. Dietterich: Ensemble Methods in Machine Learning, in: Multiple Classifier Systems,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 1–15, isbn: 978-3-540-45014-6, doi:
10.1007/3-540-45014-9_1.

[6] I. Fazekas, A. Barta, L. Fórián: Ensemble noisy label detection on MNIST, Annales Math-
ematicae et Informaticae 53 (2021), pp. 125–137, doi: 10.33039/ami.2021.03.015.

[7] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
J. Cai, et al.: Recent advances in convolutional neural networks, Pattern Recognition 77
(2018), pp. 354–377.

[8] L. Kabari, U. Onwuka: Comparison of Bagging and Voting Ensemble Machine Learning
Algorithm as a Classifier, International Journal of Computer Science and Software Engi-
neering 9 (Mar. 2019), pp. 19–23.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.: Scikit-learn: Machine learning
in Python, the Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[10] A. Shawon: Captcha Recognition, Accessed: 2023-04-02, 2023, url: https://www.kaggle.c
om/code/shawon10/captcha-recognition.

[11] Y. Shu, Y. Xu: End-to-End Captcha Recognition Using Deep CNN-RNN Network, in: 2019
IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC), 2019, pp. 54–58, doi: 10.1109/IMCEC46724.2019.8983895.

[12] T. Tajti: Fuzzification of training data class membership binary values for neural network
algorithms, Annales Mathematicae et Informaticae 2020 (Oct. 2020), doi: 10.33039/ami.20
20.10.001.

[13] T. Tajti: New voting functions for neural network algorithms, Annales Mathematicae et
Informaticae 52 (2020), doi: 10.33039/ami.2020.10.003.

[14] E. Tasci, C. Uluturk, A. Ugur: A voting-based ensemble deep learning method focusing
on image augmentation and preprocessing variations for tuberculosis detection, Neural Com-
puting and Applications 33 (2021), pp. 15541–15555, doi: 10.1007/s00521-021-06177-2.

[15] S. Wan, H. Yang: Comparison among Methods of Ensemble Learning, in: 2013 International
Symposium on Biometrics and Security Technologies, 2013, pp. 286–290, doi: 10.1109/ISB
AST.2013.50.

[16] J. Wang, J. Qin, X. Xiang, Y. Tan, N. Pan: CAPTCHA recognition based on deep convo-
lutional neural network, Mathematical Biosciences and Engineering 16.5 (2019), pp. 5851–
5861, issn: 1551-0018, doi: 10.3934/mbe.2019292.

[17] R. Wilhelmy, H. Rosas: captcha dataset, July 2013, url: https://www.researchgate.net
/publication/248380891_captcha_dataset.

[18] Y. Zhang, H. Gao, G. Pei, S. Luo, G. Chang, N. Cheng: A Survey of Research on
CAPTCHA Designing and Breaking Techniques, in: 2019 18th IEEE International Con-
ference On Trust, Security And Privacy In Computing And Communications/13th IEEE
International Conference On Big Data Science And Engineering (TrustCom/BigDataSE),
2019, pp. 75–84, doi: 10.1109/TrustCom/BigDataSE.2019.00020.

91

https://doi.org/10.1109/ACCESS.2019.2899044
https://doi.org/10.1109/ACCESS.2019.2899044
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.33039/ami.2021.03.015
https://www.kaggle.com/code/shawon10/captcha-recognition
https://www.kaggle.com/code/shawon10/captcha-recognition
https://doi.org/10.1109/IMCEC46724.2019.8983895
https://doi.org/10.33039/ami.2020.10.001
https://doi.org/10.33039/ami.2020.10.001
https://doi.org/10.33039/ami.2020.10.003
https://doi.org/10.1007/s00521-021-06177-2
https://doi.org/10.1109/ISBAST.2013.50
https://doi.org/10.1109/ISBAST.2013.50
https://doi.org/10.3934/mbe.2019292
https://www.researchgate.net/publication/248380891_captcha_dataset
https://www.researchgate.net/publication/248380891_captcha_dataset
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00020

Submitted: July 31, 2023
Accepted: August 7, 2023
Published online: August 24, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 92–109
DOI: 10.33039/ami.2023.08.011
URL: https://ami.uni-eszterhazy.hu

Using extended resolution to represent
strongly connected components of

directed graphs

Gábor Kusperab, Zijian Győző Yangd, Benedek Nagyac

aEszterházy Károly Catholic University,
Faculty of Informatics,

Eger, Hungary
bUniversity of Debrecen,
Faculty of Informatics,

Debrecen, Hungary
cEastern Mediterranean University,

Faculty of Arts and Sciences,
Department of Mathematics,

Famagusta, North Cyprus, Mersin-10, Türkiye
dHungarian Research Centre for Linguistics,

Budapest, Hungary

Abstract. In this paper, we study how to represent a directed graph as a
SAT problem. We study those directed graphs which consists of two strongly
connected components (SCC). We reuse the SAT models which are known
as the Black-and-White SAT representations. We present the so-called 3rd
Solution Lemma: If a directed graph consists of two SCCs, A and B, and
there is an edge from A to B, then the corresponding SAT representation has
3 solutions: the black assignment, the white assignment, and the 3rd solution
can be written as ¬A union B. Using this result, we present an important
negative result: We cannot represent all SAT problems as directed graphs
using the Black-and-White SAT representations. Furthermore, we study the
question how to represent an SCC by one Boolean variable to maintain the
3rd Solution Lemma. For that we use extended resolution.

Keywords: SAT problem, boolean logic, directed graphs

AMS Subject Classification: 03B05, 05C20

https://doi.org/10.33039/ami.2023.08.011
https://ami.uni-eszterhazy.hu

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

1. Introduction

There are various interesting links between directed graphs and SAT problems
[11]. In this paper we are interested in such type of relationship. On the one hand,
directed graphs could represent many types of objects, but in many cases, it is not
so straightforward how and what type of representation leads to some advantages.
Since, this problem generally seems to be very difficult, we work on a related one:
we represent a directed graph as a propositional logical formula or, in fact, as a
SAT problem.

We should mention here truth-teller–liar logical puzzles, when some people are
having statements about the types of subsets of people and this information can be
represented by graphs where the vertices representing the people. Depending on the
various subtypes of the puzzles, the statements could produce a symmetric relation
(strong truth-teller–strong liar, shortly SS puzzles [28]), meaning e.g., that the
type of the persons are the same or the opposite. In many other puzzles, however,
the statements are represented by directed edges and they represent implication
type relations [27, 29, 30]. In some puzzles self-reference statements can also play
important role [2, 3], and these puzzles are related also to the liar paradox [5]. The
graph model of these puzzles usually used to infer some additional information and
in many cases also the solution of the puzzle (i.e., assigning the types, like truth-
teller and liar to each vertex in such a way that the statements match). Some
puzzles are also analysed from the information flow point of view [6, 31].

There are also several other models to connect directed graphs to the SAT
problem [20]. Each of these models has the following property: If the represented
directed graph is strongly connected, then its SAT representation has only two
solutions, the one where all variables are false, called the black assignment, and
the one where all variables are true, called the white assignment. These models
are called the Black-and-White SAT representations [9]. In this paper, we make a
step further: we study those directed graphs which consist of not only one strongly
connected component (SCC), but more. In this work we show that if a directed
graph consists of two SCC components, A and B, and there is an edge from A to
B, then the corresponding SAT representation has a third solution which is ¬A
union B. we call this result as the 3rd Solution Lemma.

This result a step forward in our main goal: Be able to represent any SAT
problem as directed graph. Unfortunately, the final result is a negative one, we
cannot achieve this goal based on Black-and-White SAT representations, as it is
presented in Section 6.

We think that a graph representation conveys more intuitions than a logical
formula. There are also neural networks which works on graphs. In the field of
natural language processing, there are two main recent topics: large language mod-
els [32] and knowledge graphs [36]. Integration of knowledge graphs into language
modeling became one of the most important research field [1, 35, 39]. Furthermore,
Jiang, Gurajada et al. [16] takes an unorthodox view on the problem: combining
textual heuristics together with neural features in a weighted rule-based framework

93

Annal. Math. et Inf. G. Kusper, Z. Gy. Yang, B. Nagy

based on first-order logic. This research based on the Logical Neural Networks [34],
which is also becoming an increasingly researched area [24, 25].

Furthermore, we study the question how to represent an SCC by one Boolean
variable. We found out that extended resolution [12, 38] is a suitable tool for
that. To represent the SCC which consists of only two vertices a and b, we have to
add to its model the following formula: a ∧ b equals x, i.e., the following clauses:
¬a∨¬b∨x, ¬x∨a, and ¬x∨b. This is the classical example of extended resolution,
where x is a new variable. Although, the original problem is still very difficult, this
work helps us to understand better what extended resolution means, and how to
represent extended resolution graphically.

2. Formal definitions
As usual in logic and in research about SAT [7, 8, 33] we define how our objects
(i.e. formulae) and their representations build up.

A literal is a Boolean variable, called positive literal, or the negation of a
Boolean variable, called negative literal. Examples for literals are: a, ¬a, b, ¬b,

A clause is a set of literals. A clause set is a set of clauses. A SAT problem is
a clause set. An assignment is a set of literals. In a clause or in an assignment, a
variable may occur either as a positive literal or as a negative literal, but not as
both, or it may not occur at all.

Clauses are interpreted as disjunction of their literals. Assignments are inter-
preted as conjunction of their literals. Clause sets are interpreted as conjunction
of their clauses.

If a clause or an assignment contains exactly k literals, then we say it is a k-
clause or a k-assignment, respectively. A 1-clause is called to be a unit, a 2-clause
is called to be a binary clause. A k-SAT problem is a clause set where its clauses
have at most k literals. A clause from a clause set is a full-length clause iff it
contains all variables from the clause set.

We use two intuitive notions: NNP clause, and NPP clause. A clause is an
NNP clause iff it contains exactly one positive literal. A clause is an NPP clause
iff it contains exactly one negative literal.

Negation of a set H is denoted by ¬H which means that all elements in H are
negated. Note that ¬¬H = H.

Let V ars be the set of variables of a clause set. We say that WW is the white
clause or the white assignment iff WW = V ars. We say that BB is the black
clause or the black assignment iff BB = ¬V ars. For example if V ar = {a, b, c},
then WW = {a, b, c}, and BB = {¬a, ¬b, ¬c}.

We say that clause C subsumes clause D iff C is a subset of D.
We say that clause set S subsumes clause C iff there is a clause in S which

subsumes C. Formally: S subsumes C ⇐⇒ ∃D(D ∈ S ∧ D ⊆ C).
We say that assignment M is a solution for clause set S iff for all C ∈ S we

have M ∩ C ̸= { }.

94

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

We say that the clause set S is a Black-and-White SAT problem iff it has only
two solutions, the white assignment (WW) and the black one (BB).

We say that clause sets A and B are equivalent, denoted by A ≡ B, iff A and
B have the same set of solutions. We say that clause set A entails clause set B iff
the set of solutions of A is a subset of the set of solutions of B, i.e., A may have no
other solutions than B. This notion is denoted by A ≥ B. Note that if A subsumes
all clauses of B, then A ≥ B.

We say that A is stronger than B iff A ≥ B and A and B are not equivalent.
This notion is denoted by A > B.

Resolution ({a} ∪ A, {¬a} ∪ B) = A ∪ B, if {a} ∪ A, {¬a} ∪ B, and A ∪ B
are clauses. For example Resolution({a, b}, {¬a, c}) = {b, c}. But we cannot do
resolution on {a, b} and {¬a, ¬b}, because {b, ¬b} is not a clause. We say that
literal c is blocked in clause C within clause set S iff for all D ∈ S we have that if
¬c ∈ D then C ∪ D \ {c, ¬c} is not a clause. In this case we say that C is blocked
in S. It is well-known that a blocked clause can be deleted or added to a clause
set without changing its satisfiability [17, 18] (but the set of solutions might be
changed). If a is a literal in clause set S, and ¬a is not a literal in S, then we say
that a is a pure literal in S. Any pure literal is a blocked literal at the same time.

Extended resolution [12, 38] is SAT solver preprocessing technique to add
blocked clauses to a clause set, so that the satisfiability of the original clause set
is not changed. We use this technique to add (usually short) clauses which speed-
up the search. Extended resolution adds clauses which are equal to x ↔ f(V ar),
where x is a new variable, and f(V ar) is a Boolean function on some variables.
The most widely used form is x ↔ a ∧ b, which is equivalent to the clause set:
{{¬a, ¬b, x}, {a, ¬x}, {b, ¬x}}. In this way x is blocked in all new clauses, so the
new clauses are blocked.

Now, we recall some concepts of graph theory [4, 13].
The construction D = (V, E) is a directed graph, where V is the set of vertices,

and E is the set of edges. An edge is an ordered pair of vertices. The edge (a, b)
is depicted by a → b, and we can say that a has a child b. If (a, b) is an element of
E, then we may say that (a, b) is an edge of D.

We say that D = (V, E) is a communication graph iff for all a in V have that
(a, a) is not in E, and if x is an element of V , then ¬x must not be an element of
V . We need this constraint because we generate a logical formula out of D. If we
speak about a communication graph, then we may use the word node as a synonym
of vertex.

A path from a1 to aj in directed graph D is a sequence of vertices a1, a2, . . . , aj

such that for each i ∈ {1, . . . , j − 1} we have that (ai, ai+1) is an edge of D. A
path from a1 to aj in directed graph D is a cycle iff (aj , a1) is an edge of D. The
cycle a1, a2, . . . , aj , a1 is represented by the following tuple: (a1, a2, . . . , aj). This
tuple can be used as a set of its elements as we shall define it formally later. Note
that in the representation of a cycle the first and the last element must not be the
same vertex.

If we have a cycle (a1, a2, . . . , an), then b is an exit point of it iff for some

95

Annal. Math. et Inf. G. Kusper, Z. Gy. Yang, B. Nagy

j ∈ {1, 2, . . . , n} we have that (aj , b) is an edge and b /∈ {a1, a2, . . . , an}.
A directed graph is complete iff every pair of distinct vertices is connected by a

pair of unique edges (one in each direction). A directed graph is strongly connected
iff there is a path from each vertex to each other vertex. Note that a complete graph
is also strongly connected. Note that a strongly connected graph contains a cycle
which contains all vertices.

The directed graph G′ = (V ′, E′) is a subgraph of G = (V, E) iff V ′ is a subset
of V and E′ is a subset of E. A subgraph of a directed graph G is a strongly
connected component (SCC) iff it is strongly connected, and is maximal with this
property: no additional edges or vertices from G can be included in the subgraph
without breaking its property of being strongly connected. It is possible to test
the strong connectivity of a graph, or to find its strongly connected components, in
linear time, O(|V | + |E|). The collection of strongly connected components forms
a partition of the set of vertices of G.

We can create the so called condensation graph of a directed graph G by sub-
stituting each SCC of G by a single new vertex. The condensation graph is always
a directed acyclic graph (DAG).

Somewhat similar technique was also used to solve truth-teller–liar puzzles by
simplifying their graphs.

A SAT model (or shortly a model) of a communication graph is a mapping which
maps nodes to boolean variables by a bijection, and which maps edges, cycles
and possibly other parts of the graph to clauses, which creates a SAT problem,
and from which the communication graph can be reconstructed up to those parts
which are encoded. Generally, we use the function MM(X) to assign a model to
the communication graph X.

Especially, the Strong Model, our first model, was defined formally in our first
paper [9]. First, we recall its definition.

Let D be a communication graph, then the Strong Model of D is denoted by
SM(D), and defined as follows:

SM(D) := {{¬a, b} | D = (V, E) ∧ (a, b) ∈ E}.

Note that the the Strong Model can be the empty set. For example, if D =
({a, b}, {}), then SM(D) = {}.

The Strong Model of any communication graph must have the black solution
(when every variable has the value true) and the white solution (when every variable
has the value false), see Lemma 3.1.

In this way, actually, the Strong Model assigns an implication formula for each
of the directed edges somewhat similarly as edges represent implications in some
of the truth-teller–liar puzzles.

The Weak Model was defined formally in our second paper [21]. First, we recall
its definition.

Let D = (V, E) be a communication graph. Then we define the following
notions:

OutE(a, E) := {b | (a, b) ∈ E}.

96

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

NodeRep(a, E) := {¬a} ∪ OutE(a, E).

NodeRep(D) := {NodeRep(a, E) | D = (V, E) ∧ a ∈ V ∧ OutE(a, E) ̸= ∅}.

Cycles(D) := {{a1, a2, . . . , ak} | D = (V, E) ∧ k = 1∨

∀i=1...k(a(i mod k)+1 ∈ OutE(ai, E))}.

ExitPoints({a1, a2, . . . ak}, E) := {b | ∃i=1...k(b ∈ OutE(ai, E))∧

¬∃j=1...k(b = aj)}.

CycleRep(D) := {¬C ∪ ExitPoints(C, E) | D = (V, E)∧

C ∈ Cycles(D) ∧ ExitPoints(C, E) ̸= ∅}.

WM(D) := NodeRep(D) ∪ CycleRep(D).

We say that WM(D) is the Weak Model of D.

3. The Black-and-White SAT representations
We recall some important results from [21]. We do not recall the proofs, only the
theorems. Then we define the notion of Black-and-White SAT representations, and
give a new theorem which helps us to prove the 3rd Solution Lemma.

Lemma 3.1. Let D be a communication graph. Then WM(D) has at least two
solutions, namely the white assignment (WW) and the black assignment (BB).
The same is true for SM(D).

Theorem 3.2. Let D be a communication graph. Then SM(D) is a Black-and-
White 2-SAT problem iff the graph D is strongly connected.

Theorem 3.3. Let D be a communication graph. Then WM(D) is a Black-and-
White SAT problem iff D is strongly connected.

Theorem 3.4 (Transitions Theorem). If MM(X) is an arbitrary but fixed model
of communication graphs, such that for any communication graph D we have that
SM(D) ≥ MM(D) ≥ WM(D), then MM(D) is a Black-and-White SAT problem
iff D is strongly connected.

Until this point we have recalled some results from [21]. Now we give a new
definition and a theorem. We shall define the notion of Black-and-White SAT
representations, which is clearly motivated by the Transitions Theorem.

Definition 3.5. We say that function MM(X), which generates a SAT problem
from a communication graph, is a Black-and-White SAT representation iff for all
communication graphs D we have that SM(D) ≥ MM(D) ≥ WM(D).

97

Annal. Math. et Inf. G. Kusper, Z. Gy. Yang, B. Nagy

There are some known example between the Strong and the Weak Model, for ex-
ample: the Balatonboglár Model [21], and the Simplified Balatonboglár Model [22].

The Transitions Theorem can be extended easily for those cases where the two
extreme cases, the Strong Model, and the Weak Model generate SAT problems with
the same solution set. We give also the proof of this extended theorem because it
is a new one.

Theorem 3.6. Let MM(X) be a Black-and-White SAT representation. Let D
be an arbitrary but fixed communication graph. If SM(D) and WM(D) have the
same set of solutions, then SM(D), MM(D), and WM(D) have the same set of
solutions.

Proof. Let MM(X) be a Black-and-White SAT representation. Let D be an
arbitrary but fixed communication graph. From these we know that SM(D) ≥
MM(D) ≥ WM(D). Assume that SM(D) and WM(D) have the same set of
solutions. Then, by definition of clause set equivalence, we know that SM(D) ≡
WM(D). From this and from SM(D) ≥ MM(D) ≥ WM(D) we obtain that
SM(D) ≡ MM(D) ≡ WM(D). Hence, SM(D), MM(D), and WM(D) have the
same set of solutions.

The message of this theorem is the following. If the two extreme cases, the
Strong Model, and the Weak Model share a property on the set of solutions, then
any other model between them should also have that property. We are going to
use this result to proof the 3rd Solution Lemma in the next section.

4. The 3rd Solution Lemma
In this section we give and prove the so called 3rd Solution Lemma. This lemma
states the following. If we use a Black-and-White SAT representation to represent
a communication graph, i.e., we have a property that an SCC with vertices A
represented as a SAT problem has exactly two solutions: the black, and the white
assignment, then a communication graph with exactly two SCCs, with vertex sets
A and B, where we have some edges from A to B, has exactly 3 solutions: A ∪ B,
¬A ∪ ¬B, and ¬A ∪ B.

This result a step forward in our main goal: Be able to represent any SAT
problem as directed graph. Unfortunately, the final result is a negative one, we
cannot achieve this goal based on Black-and-White SAT representations, as it is
presented and proven in Section 6.

First we present an auxiliary lemma, where there is no edge between the two
SCCs.

Lemma 4.1. Let C be a communication graph which consists of exactly two sep-
arate SCCs: A, and B, such that there is no edge between them. Let S be a SAT
model of C generated by a Black-and-White SAT representation. Then S has ex-
actly 4 solutions: A ∪ B (which is the white assignment), ¬A ∪ ¬B (which is the
black one), ¬A ∪ B, and A ∪ ¬B.

98

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

Proof. We know that A and B are distinct sets of vertices, because otherwise they
would not be separate SCCs.

First, let us assume that S has been generated by the Strong Model. Then,
by Theorem 3.2, we know that the representation of A has two models A and ¬A,
and the representation of B has two models B and ¬B. Since the set of vertices
of C equals A ∪ B and there is no edge between A and B, and, furthermore, S
is generated from C by the Strong Model, we obtain that solution of S are the
combinations of the solutions of the representations of A and B, which are the
following 4 ones: A ∪ B, A ∪ ¬B, ¬A ∪ B, and ¬A ∪ ¬B.

Secondly, let us assume that S is generated by the Weak Model. Then, by
Theorem 3.3, we obtain that S has the same set of solutions using the same proof
steps.

Now let us assume that S is generated by any other Black-and-White SAT
representation. Then, from the previous two cases and from Theorem 3.6, we
obtain that S has the same set of solutions.

Hence, if C is a communication graph which consists of exactly two separate
SCCs: A, and B, such that there is no edge between them, and S is a SAT model
of C generated by a Black-and-White SAT representation, then S has exactly 4
solutions: A ∪ B (which is the white assignment), ¬A ∪ ¬B (which is the black
one), ¬A ∪ B, and A ∪ ¬B.

Now let us study the case that we have some edges between the two SCCs.
We show that in this case the Black-and-White SAT representations results in 3
solution. This theorem will be called the 3rd Solution Lemma. This is our first
main result.

Theorem 4.2 (3rd Solution Lemma). Let C be a communication graph which
consists of exactly two separate SCCs: A, and B, such that there is at least one
edge from A to B. Let S be a SAT model of C generated by a Black-and-White
SAT representation. Then S has exactly 3 solutions: A ∪ B (which is the white
assignment), ¬A ∪ ¬B (which is the black one), and ¬A ∪ B.

Proof. We know from our auxiliary Lemma 4.1, that if there were no edges between
A and B, then we would have 4 solutions: A ∪ B, A ∪ ¬B, ¬A ∪ B, and ¬A ∪ ¬B.

It is enough to show that solution A ∪ ¬B is excluded, and ¬A ∪ B is not
excluded because of the edges from A to B.

We do not have to consider the solutions A ∪ B, which is the white assignment,
and ¬A ∪ ¬B, which is the black assignment, because they are always solutions,
see Lemma 3.1 and Theorem 3.4.

Let as assume that we have only one edge from A to B, the edge (ai, bj), where
ai ∈ A, and bj ∈ B. So (ai, bj) is an edge of C.

First, let us assume that S is generated from C by the Strong Model. Since
(ai, bj) is an edge of C, we know, by definition of the Strong Model, that {¬ai, bj}
is a clause in S. We know that A ∪ ¬B does not satisfy this clause, on the other
hand ¬A∪B satisfies it. Therefore, S has 3 solutions: A∪B, ¬A∪B, and ¬A∪B.

99

Annal. Math. et Inf. G. Kusper, Z. Gy. Yang, B. Nagy

If we have more than one edge from A to B, then the clauses generated from those
edges have the same property, thus ¬A ∪ B satisfies them.

Secondly, let us assume that S is generated from C by the Weak Model. Again,
let us start the discussion with the case of a sole edge from A to B. Since (ai, bj)
is an edge of C, where ai is part of the cycle A, and where bj is the only one exit
point of this cycle, because A, and B are two separate SCCs. From this we know,
by definition of the Weak Model, that {¬A, bj} is a clause in S. We know that
A ∪ ¬B does not satisfy this clause, on the other hand ¬A ∪ B satisfies it. There
might be other cycles which contains ai, but those are subsets of A, and they have
at least one exit point, bj . Therefore, the clauses generated from those cycles are
satisfied by ¬A ∪ B. If we have more than one edge from A to B, then the cycles
from A have more exit points to B, but still, those clauses generated from those
cycles have the same property, thus ¬A ∪ B satisfies them.

Now let us assume that S is generated by any other Black-and-White SAT
representation. Then, from the previous two cases and from Theorem 3.6, we
obtain that S has the same set of solutions.

Hence, if C is a communication graph which consists of exactly two separate
SCCs: A, and B, such that there is at least one edge from A to B, and S is a SAT
model of C, then S has exactly 3 solutions: A∪B (which is the white assignment),
¬A ∪ ¬B (which is the black one), and ¬A ∪ B.

Notice here that if the graph has two strongly connected components, then
either there is no edge between them in any directions, or there is exactly one
direction in which there is/are edge(s) between them in the graph. In this way, we
have provided results for every graph that has exactly two SCCs.

5. An example with extended resolution
The 3rd Solution Lemma (Theorem 4.2) allows us to study not only strongly con-
nected graphs, but also more general ones. In this section we give an example and
some interesting connections to extended resolutions. We also raise some interest-
ing questions which might highlight future ways of investigations.

a

bc

d

Figure 1. A communication graph with 4 vertices, 3 cycles.

Figure 1 shows a communication graph with 4 vertices, and 3 cycles.

100

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

As an example we show the Strong Model of the communication graph of Figure 1:

SM(D) = {{¬a, b}, {¬a, c}, {¬b, a}, {¬b, c},

{¬b, d}, {¬c, a}, {¬c, d}}.
(5.1)

Note that since the communication graph in Figure 1 is not strongly connected, its
Strong Model (5.1) is not a Black-and-White SAT problem. Therefore, additionally
to the black and white solutions, for example, it has the solution {¬a, ¬b, ¬c, d},
as we expected because of the 3rd Solution Lemma (Theorem 4.2).

Note that, actually, this communication graph consists of two Strongly Con-
nected Components (SCCs), which are: {a, b, c} and {d}. Furthermore, there are
edges from the first SCC to the second one, but not in the opposite direction.
Hence, its model has to have, because of the 3rd Solution Lemma (Theorem 4.2),
the solution: {¬a, ¬b, ¬c, d}, which is the extra solution of our example.

Now, we can use extended resolution to introduce x instead of the first SCC.
Thus, let x denote a ∧ b ∧ c. In this case we have to add the following clauses to
the Strong Model of the graph: ¬a ∨ ¬b ∨ ¬c ∨ x, ¬x ∨ a, ¬x ∨ b, and ¬x ∨ c. It
is easy to check that the new model still has only 3 solutions: {¬a, ¬b, ¬c, ¬x, d},
{a, b, c, x, d}, and {¬a, ¬b, ¬c, ¬x, ¬d}, the ones corresponding to the solutions of
our original problem. This means that the first SCC can be substituted by the
single variable x which greatly simplifies the graph and also its model.

Before we are going forward and show our other main result in the next section,
we recall the following about another SAT representation technique: We know that
resolvable networks can represent any SAT problem, see Lemma 3 in [23].

Now, some very interesting questions are arising. How to generalize the notion
of SCC for resolvable networks? How can we recognize extended resolution? Espe-
cially, how can we recognize the new variable of extended resolution in a resolvable
network?

Now, we switch back to the main topic of the present paper, the relation of
communication graphs and SAT.

6. A negative result
Based on the 3rd Solution Lemma (Theorem 4.2), in this section, we concentrate on
the question which SAT problems can be represented by communication graphs.
Indeed, we can reverse engineering the directed graph representation of a SAT
problem based on the solutions of the SAT problem.

We give all the examples with N = 2, and N = 3 variables. Note, that we do
not list the black and the white assignments in set of solutions. (Technical note:
We also used Wolfram Alpha to test our work.)

Examples with N = 2:

• Set of solutions: {{¬a, b}}; the corresponding directed graph: ({a, b}, {(a, b)}).

101

Annal. Math. et Inf. G. Kusper, Z. Gy. Yang, B. Nagy

• Set of solutions: {{a, ¬b}}; the corresponding directed graph: ({a, b}, {(b, a)}).
Note that this is the same as the previous one up to variable renaming. So
the resulting graphs are isomorphic.

• Set ofsolutions: {{¬a, b}, {a, ¬b}}; the corresponding directed graph:
({a, b}, {}). Note that the set of edges is empty.

Examples with N = 3 (we do not list isomorphic examples):

• Set of solutions: {{¬a, ¬b, c}}; the corresponding directed graph: ({a, b, c},
{(a, b), (b, a), (a, c)}). Note that we have two SCCs: {a, b} and {c}, and an
edge (a, c) between them. Further, we could also add the edge (b, c), because
it is all the same which edge do we have between two SCCs. See the 3rd
Solution Lemma (Theorem 4.2).

• Set of solutions: {{¬a, b, c}}; the corresponding directed graph: ({a, b, c},
{(a, b), (b, c), (c, b)}). Note that we have two SCCs: {a} and {b, c}, and an
edge (a, b) between them.

• Set of solutions: {{¬a, ¬b, c}, {¬a, b, c}}; the corresponding directed graph:
({a, b, c}, {(a, b), (b, c)}). Note that we have three SCCs: {a}, {b}, and {c},
and there is a single path which consist of the edges: (a, b), (b, c).

• Set of solutions: {{¬a, ¬b, c}, {¬a, b, ¬c}{¬a, b, c}}; the corresponding di-
rected graph: ({a, b, c}, {(a, b), (a, c)}). Note that we have three SCCs: {a},
{b}, and {c}, and they form a tree, where the root is a and the two leaves
are b, and c.

• Set of solutions: {{¬a, ¬b, c}, {¬a, b, ¬c}}; the corresponding directed graph:
Unfortunately, we cannot construct this. Based on this observation we have
created Theorem 6.1, see below.

Now, we have arrived to the other of our main results. By listing some of the
possibilities, it can clearly be seen that we have more possible SAT problems than
how many communication graphs we have with the same number of variables (e.g.,
vertices). Thus, based on this counting argument, we can state our second main
result:

Theorem 6.1. There exists a SAT problem S for which there is no communication
graph C such that MM(C) is equivalent to S, if MM(X) is a Black-and-White
SAT representation.

Proof. Let us consider all communication graph with 3 nodes. There are 16 pos-
sible ones up to isomorphism, see, e.g., https://mathinsight.org/image/thre
e_node_motifs. We give the Strong and the Weak Model for all of them. Then
we show that there is a SAT problem which cannot be represented, if we use a
Black-and-White SAT representation.

102

https://mathinsight.org/image/three_node_motifs
https://mathinsight.org/image/three_node_motifs

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

1. D1 = ({a, b, c}, {}),
SM(D1) = {}, WM(D1) = {}, i.e.,
SM(D1) ≡ WM(D1). Number of SCCs is 3. All eight possible assignments
are solutions, i.e., they satisfy the ‘empty’ condition.

2. D2 = ({a, b, c}, {(a, b)}),
SM(D2) = {{¬a, b}}, WM(D2) = {{¬a, b}}, i.e.,
SM(D2) ≡ WM(D2). Number of SCCs is 3.

3. D3 = ({a, b, c}, {(a, b), (b, a)}),
SM(D3) = {{¬a, b}, {¬b, a}}, WM(D3) = {{¬a, b}, {¬b, a}}, i.e.,
SM(D3) ≡ WM(D3). Number of SCCs is 2.

4. D4 = ({a, b, c}, {(a, b), (a, c)}),
SM(D4) = {{¬a, b}, {¬a, c}}, WM(D4) = {{¬a, b, c}}, i.e.,
SM(D4) ≥ WM(D4),
SM(D4) ≡ WM(D4) ∪ {{¬a, b, ¬c}, {¬a, ¬b, c}}. Number of SCCs is 3.

5. D5 = ({a, b, c}, {(b, a), (c, a)}),
SM(D5) = {{¬b, a}, {¬c, a}}, WM(D5) = {{¬b, a}, {¬c, a}}, i.e.,
SM(D5) ≡ WM(D5). Number of SCCs is 3.

6. D6 = ({a, b, c}, {(c, a), (a, b)}),
SM(D6) = {{¬c, a}, {¬a, b}}, WM(D6) = {{¬c, a}, {¬a, b}}, i.e.,
SM(D6) ≡ WM(D6). Number of SCCs is 3.

7. D7 = ({a, b, c}, {(c, a), (a, b), (b, a)}),
SM(D7) = {{¬c, a}, {¬a, b}, {¬b, a}},
WM(D7) = {{¬c, a}, {¬a, b}, {¬b, a}}, i.e.,
SM(D7) ≡ WM(D7). Number of SCCs is 2.

8. D8 = ({a, b, c}, {(a, c), (a, b), (b, a)}),
SM(D8) = {{¬a, c}, {¬a, b}, {¬b, a}},
WM(D8) = {{¬a, b, c}, {¬b, a}, {¬a, ¬b, c}}, i.e.,
SM(D8) ≥ WM(D8), SM(D8) ≡ WM(D8) ∪ {{¬a, b, ¬c}}. Number of
SCCs is 2.

9. D9 = ({a, b, c}, {(a, c), (c, a), (a, b), (b, a)}),
SM(D9) = {{¬a, c}, {¬c, a}, {¬a, b}, {¬b, a}},
WM(D9) = {{¬a, b, c}, {¬c, a}, {¬b, a}, {¬a, ¬b, c}, {¬a, ¬c, b}}, i.e.,
SM(D9) ≡ WM(D9), because of resolution. Number of SCCs is 1.

103

Annal. Math. et Inf. G. Kusper, Z. Gy. Yang, B. Nagy

10. D10 = ({a, b, c}, {(a, b), (a, c), (c, b)}),
SM(D10) = {{¬a, b}, {¬a, c}, {¬c, b}}, WM(D10) = {{¬a, b, c}, {¬c, b}},
i.e.,
SM(D10) ≥ WM(D10), SM(D10) ≡ WM(D10) ∪ {{¬a, ¬b, c}}. Number of
SCCs is 3.

11. D11 = ({a, b, c}, {(a, b), (b, c), (c, a)}),
SM(D11) = {{¬a, b}, {¬b, c}, {¬c, a}},
WM(D11) = {{¬a, b}, {¬b, c}, {¬c, a}}, i.e.,
SM(D11) ≡ WM(D11). Number of SCCs is 1.

12. D12 = ({a, b, c}, {(a, b), (b, a), (c, a), (c, b)}),
SM(D12) = {{¬a, b}, {¬b, a}, {¬c, a}, {¬c, b}},
WM(D12) = {{¬a, b}, {¬b, a}, {¬c, a, b}}, i.e.,
SM(D12) ≡ WM(D12), because of resolution. Number of SCCs is 2.

13. D13 = ({a, b, c}, {(a, b), (b, a), (a, c), (c, b)}),
SM(D13) = {{¬a, b}, {¬b, a}, {¬a, c}, {¬c, b}},
WM(D13) = {{¬a, b, c}, {¬b, a}, {¬c, b}, {¬a, ¬b, c}}, i.e.,
SM(D13) ≡ WM(D13), because of resolution. Number of SCCs is 1.

14. D14 = ({a, b, c}, {(a, b), (b, a), (a, c), (b, c)}),
SM(D14) = {{¬a, b}, {¬b, a}, {¬a, c}, {¬b, c}},
WM(D14) = {{¬a, b, c}, {¬b, a, c}, {¬a, ¬b, c}}, i.e.,
SM(D14) ≥ WM(D14), SM(D14) ≡ WM(D14) ∪ {{¬a, b, ¬c}, {¬b, ¬c, a}}.
Number of SCCs is 2.

15. D15 = ({a, b, c}, {(a, b), (b, a), (a, c), (c, a), (c, b)}),
SM(D15) = {{¬a, b}, {¬b, a}, {¬a, c}, {¬c, a}, {¬c, b}},
WM(D15) = {{¬a, b, c}, {¬b, a}, {¬c, a, b}, {¬a, ¬b, c}, {¬a, ¬c, b}}, i.e.,
SM(D15) ≡ WM(D15), because of resolution. Number of SCCs is 1.

16. D16 = ({a, b, c}, {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}),
SM(D16) = {{¬a, b}, {¬b, a}, {¬a, c}, {¬c, a}, {¬b, c}, {¬c, b}}, WM(D16) =
{{¬a, b, c}, {¬b, a, c}, {¬c, a, b}, {¬a, ¬b, c}, {¬a, ¬c, b}, {¬b, ¬c, a}},
i.e.,
SM(D16) ≡ WM(D16), because of resolution. Number of SCCs is 1.

104

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

Now, let us consider the special case when S = {{¬a, b}, {¬a, c}, {a, ¬b, ¬c}}.
The solution set of S is {{¬a, ¬b, c}, {¬a, b, ¬c}} ∪ {BB, WW}.

If we check, then neither of the above communication graph makes this property
true: SM(Di) ≥ S ≥ WM(Di), i = 1 . . . 16. To be more formal, we have to check
all 16 cases. We do this in the following few paragraphs.

It is clear that there is no equivalent 2-SAT problem to S because all literals in
its last clause are blocked. So we do not need to check those communication graphs
where SM(Di) ≡ WM(Di), since the Strong Model is always a 2-SAT problem.
So we need to check only the following cases: i = {4, 8, 10, 14}.

By definition of clause set equality it is enough to show that either the solution
set of SM(Di) is not a subset of solution set of S, or the solution set of S is not a
subset of the solution set of WM(Di), where i = {4, 8, 10, 14}. We show all the 4
cases, i = {4, 8, 10, 14}, that this is true. Since the black and the white assignments
are always solutions, we do not show them in the solution sets.

In the following 4 lines the first set is the set of solutions of SM(Di). the second
one is the solution set of S, end the last one is the solution set of WM(Di).

i = 4: {{¬a, ¬b, c}, {¬a, b, ¬c}, {¬a, b, c}} ⊈ {{¬a, ¬b, c}, {¬a, b, ¬c}}
⊆ {{¬a, ¬b, c}, {¬a, b, ¬c}, {¬a, b, c}, {¬a, b, ¬c}, {a, ¬b, c}, {a, b, ¬c}}.

i = 8: {{¬a, ¬b, c}} ⊆ {{¬a, ¬b, c}, {¬a, b, ¬c}} ⊈ {{¬a, ¬b, c}, {a, ¬b, c}}.
i = 10: {{¬a, b, ¬c}, {¬a, b, c}} ⊈ {{¬a, ¬b, c}, {¬a, b, ¬c}}

⊈ {{¬a, b, ¬c}, {¬a, b, c}, {a, b, ¬c}.
i = 14: {{¬a, ¬b, c}}} ⊆ {{¬a, ¬b, c}, {¬a, b, ¬c}}

⊈ {{¬a, ¬b, c}, {¬a, b, c}, {a, ¬b, c}.
Therefore, for S there exists no communication graph Di, i = 1 . . . 16 such that

MM(Di) is equivalent to S, if MM(X) is a Black-and-White SAT representation.
There are two isomorphic clause set for S: S′ = {{a, ¬b}, {¬b, c}, {¬a, b, ¬c}};

and S′′ = {{b, ¬c}, {a, ¬c}, {¬a, ¬b, c}}.
By similar steps we can show that there exists no communication graph Di,

i = 1 . . . 16 such that MM(Di) is equivalent to S′ or S′′, if MM(X) is a Black-
and-White SAT representation.

Hence, there exists a SAT problem S for which there exists is no communication
graph C such that MM(C) is equivalent to S, if MM(X) is a Black-and-White
SAT representation.

The above proof is rather technical, but we decided to present it, because it
was not easy to construct it.

We present a more intuitive proving argument as a second proof of Theorem 6.1.

Proof. Let us count first the number of different communication graphs (up to
isomorphism). In case of 3 vertices there are 16 different communication graphs
(up to isomorphism), see https://mathinsight.org/image/three_node_motifs.
Actually, the number of strongly connected graphs with up to isomorphism is known
for many decades ago [26] and shown in various textbooks, e.g., [10, 14, 15]. Various
combinatorial relations and the integer sequence of the number of directed graphs as
a function of the number of vertices is listed in [37] at https://oeis.org/A000273.

105

https://mathinsight.org/image/three_node_motifs
https://oeis.org/A000273

Annal. Math. et Inf. G. Kusper, Z. Gy. Yang, B. Nagy

Now, let us consider the 3-variable SAT problems. They may have at least
the following 17 different solution sets (up to isomorphism). The black and white
solutions, i.e., ppp and nnn are not listed, but should be added to each set below.

There is a case, when no extra solution exists (the Black and White case).
The cases with a sole extra solution:

npp pnn.
With two extra solutions:

npp, pnp npp, pnn npp, npn pnn, npn.
With three extra solutions:

npp, pnp, ppn npp, pnp, pnn pnn, npn, npp pnn, npn, nnp
npp, pnp, nnp pnn, npn, ppn.

With four extra solutions:
npp, pnp, ppn, pnn npp, pnp, pnn, npn npp, pnp, pnn, nnp pnn, npn, nnp, npp.

(And we have some cases with 5 or 6 extra solutions as well...)
Thus the number of possible solution sets is larger than the number of commu-

nication graphs and thus, the proof of the result is finished.

We decided to keep both proofs, because their structure are very different,
and we twink that both of them can be interesting for the readers. These two
alternative proofs suggest that if we would like save our original goal, i.e., to find
a graph representation of SAT problems, then we have to decrease the number of
possible SAT instances, or we have to weaken the Weak Model or find some other
representation.

We can decrease the number of possible SAT instances if we delete the blocked
clauses before creating the corresponding directed graph. It is not so difficult to
detect all blocked literal in case of 3-SAT, see [19], but in general, we have no idea
how to show that this direction could work.

We can also use other representations. Actually, we have another candidate, the
so called resolvable networks [23]. Its idea is that each clause can be represented
by an A → B edge, where A represents the negative literals of the clause, and B
represents the positive liters of it. A and B are called subnetworks, and they might
have their own inner structure.

7. Conclusions
We have proven the 3rd Solution Lemma by showing that communication graphs
with exactly two SSCs must have a 3rd solution in case of Black-and-White SAT
representations. They must have 4 solution if there is no edges between the two
SCCs, and they have 3 ones, if there are some edges (but not in both directions).We
have also used a counting argument to prove that communications graphs cannot
represent all possible SAT problems (if each variable is represented by a vertex).
One may feel that this negative result gives a large imitation of our study, but this
is actually, not the case. On the one hand, we believe that it gives a new motivation
also to find and work with other type of graph representations of SAT, and not

106

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

only with pure communication graphs. On the other hand, the subclass of SAT
problems that can be represented by communication graphs can still be interesting
to find out and graphically, visually show how some techniques could help us to
solve some of the SAT instances.

Acknowledgements. The authors would like to thank to the project “Quality
insurance automatization services for IT development by analysing and refactoring
of decision structures of source codes based on expert systems”, project ID: 2018-
1.1.1-MKI-2018-00200, to support this research.

References
[1] M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, S. Sharifzadeh, V. Tresp, J. Lehmann:

PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings,
Journal of Machine Learning Research 22.82 (2021), pp. 1–6, url: http://jmlr.org/paper
s/v22/20-825.html.

[2] L. Alzboon, B. Nagy: Crazy Truth-Teller–Liar Puzzles, Axiomathes 32.4 (2022), pp. 639–
657.

[3] L. Alzboon, B. Nagy: Truth-Teller–Liar Puzzles with Self-Reference, Mathematics 8.2
(2020), paper 190, doi: 10.3390/math8020190.

[4] J. Bang-Jensen, G. Gutin: Digraphs: Theory, Algorithms and Applications, Springer, Berlin,
Heidelberg, Budapest, 2007.

[5] J. Barwise, L. S. Moss: Vicious Circles: On the Mathematics of Non-Wellfounded Phe-
nomena, CLSI Publications, 1996.

[6] J. Barwise, J. Seligman: Information Flow: the Logic of Distributed Systems, Cambridge
University Press, 1997.

[7] M. Ben-Ari: Mathematical Logic for Computer Science, Springer, London, 2012.
[8] A. Biere, M. Heule, H. Van Maaren, T. Walsh, eds.: Handbook of Satisfiability, IOS

Press, 2021.
[9] C. Biró, G. Kusper: Equivalence of Strongly Connected Graphs and Black-and-White 2-

SAT Problems, Miskolc Mathematical Notes 19.2 (2018), pp. 755–768, doi: 10.18514/MMN.2
018.2140.

[10] C. J. Colbourn, J. H. Dinitz, eds.: CRC Handbook of Combinatorial Designs, CRC Press,
1996.

[11] S. A. Cook: The complexity of theorem proving procedures, in: Proceedings of the Third
Annual ACM Symposium, ACM, 1971, pp. 151–158.

[12] S. A. Cook: A Short Proof of the Pigeon Hole Principle Using Extended Resolution, SIGACT
News 8.4 (1976), pp. 28–32, issn: 0163-5700, doi: 10.1145/1008335.1008338.

[13] R. Diestel: Graph Theory, Springer, 2017.
[14] J. L. Gross, J. Yellen, eds.: Handbook of Graph Theory, CRC Press, 2004.
[15] F. Harary, E. M. Palmer: Graphical Enumeration, Academic Press, NY, 1973.
[16] H. Jiang, S. Gurajada, Q. Lu, S. Neelam, L. Popa, P. Sen, Y. Li, A. Gray: LNN-EL: A

Neuro-Symbolic Approach to Short-text Entity Linking, in: Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), Online: Association
for Computational Linguistics, Aug. 2021, pp. 775–787, doi: 10.18653/v1/2021.acl-long.6
4, url: https://aclanthology.org/2021.acl-long.64.

107

http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
https://doi.org/10.3390/math8020190
https://doi.org/10.18514/MMN.2018.2140
https://doi.org/10.18514/MMN.2018.2140
https://doi.org/10.1145/1008335.1008338
https://doi.org/10.18653/v1/2021.acl-long.64
https://doi.org/10.18653/v1/2021.acl-long.64
https://aclanthology.org/2021.acl-long.64

Annal. Math. et Inf. G. Kusper, Z. Gy. Yang, B. Nagy

[17] O. Kullmann: New methods for 3-SAT decision and worst-case analysis, Theoretical Com-
puter Science 223.1-2 (1999), pp. 1–72.

[18] O. Kullmann: On a Generalization of Extended Resolution, Discrete Applied Mathematics
96-97.1-3 (1999), pp. 149–176.

[19] G. Kusper: Finding Models for Blocked 3-SAT Problems in Linear Time by Systematical
Refinement of a Sub-model, in: KI 2006: Advances in Artificial Intelligence, Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2007, pp. 128–142, isbn: 978-3-540-69912-5.

[20] G. Kusper, T. Balla, C. Biró, T. Tajti, Z. G. Yang, I. Baják: Generating Minimal
Unsatisfiable SAT Instances from Strong Digraphs, in: 2020 22nd International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2020, pp. 84–92,
doi: 10.1109/SYNASC51798.2020.00024.

[21] G. Kusper, C. Biró: Convert a Strongly Connected Directed Graph to a Black-and-White
3-SAT Problem by the Balatonboglár Model, Algorithms 13.12 (2020), issn: 1999-4893, doi:
10.3390/a13120321, url: https://www.mdpi.com/1999-4893/13/12/321.

[22] G. Kusper, C. Biró, T. Balla: Representing Directed Graphs as 3-SAT Problems using
the Simplified Balatonboglár Model, in: The 11th International Conference on Applied Infor-
matics (ICAI-2020), 2020, poster presented at ICAI-2020.

[23] G. Kusper, C. Biró, B. Nagy: Resolvable Networks—A Graphical Tool for Representing
and Solving SAT, Mathematics 9.20 (2021), issn: 2227-7390, doi: 10.3390/math9202597,
url: https://www.mdpi.com/2227-7390/9/20/2597.

[24] T. Lebese, N. Makondo, C. Cornelio, N. Khan: Proof Extraction for Logical Neural
Networks, in: Advances in Programming Languages and Neurosymbolic Systems workshop
at NeurIPS 2021, 2021.

[25] S. Lu, N. Khan, I. Y. Akhalwaya, R. Riegel, L. Horesh, A. Gray: Training Logical Neural
Networks by Primal–Dual Methods for Neuro-Symbolic Reasoning, in: ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021,
pp. 5559–5563, doi: 10.1109/ICASSP39728.2021.9415044.

[26] M. D. McIlroy: Calculation of numbers of structures of relations on finite sets, Mas-
sachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress
Reports, No. 17 (1955), pp. 14–22.

[27] B. Nagy: Duality of logical puzzles of type SW and WS—their solution using graphs, Pure
Math. Appl. 15.2-3 (2004), pp. 235–252.

[28] B. Nagy: SS-type truthteller-liar puzzles and their graphs. (Hungarian), Alkalmaz. Mat.
Lapok 23.1 (2006), pp. 59–72.

[29] B. Nagy: SW-type puzzles and their graphs, Acta Cybern. 16.1 (2003), pp. 67–82, url:
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3611.

[30] B. Nagy: Truth-teller and liar puzzles and their graphs, CEJOR: Cent. Eur. J. Oper. Res.
11.1 (2003), pp. 57–72.

[31] B. Nagy, G. Allwein: Diagrams and Non-monotonicity in Puzzles, in: Diagrammatic Rep-
resentation and Inference, Third International Conference, Diagrams 2004, Cambridge, UK,
March 22-24, 2004, Proceedings, ed. by A. F. Blackwell, K. Marriott, A. Shimojima,
vol. 2980, Lecture Notes in Computer Science, Springer, 2004, pp. 82–96, doi: 10.1007/978
-3-540-25931-2_10.

[32] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S.
Agarwal, K. Slama, A. Gray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,
A. Askell, P. Welinder, P. Christiano, J. Leike, R. Lowe: Training language models
to follow instructions with human feedback, in: Advances in Neural Information Processing
Systems, ed. by A. H. Oh, A. Agarwal, D. Belgrave, K. Cho, 2022.

[33] K. Pásztorné-Varga, M. Várterész: A matematikai logika alkalmazásszemléletű tárgyalása
(Application-oriented Study of Mathematical Logics, Hunagrian), PANEM, Budapest, 2003.

108

https://doi.org/10.1109/SYNASC51798.2020.00024
https://doi.org/10.3390/a13120321
https://www.mdpi.com/1999-4893/13/12/321
https://doi.org/10.3390/math9202597
https://www.mdpi.com/2227-7390/9/20/2597
https://doi.org/10.1109/ICASSP39728.2021.9415044
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3611
https://doi.org/10.1007/978-3-540-25931-2_10
https://doi.org/10.1007/978-3-540-25931-2_10

Annal. Math. et Inf. Using extended resolution to represent strongly connected . . .

[34] R. Riegel, A. G. Gray, F. P. S. Luus, N. Khan, N. Makondo, I. Y. Akhalwaya, H. Qian,
R. Fagin, F. Barahona, U. Sharma, S. Ikbal, H. Karanam, S. Neelam, A. Likhyani, S. K.
Srivastava: Logical Neural Networks, CoRR abs/2006.13155 (2020), arXiv: 2006.13155.

[35] A. Saxena, A. Kochsiek, R. Gemulla: Sequence-to-Sequence Knowledge Graph Completion
and Question Answering, in: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland: Association for
Computational Linguistics, May 2022, pp. 2814–2828, doi: 10.18653/v1/2022.acl-long.20
1, url: https://aclanthology.org/2022.acl-long.201.

[36] P. Schneider, T. Schopf, J. Vladika, M. Galkin, E. Simperl, F. Matthes: A Decade of
Knowledge Graphs in Natural Language Processing: A Survey, in: Proceedings of the 2nd
Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and
the 12th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Online only: Association for Computational Linguistics, Nov. 2022, pp. 601–614,
url: https://aclanthology.org/2022.aacl-main.46.

[37] N. J. A. Sloane, S. Plouffe: The Encyclopedia of Integer Sequences (and its online version
on the link), Academic Press, 1995, url: https://oeis.org/.

[38] G. S. Tseitin: On the complexity of derivation in propositional calculus, Structures in Con-
structive Mathematics and Mathematical Logic (1968), pp. 115–125.

[39] R. Wang, D. Tang, N. Duan, Z. Wei, X. Huang, J. Ji, G. Cao, D. Jiang, M. Zhou:
K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters, in: Findings of
the Association for Computational Linguistics: ACL-IJCNLP 2021, Online: Association for
Computational Linguistics, Aug. 2021, pp. 1405–1418, doi: 10.18653/v1/2021.findings-ac
l.121, url: https://aclanthology.org/2021.findings-acl.121.

109

https://arxiv.org/abs/2006.13155
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/2022.acl-long.201
https://aclanthology.org/2022.acl-long.201
https://aclanthology.org/2022.aacl-main.46
https://oeis.org/
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://aclanthology.org/2021.findings-acl.121

Submitted: July 14, 2023
Accepted: August 7, 2023
Published online: August 16, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 110–120
DOI: 10.33039/ami.2023.08.004
URL: https://ami.uni-eszterhazy.hu

On language classes accepted by stateless
5′ → 3′ Watson-Crick finite automata

Benedek Nagyab

aEastern Mediterranean University,
Faculty of Arts and Sciences,
Department of Mathematics,

Famagusta, North Cyprus, Mersin-10, Turkey
bDepartment of Computer Science,

Institute of Mathematics and Informatics,
Eszterházy Károly Catholic University,

Eger, Hungary
nbenedek.inf@gmail.com

Abstract. Watson-Crick automata are belonging to the natural computing
paradigm as these finite automata are working on strings representing DNA
molecules. Watson-Crick automata have two reading heads, and in the 5′ →
3′ models these two heads start from the two extremes of the input. This is
well motivated by the fact that DNA strands have 5′ and 3′ ends based on
the fact which carbon atoms of the sugar group is used in the covalent bonds
to continue the strand. However, in the two stranded DNA, the directions
of the strands are opposite, so that, if an enzyme would read the strand
it may read each strand in its 5′ to 3′ direction, which means physically
opposite directions starting from the two extremes of the molecule. On the
other hand, enzymes may not have inner states, thus those Watson-Crick
automata which are stateless (i.e. have exactly one state) are more realistic
from this point of view. In this paper these stateless 5′ → 3′ Watson-Crick
automata are studied and some properties of the language classes accepted by
their variants are proven. We show hierarchy results, and also a “pumping”,
i.e., iteration result for these languages that can be used to prove that some
languages may not be in the class accepted by the class of stateless 5′ → 3′

Watson-Crick automata.

Keywords: Bio-computing, stateless finite automata, linear languages

AMS Subject Classification: AMS 68Q45: Formal languages and automata,
68Q07 Biologically inspired models of computation

https://doi.org/10.33039/ami.2023.08.004
https://ami.uni-eszterhazy.hu
mailto:nbenedek.inf@gmail.com

Annal. Math. et Inf. On language classes accepted by stateless . . .

1. Introduction

Finite automata are one of the oldest models of computing. The classes of both
deterministic and nondeterministic variants are able to accept exactly the class of
regular languages. Amar and Putzolu have generalised the concept and they have
defined a special class of linear context-free language class, the so-called even-linear
grammars and languages [1, 2].

Finite automata are very popular since they are very simple comparing them
to other more sophisticated models. During the last decades, many kinds of exten-
sions of finite automata are studied and proven to be applicable to accept larger
classes of languages than the class of regular languages, but still have a moder-
ate complexity. One of the branches of DNA computing is working with automata
models accepting DNA molecules (or their formal representations), these automata
are named as Watson-Crick automata [3, 6, 28]. These automata have two reading
heads, one for each strand of the double stranded DNA. They can be used also for
bioinformatic problems [30]. On the other hand, the strings have two extremes,
namely their beginning and ends, which gives the rise of the 2-head models process-
ing the input from their beginning and their end in a kind of parallel manner [13,
16]. Some of these 2-head models are known as 5′ → 3′ Watson-Crick automata by
a biological motivation describing these models to accept DNA molecules instead
of ordinary words [17–19, 24, 26]. As usual at Watson-Crick automata, various ex-
tensions/restrictions could be applied on the model, e.g., string reading feature, or
having only accepting states or having only one state. Generally, this 2-head model
of computing, by finishing the computation at latest when the heads are in the same
position, characterizes exactly the class of linear context-free languages [13, 16, 17,
26]. Regular-like expressions for linear context-free languages are shown in [29]
to suggest the feeling that linear context-free languages can really be imagined
as a superclass of the regular languages. Special variants capable to accept some
special subclasses of the class of linear context-free languages of these automata
models are also studied, e.g., the so-called even-linear languages (see, e.g., their
importance in various applications [31, 32]) are accepted by a model, the so-called
both-head stepping 5′ → 3′ Watson-Crick finite automata, in which the two heads
must move together in a synchronous way [14]. On the other hand, opposite to the
ordinary finite state automata, the deterministic counterpart of the 2-head model
is weaker, and the language class 2detLIN is accepted by them [25, 27]. Recently
two more variants of the model have been investigated: In the state deterministic
5′ → 3′ Watson-Crick automata the state of the next configuration depends only
on the actual state and it does not depend on the read symbol(s) [22]. These
automata can easily be characterized by their graphs. On the other hand, in quasi-
deterministic 5′ → 3′ Watson-Crick automata, in any computation, the state of the
next configuration is deterministically computed, however the configuration itself
is not [21]. These automata behave somewhat between the classical deterministic
and nondeterministic models of the 5′ → 3′ Watson-Crick automata. In [12], the
non-sensing 5′ → 3′ Watson-Crick automata are studied, in which both heads read

111

Annal. Math. et Inf. B. Nagy

the entire input (but, of course, in opposite direction). It was shown that Turing
machine computations can be coded into the input which gives, on the one hand,
a characterization of the class of recursively enumerable class of languages by the
model, and on the other hand, the undecidability of some of the simple problems
for the accepted languages. Moreover, infinite hierarchies of language classes were
shown according to the number of allowed runs on the input, when in each run the
entire input is processed by both heads.

From a biological point of view, the stateless variants, i.e., 5′ → 3′ Watson-
Crick automata with a sole state make more sense than models with several states.
Thus, in this paper, we consider these variants. Usually, finite state automata store
the information about the already processed input in their states. To store one bit
information, one needs two states. Automata with a sole state referred as stateless,
as they cannot store any information in their state. Thus, usually, not to allow to
accept all possible inputs, these automata are incomplete, in the sense that they
are not accepting those inputs that cannot be processed, i.e., they get stuck during
(all) the computation(s) on these inputs. Actually, the things are a little bit more
complex here, since actually, stateless automata at least have the information that
the already processed part of the input can be processed.

We recall the well-known fact that stateless automata are as efficient as au-
tomata with any finitely many number of states in case of pushdown automata [9].
Furthermore, a similar fact has been proven for the 5′ → 3′ Watson-Crick push-
down automata [15]. On the other hand, stateless variants of 5′ → 3′ Watson-Crick
multicounter machines were studied in [4, 5, 7, 8] by obtaining various hierarchies
of the accepted language classes.

Pumping and iteration lemmas are well-known for various subclasses of the
context-free languages [9]. In general, they give necessary conditions for the lan-
guages belonging to a given class, and thus, by their help, we may prove that a
given language is definitely not belonging to the class we are interested in. They
are usually proven by considering derivation trees, or for many subclasses, includ-
ing, e.g., the class of regular languages, by arguments based on the finite automata
model. There are variants of these theorems for some special subclasses of the class
of linear context-free languages [10, 20]. In this paper, as one of our main results,
we provide an iteration result for the languages of stateless 5′ → 3′ Watson-Crick
automata.

In the next section, we formally define our model. In Section 3 we show some
examples. In Section 4 we present our main theorems and also we show how they
can be applied. Conclusions and some future topics of research close the paper.

2. Formal definitions
In this section we define formally our model. We note here that in the literature,
the definition may also include the so-called Watson-Crick complementarity relation
defined on the alphabet. Since in the nature, it is a symmetric bijective relation, we
simplify our model not to play with it. This can be done, since, on the one hand,

112

Annal. Math. et Inf. On language classes accepted by stateless . . .

in [11] it is shown that at Watson-Crick automata this relation does not play any
important role, as the same language class can be accepted by using the identity
instead of a more general complementarity relation. On the other hand, as we will
see, in the sensing 5′ → 3′ Watson-Crick automata, every position of the double
stranded DNA is read by at most one of the heads, and thus, the relation on the
letters at the same position of the two strands cannot play any role in the accepted
languages.

Definition 2.1. A Watson-Crick finite automaton (a WK automaton) is a
5-tuple A = (T, Q, q0, F, δ), where:

• T is the (input) alphabet, (e.g., the letters standing for possible bases of the
nucleotides),

• the finite set of states Q, the initial state q0 ∈ Q and the set of final (also
called accepting) states F ⊆ Q,

• the transition mapping δ is of the form δ : Q × T ∗ × T ∗ → 2Q, such that it
is non-empty only for finitely many triplets (q, u, v), q ∈ Q, u, v ∈ T ∗.

The computation by WK automata goes through configurations as follows.

Definition 2.2. A configuration is a pair (q, w) containing q, the current state
and w, the unprocessed part of the input.

In sensing 5′ → 3′ WK automata, for any w′, x, y ∈ T ∗, q, q′ ∈ Q, we write a
step of the computation between two configurations as follows: (q, xw′y) ⇒
(q′, w′) if and only if q′ ∈ δ(q, x, y).

We denote the reflexive and transitive closure of the relation ⇒ by ⇒∗, and
this is the computation relation on configurations.

Further, for an input w ∈ T ∗, an accepting computation is a sequence of
steps (q0, w) ⇒∗ (qf , λ) for some qf ∈ F .

As usual, we use automata for accepting languages, thus we have:

Definition 2.3. The language accepted by a sensing 5′ → 3′ WK automaton
consists of all words that are accepted by the automaton.

By comparing traditional finite state automata with sensing 5′ → 3′ WK au-
tomata, there are two main differences. Both of those can be seen in the transition
function. The first difference, as we have already mentioned, is that the sensing
5′ → 3′ WK automata have two reading heads, thus the domain of the transition
function contains triplets. The other difference, coming from biological motiva-
tions, is that the WK automata may read strings in a transition, not only letters.
This is motivated by the fact that enzymes may be attached to the strands, and
thus, read a longer part of the input in a computation step. On the other hand, to
keep the model still finite, it is allowed to have transitions only for finitely many
triplets of the domain, since it is not feasible to allow to read strings with an
unlimited length, as enzymes must also have a finite size.

113

Annal. Math. et Inf. B. Nagy

The above definitions can be used in general for any 5′ → 3′ WK automata.
However, there are some restricted variants, and actually, in this paper, we are
focusing on some of these variants.

Definition 2.4. A Watson-Crick finite automaton is stateless if Q = F = {q0}.
A Watson-Crick finite automaton is simple if δ : (Q×((λ, T ∗)∪(T ∗, λ))) → 2Q,

i.e., at most one heads reads in a step.
A Watson-Crick finite automaton is one-limited if δ : (Q×((λ, T)∪(T, λ))) →

2Q, i.e., exactly one letter is being read in each step.

The notation NWK is used for the stateless automata, as N stands for “no
states”. Further, the notation NSWK and N1WK is used for stateless simple and
stateless one-limited automata, respectively.

By definition, clearly all N1WK automata are NSWK automata, and all NSWK
automata are NWK automata at the same time.

We may also have other types of restrictions based on the sequences of compu-
tation steps:

Definition 2.5. A Watson-Crick finite automaton is deterministic, if for any
of its possible configurations there is at most one possible step to continue the
computation.

A Watson-Crick finite automaton is state-deterministic, if for each of its
states q ∈ Q, if there is a transition from q and it goes to state p, i.e., p ∈ δ(q, u, v),
then every transition from q goes to p.

A Watson-Crick finite automaton is quasi-deterministic, if for each possible
configuration (q, w), if (q, w) ⇒ (p, u) and also (q, w) ⇒ (r, v), then p = r must
hold.

We note here that in some cases, e.g., [13, 16] the 2-head automata are defined
in a way that they may able to read the input only letter by letter. Generally, if the
automaton could have many states, that is not a problem, the string-reading feature
of our model can be resolved by adding some new states and doing the computation
on the input letter by letter. This can be done also in the deterministic case as
proven in [25]. On the other hand, if we consider only automata with a sole state,
the string-reading feature becomes essential in our models. Without allowing to
read strings in a transition only very limited number of languages would be accepted
by 2-head stateless automata.

3. Examples
In this section, for better understanding these computational models, we give some
examples.

Example 3.1. The regular language (01)∗ is accepted by the deterministic NSWK
automaton with state q having only transition q ∈ δ(q, 01, λ) (since the automaton
has only a sole state, we briefly say that it has a transition with (01, λ) without

114

Annal. Math. et Inf. On language classes accepted by stateless . . .

mentioning its state). This automaton uses only its left head during the entire
computation on its input. Clearly the whole input can be processed if and only if
it is in the regular language (01)∗.
Example 3.2. The deterministic NWK accepts the language {0n13n} having only
transition by (0, 111). In each computation step, the left head (starting from the
beginning of the input) is reading a 0, while the right head (starting from the end of
the input) is reading 111. Consequently, when the heads meet and the computation
is finished, any nonempty input accepted must have the form that all 0s precede
all the 1s, and the number of 1s is exactly three times as many as the number of
0s. This language is a non-regular linear context-free language.
Example 3.3. The deterministic NWK with two transitions (0, 0) and (1, 1) ac-
cepts the language of even palindromes over {0, 1}, i.e., the language {u · uR | u ∈
{0, 1}∗} where uR is the reversal of the word u. This language is a well-known
non-regular linear context-free language.
Example 3.4. The regular language 0∗1∗ is accepted by the nondeterministic
N1WK automaton having two transitions by (0, λ) and by (λ, 1). In each step of
the computation, either the left head reads a 0 (from the beginning of the remaining
input) or the right head reads a 1 (from the end of the remaining input). Observe
that in fact, this automaton is not deterministic.

From the definitions of state-deterministic, quasi-deterministic and determinis-
tic variants (see also [21, 22, 25, 27]) we can infer the following:
Proposition 3.5. Every NWK automaton is state-deterministic and quasi-de-
terministic. Further, the class of NSWK automata coincides with the class of
state-deterministic NSWK automata and also with the class of quasi-deterministic
NSWK automata. Moreover, the class of N1WK automata coincides with the class
of state-deterministic N1WK automata and with the class of quasi-deterministic
N1WK automata.

On the other hand, based on the examples shown above, we can infer also the
following result about these models.
Proposition 3.6. There are NWK, NSWK and N1WK automata that are not
deterministic.

Thus actually, we can consider six classes of stateless 5′ → 3′ WK automata
in the sequel. We show the hierarchy of the language classes accepted by them in
Figure 1. However, to put also the class of regular languages into this hierarchy we
may use our new results presented in the next section.

4. Main results
In this section, we concentrate on the NWK automata in general, thus the results
of this section are applicable for each of the above mentioned subcases of the model
as well.

115

Annal. Math. et Inf. B. Nagy

Based on the transitions used in an NWK automaton we can define some further
concepts.

Definition 4.1. Let an NWK automaton A = (T, {q}, q, {q}, δ) be given. By
definition, it has finitely many transitions δ(q, ℓi, ri) = {q} defined, let denote this
number by n. Let us have an alphabet V = {v1, . . . , vn} with n elements, and
let us assign the elements of V to the transitions of the automaton in a bijective
way: vi ↔ (ℓi, ri). Let φ, µ : V → T ∗ be the mappings defined as φ(vi) = ℓi and
analogously, µ(vi) = rR

i , where R stand for the reversal of the word.
We refer to φ and µ as the forward and the backward morphisms of the

automaton A and its accepted language L.

Now we are ready to claim one of our new results about the languages accepted
by these models.

Theorem 4.2. Let A be an NWK automaton over alphabet T . Then there is a
finite alphabet V , and there exist the forward and backward morphisms φ, µ : V →
T ∗ such that the language accepted by A can be written as {φ(x)µ(xR) | x ∈ V ∗},
where xR is the reversal of the word x.

Proof. Clearly, for each word w ∈ T ∗ accepted by the automaton, there exists an
accepting computation that can be described by the sequence of transitions x ∈
V ∗. Moreover, in stateless automata every word of V ∗ is describing an accepting
computation (of some input word w). In this computation the left head is reading
the word defined by φ(x) and as the right head is reading from the right, it is
reading µ(xR) during the computation.

Furthermore, we state the following “pumping”-like theorem.

Theorem 4.3. Let A be an NWK automaton over T . For any word w accepted by
A, there is a factorisation w = u · v, such that uivi is also accepted by A for any
i ∈ N.

Proof. Let us consider any word w accepted by A. Then, by Theorem 4.2, an/the
accepting computation on w can be described by x ∈ V ∗. Further, w = φ(x)µ(xR)
with the associated morphisms. Considering the words of the form xi ∈ V ∗, they
describe accepting computations of the words of the form φ(xi) · (µ((xi)R) =
(φ(x))i · (µ(xR))i which, with the choice of u = φ(x) and v = µ(xR), can be
written as uivi as the theorem states.

The theorem can also be seen as follows: the repetition of the computation
implies a kind of insertion operation on the accepted words.

As we have seen, there are some non-regular languages that are accepted with
deterministic NWK automata. Let us see an example what Theorem 4.3 means for
an accepted language.

Example 4.4. Let us consider the language L of even palindromes shown in Ex-
ample 3.3. Let V = {a, b}, φ(a) = 0, φ(b) = 1 and µ(a) = 0, µ(b) = 1. Then

116

Annal. Math. et Inf. On language classes accepted by stateless . . .

w = 00100100 ∈ L, and in fact, x = aaba ∈ V ∗ has the property that φ(x) = 0010
and µ(xR) = 0100. Therefore w = φ(x) · µ(xR). We may obtain the words
(φ(x))2 · (µ(xR))2 = 0010001001000100,
(φ(x))3 · (µ(xR))3 = 001000100010010001001000,
(φ(x))i · (µ(xR))i (for any i ∈ N) based on the words x2, x3, xi.

On the other hand, now we present another possible, maybe more useful appli-
cation of Theorem 4.3.

Proposition 4.5. The regular language a∗bba∗ is not accepted by any NWK au-
tomata.

Proof. As a∗bba∗ does not satisfy the conditions of the previous theorem, as the
number of bs cannot be “pumped”, thus, obviously it cannot be a language that is
accepted by any NWK automata.

Thus, our result can efficiently be used to show that some languages are not
acceptable by any NWK automata. From, e.g., Example 3.3 and Proposition 4.5
we can infer the incomparability of the class of regular languages and the class of
languages accepted by stateless WK automata under set theoretical inclusion.

5. Conclusion and future work

 LIN

 2detLIN

 NWK

 det NWK REG

 NSWK

 det NSWK

 N1WK

 det N1WK

Figure 1. A hierarchy of language classes accepted by stateless
sensing 5′ → 3′ WK automata.

Figure 1 shows the hierarchy of the language classes of our model in a Hasse dia-
gram (the automaton class here denoting the accepted language class). Classes not
having directed path between them are incomparable under set theoretic inclusion
relation. REG denotes the class of regular, LIN, the class of linear context-free
languages (this is the class that is accepted by sensing 5′ → 3′ WK automata)

117

Annal. Math. et Inf. B. Nagy

and 2detLIN the class of languages accepted by deterministic sensing 5′ → 3′ WK
automata.

In this paper, we have shown a new iteration theorem for the languages ac-
cepted by stateless 5′ → 3′ Watson-Crick automata. This theorem is based on two
newly defined morphisms. This approach could also be fruitful to analyse further
properties of the corresponding language classes. We recall that a somewhat re-
lated topic, finite state 5′ → 3′ Watson-Crick transducers (automata with output)
were discussed in [23], where the description was also used some special functions
that can be in relation to our newly defined morphisms.

It is a task of a future work to develop other specific iteration theorems and for
other specific classes of languages accepted by variants of Watson-Crick automata
and to describe some new properties of those language classes based on these and
related results.

References
[1] V. Amar, G. R. Putzolu: Generalizations of Regular Events, Inf. Control. 8.1 (1965),

pp. 56–63, doi: 10.1016/S0019-9958(65)90275-5.
[2] V. Amar, G. R. Putzolu: On a Family of Linear Grammars, Inf. Control. 7.3 (1964),

pp. 283–291, doi: 10.1016/S0019-9958(64)90294-3.
[3] E. Czeizler, E. Czeizler: A Short Survey on Watson-Crick Automata, Bull. EATCS 88

(2006), pp. 104–119.
[4] Ö. Egecioglu, L. Hegedüs, B. Nagy: Hierarchies of Stateless Multicounter 5′ → 3′ Watson-

Crick Automata Languages, Fundam. Informaticae 110.1-4 (2011), pp. 111–123, doi: 10.32
33/FI-2011-531.

[5] Ö. Egecioglu, L. Hegedüs, B. Nagy: Stateless multicounter 5′ → 3′ Watson-Crick au-
tomata, in: Fifth International Conference on Bio-Inspired Computing: Theories and Appli-
cations, BIC-TA 2010, University of Hunan, Liverpool Hope University, Liverpool, United
Kingdom / Changsha, China, September 8-10 and September 23-26, 2010, IEEE, 2010,
pp. 1599–1606, doi: 10.1109/BICTA.2010.5645263.

[6] R. Freund, G. Paun, G. Rozenberg, A. Salomaa: Watson-Crick finite automata, in: DNA
Based Computers, Proceedings of a DIMACS Workshop, Philadelphia, Pennsylvania, USA,
June 23-25, 1997, ed. by H. Rubin, D. H. Wood, vol. 48, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, DIMACS/AMS, 1997, pp. 297–327, doi: 10.10
90/dimacs/048/22.

[7] L. Hegedüs, B. Nagy: On String Reading Stateless Multicounter 5′ → 3′ Watson-Crick
Automata - (Extended Abstract), in: Unconventional Computation and Natural Computation
- 12th International Conference, UCNC 2013, Milan, Italy, July 1-5, 2013. Proceedings, ed.
by G. Mauri, A. Dennunzio, L. Manzoni, A. E. Porreca, vol. 7956, Lecture Notes in
Computer Science, Springer, 2013, pp. 257–258, doi: 10.1007/978-3-642-39074-6_29.

[8] L. Hegedüs, B. Nagy, Ö. Egecioglu: Stateless multicounter 5′ → 3′ Watson-Crick au-
tomata: the deterministic case, Nat. Comput. 11.3 (2012), pp. 361–368, doi: 10.1007/s110
47-011-9290-9.

[9] J. E. Hopcroft, J. D. Ullman: Introduction to Automata Theory, Languages and Compu-
tation, Second Edition, Addison-Wesley, 2000.

[10] G. Horváth, B. Nagy: Pumping lemmas for linear and nonlinear context-free languages,
Acta Univ. Sapientiae, Informatica 2.2 (2010), pp. 194–209, arXiv: 1012.0023, url: http:
//arxiv.org/abs/1012.0023.

118

https://doi.org/10.1016/S0019-9958(65)90275-5
https://doi.org/10.1016/S0019-9958(64)90294-3
https://doi.org/10.3233/FI-2011-531
https://doi.org/10.3233/FI-2011-531
https://doi.org/10.1109/BICTA.2010.5645263
https://doi.org/10.1090/dimacs/048/22
https://doi.org/10.1090/dimacs/048/22
https://doi.org/10.1007/978-3-642-39074-6_29
https://doi.org/10.1007/s11047-011-9290-9
https://doi.org/10.1007/s11047-011-9290-9
https://arxiv.org/abs/1012.0023
http://arxiv.org/abs/1012.0023
http://arxiv.org/abs/1012.0023

Annal. Math. et Inf. On language classes accepted by stateless . . .

[11] D. Kuske, P. Weigel: The Role of the Complementarity Relation in Watson-Crick Au-
tomata and Sticker Systems, in: Developments in Language Theory, 8th International Con-
ference, DLT 2004, Auckland, New Zealand, December 13-17, 2004, Proceedings, ed. by C.
Calude, E. Calude, M. J. Dinneen, vol. 3340, Lecture Notes in Computer Science, Springer,
2004, pp. 272–283, doi: 10.1007/978-3-540-30550-7_23.

[12] P. Leupold, B. Nagy: 5′→3′ Watson-Crick AutomataWith Several Runs, Fundam. Infor-
maticae 104.1-2 (2010), pp. 71–91, doi: 10.3233/FI-2010-336.

[13] R. Loukanova: Linear Context Free Languages, in: Theoretical Aspects of Computing -
ICTAC 2007, 4th International Colloquium, Macau, China, September 26-28, 2007, Pro-
ceedings, ed. by C. B. Jones, Z. Liu, J. Woodcock, vol. 4711, Lecture Notes in Computer
Science, Springer, 2007, pp. 351–365, doi: 10.1007/978-3-540-75292-9_24.

[14] B. Nagy: 5′ → 3′ Sensing Watson-Crick Finite Automata, in: Sequence and Genome Anal-
ysis II – Methods and Applications, ed. by G. Fung, iConcept Press, 2010, pp. 39–56.

[15] B. Nagy: 5′→3′ Watson-Crick pushdown automata, Inf. Sci. 537 (2020), pp. 452–466, doi:
10.1016/j.ins.2020.06.031.

[16] B. Nagy: A class of 2-head finite automata for linear languages, Triangle 8 (Languages.
Mathematical Approaches) (2012), pp. 89–99.

[17] B. Nagy: On 5′ → 3′ Sensing Watson-Crick Finite Automata, in: DNA Computing, 13th
International Meeting on DNA Computing, DNA13, Memphis, TN, USA, June 4-8, 2007, Re-
vised Selected Papers, ed. by M. H. Garzon, H. Yan, vol. 4848, Lecture Notes in Computer
Science, Springer, 2008, pp. 256–262, doi: 10.1007/978-3-540-77962-9_27.

[18] B. Nagy: On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata languages, J.
Log. Comput. 23.4 (2013), pp. 855–872, doi: 10.1093/logcom/exr049.

[19] B. Nagy: On a hierarchy of 5′ → 3′ sensing WK finite automata languages, in: Mathematical
Theory and Computational Practice, CiE, Abstract Booklet, Heidelberg, Germany, 2009,
pp. 266–275.

[20] B. Nagy: Pumping lemmas for special linear languages, in: ICAI 2010, Eger, Hungary, vol.
II. 2010, pp. 73–81.

[21] B. Nagy: Quasi-deterministic 5′ → 3′ Watson-Crick Automata, in: Proceedings 12th Inter-
national Workshop on Non-Classical Models of Automata and Applications, NCMA 2022,
Debrecen, Hungary, August 26-27, 2022, ed. by H. Bordihn, G. Horváth, G. Vaszil,
vol. 367, EPTCS, 2022, pp. 160–176, doi: 10.4204/EPTCS.367.11.

[22] B. Nagy: State-deterministic 5′ → 3′ Watson-Crick automata, Nat. Comput. 20.4 (2021),
pp. 725–737, doi: 10.1007/s11047-021-09865-z.

[23] B. Nagy, Z. Kovács: On deterministic 1-limited 5′ → 3′ sensing Watson-Crick finite-state
transducers, RAIRO Theor. Informatics Appl. 55 (2021), p. 5, doi: 10.1051/ita/2021007.

[24] B. Nagy, S. Parchami: 5′ → 3′ Watson-Crick automata languages-without sensing param-
eter, Nat. Comput. 21.4 (2022), pp. 679–691, doi: 10.1007/s11047-021-09869-9.

[25] B. Nagy, S. Parchami: On deterministic sensing 5′ → 3′ Watson-Crick finite automata: a
full hierarchy in 2detLIN, Acta Informatica 58.3 (2021), pp. 153–175, doi: 10.1007/s00236
-019-00362-6.

[26] B. Nagy, S. Parchami, H. M. M. Sadeghi: A New Sensing 5′ → 3′ Watson-Crick Automata
Concept, in: Proceedings 15th International Conference on Automata and Formal Languages,
AFL 2017, Debrecen, Hungary, September 4-6, 2017, ed. by E. Csuhaj-Varjú, P. Dömösi,
G. Vaszil, vol. 252, EPTCS, 2017, pp. 195–204, doi: 10.4204/EPTCS.252.19.

[27] S. Parchami, B. Nagy: Deterministic Sensing 5′ → 3′ Watson-Crick Automata Without
Sensing Parameter, in: Unconventional Computation and Natural Computation - 17th In-
ternational Conference, UCNC 2018, Fontainebleau, France, June 25-29, 2018, Proceedings,
ed. by S. Stepney, S. Verlan, vol. 10867, Lecture Notes in Computer Science, Springer,
2018, pp. 173–187, doi: 10.1007/978-3-319-92435-9_13.

119

https://doi.org/10.1007/978-3-540-30550-7_23
https://doi.org/10.3233/FI-2010-336
https://doi.org/10.1007/978-3-540-75292-9_24
https://doi.org/10.1016/j.ins.2020.06.031
https://doi.org/10.1007/978-3-540-77962-9_27
https://doi.org/10.1093/logcom/exr049
https://doi.org/10.4204/EPTCS.367.11
https://doi.org/10.1007/s11047-021-09865-z
https://doi.org/10.1051/ita/2021007
https://doi.org/10.1007/s11047-021-09869-9
https://doi.org/10.1007/s00236-019-00362-6
https://doi.org/10.1007/s00236-019-00362-6
https://doi.org/10.4204/EPTCS.252.19
https://doi.org/10.1007/978-3-319-92435-9_13

Annal. Math. et Inf. B. Nagy

[28] G. Paun, G. Rozenberg, A. Salomaa: DNA Computing - New Computing Paradigms, Texts
in Theoretical Computer Science. An EATCS Series, Springer, 1998, isbn: 978-3-540-64196-4,
doi: 10.1007/978-3-662-03563-4.

[29] J. M. Sempere: On a Class of Regular-like Expressions for Linear Languages, J. Autom.
Lang. Comb. 5.3 (2000), pp. 343–354, doi: 10.25596/jalc-2000-343.

[30] J. M. Sempere: On the application of Watson-Crick finite automata for the resolution of
bioinformatic problems, in: Tenth Workshop on Non-Classical Models of Automata and
Applications, NCMA 2018, Košice, Slovakia, August 21-22, 2018, ed. by R. Freund, M.
Hospodár, G. Jirásková, G. Pighizzini, Österreichische Computer Gesellschaft, 2018, pp. 29–
30.

[31] J. M. Sempere, P. García: A Characterization of Even Linear Languages and its Appli-
cation to the Learning Problem, in: Grammatical Inference and Applications, Second Inter-
national Colloquium, ICGI-94, Alicante, Spain, September 21-23, 1994, Proceedings, ed. by
R. C. Carrasco, J. Oncina, vol. 862, Lecture Notes in Computer Science, Springer, 1994,
pp. 38–44, doi: 10.1007/3-540-58473-0_135.

[32] J. M. Sempere, P. García: Learning Locally Testable Even Linear Languages from Posi-
tive Data, in: Grammatical Inference: Algorithms and Applications, 6th International Col-
loquium: ICGI 2002, Amsterdam, The Netherlands, September 23-25, 2002, Proceedings,
ed. by P. W. Adriaans, H. Fernau, M. van Zaanen, vol. 2484, Lecture Notes in Computer
Science, Springer, 2002, pp. 225–236, doi: 10.1007/3-540-45790-9_18.

120

https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.25596/jalc-2000-343
https://doi.org/10.1007/3-540-58473-0_135
https://doi.org/10.1007/3-540-45790-9_18

Submitted: July 25, 2023
Accepted: August 7, 2023
Published online: August 30, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 121–132
DOI: 10.33039/ami.2023.08.012
URL: https://ami.uni-eszterhazy.hu

Vibronic spectra of molecules – an
experiment with a quantum computer

simulator∗

András Németha, Tamás Kozsika, Zoltán Zimborásab

aDepartment of Programming Languages and Compilers, Faculty of Informatics,
ELTE Eötvös Loránd University, Budapest, Hungary

nemethandras@inf.elte.hu, ORCID: 0000-0002-4187-0673
kozsik.tamas@inf.elte.hu, ORCID: 0000-0003-4484-9172

bQuantum Computing and Information Research Group,
Wigner Research Centre for Physics, Budapest, Hungary

zimboras.zoltan@wigner.hu, ORCID: 0000-0002-2184-526X

Abstract. In addition to the exciting fundamental questions of quantum
computing and implementation possibilities of quantum computers, it is im-
portant to look for application areas of quantum computing, to point out
practical cases which justify the need for this technology. Besides the well-
known qubit-based quantum computers, there are also devices based on other
foundations that can surpass the capabilities of classical computers. Among
these, devices operating on the basis of boson sampling have a naturally oc-
curring application: the approximate calculation of the vibrational spectrum
of molecules. Two separate research groups, Huh et al. [14] and Wang et
al. [22] created quantum simulators based on boson sampling, which were
successfully used to calculate the transition probabilities between specific
states of small molecules. Following the methodology found in these two ar-
ticles, this paper presents how the calculations of transition probabilities can
be performed on a classical computer using a quantum computer simulator
which is based on Gaussian boson sampling.
Keywords: Quantum Computing, Gaussian Boson Sampling, Vibronic Spec-
tra of Molecules, Quantum Chemistry, Spectroscopy
AMS Subject Classification: 68Q12, 81P68

∗This research was supported by the Ministry of Culture and Innovation and the National
Research, Development and Innovation Office within the Quantum Information National Labo-
ratory of Hungary (Grant No. 2022-2.1.1-NL-2022-00004).

https://doi.org/10.33039/ami.2023.08.012
https://ami.uni-eszterhazy.hu
mailto:nemethandras@inf.elte.hu
mailto:kozsik.tamas@inf.elte.hu
mailto:zimboras.zoltan@wigner.hu

Annal. Math. et Inf. A. Németh, T. Kozsik, Z. Zimborás

1. Introduction

The topic of this paper lies in the intersection of two huge research areas. The
first of these is currently one of the hottest, most exciting technology: quantum
informatics and quantum computers. Among the countless possible directions,
this paper addresses boson sampling, which became the focus of attention after
the famous article by Aaronson and Arkhipov [1], in which they proved that the
boson sampling problem is difficult to calculate on a classical computer. There are
multiple physical implementations of boson sampling, but the most common is the
photonic solution, where one-photon states are used as input to an interferometer,
and the number of photons is measured at the output. The interferometer is
actually the simplest device in the setup; the devices for producing single-photons
and for measuring the number of photons are the pinnacle of today’s technology,
and are constantly being developed. Therefore, it is a much simpler option if we
do not use single photons as input, but coherent light, i.e. laser. Since coherent
states can be described by Gaussian distributions, this type of boson sampling is
called Gaussian boson sampling.

The other major area is – in contrast to quantum informatics – an area that
has been actively researched for more than a hundred years, namely spectroscopy,
including the examination of the vibrational spectra of molecules. Its importance
does not need to be explained, since it has a great influence on our everyday life,
for example, on the discovery of novel and more suitable materials for specific
scientific, industrial or medical tasks.

There exists an approximate method for determining the vibration spectrum of
molecules, in which the probability of transitions between different charged states
is calculated. This method can be implemented naturally using Gaussian boson
sampling. Our research focuses on this opportunity. Based on Wang et al. [22] and
Huh et al. [14], an implementation is presented here which is running on a boson
sampling-based simulator, which, in turn, is executed on a classical computer.

The contributions of this paper are (1) an implementation of the algorithm for
calculating an approximation of the vibronic spectra of molecules on a photonic
quantum computer simulator; (2) the proof that for small molecules this algorithm
can be executed on classical computers, which makes testing of photonic quantum
computer programs in a simulator possible; and (3) the validation of the results
presented in earlier works on the computation of the vibronic spectra of several
molecules.

The rest of the paper is structured as follows. Section 2.1 provides a brief intro-
duction to boson sampling and Gaussian boson sampling. Section 2.2 overviews a
possible approximate calculation of the vibrational spectra of molecules relying on
Gaussian boson sampling. Section 3 presents the implementation of this calculation
on a photonic quantum computer simulator. The calculation results are evaluated
in Section 4. The achievements of Xanadu, based on the work of Huh et al. [14],
are covered in Section 5. Finally, Section 6 sets out future research directions and
concludes the paper.

122

Annal. Math. et Inf. Vibronic spectra of molecules . . .

2. Theoretical background
Before elaborating on our experiment with the photonic quantum computer sim-
ulator, some basic information of the two aforementioned research areas shall be
provided, with a special emphasis on the connection of the two. First the idea
of Gaussian boson sampling is introduced, which is one of the main interests of
the used simulator, and which gives the algorithmic background for the second
component, the approximate computation of the vibronic spectra of molecules.

2.1. Gaussian boson sampling
When talking about quantum computing, discussions tend to begin with the con-
cept of the qubit, since it is a widely recognized concept not only among scientists
but also among the general public. A qubit is an abstract two-dimensional quan-
tum physical system that can be implemented in various physical forms. It can
take on two values (base states), with the Dirac-notation |0⟩ and |1⟩, and can be
described using elements of quantum physics, such as a Hilbert space. Qubits can
exist in superposition and entangled states with each other. However, these con-
cepts can be extended to larger dimensions, such as the three-dimensional, or any
finite-dimensional qudit, i.e. |n⟩. Computations are described as unitary operators
which act on these states. Moreover, there are two special, non-unitary operators
with special purposes: the annihilation and creation operators (together called as
ladder operators). These move the physical state from one state to another. For
example, if the annihilation operator is denoted as â then â|1⟩ = |0⟩. The creation
operator â† is the adjoint of the annihilation operator. Other important theorems
for any finite d-dimensional quantum physical system are the following.

â|n⟩ =
√

n|n − 1⟩
â†|n⟩ =

√
n + 1|n + 1⟩

â†â|n⟩ = n|n⟩
â|0⟩ = 0 and â†|d − 1⟩ = 0

(2.1)

The product of ladder operators N̂ = â†â is the number operator. The third
equation of (2.1) also shows that quantum states are eigenstates of this number
operator in a natural way.

The above can be further generalized to a countably infinite dimension (note
that in this case the last equation of (2.1) will make no sense: there will be no state
that the creation operator takes to the null vector of the Hilbert space). Bosonic
particles are an example of this type of quantum physical system, where unbounded
number of particles can be counted in a given state. Such a system is still quantum,
i.e. it has superposition and entanglement properties. In the countably infinite
dimensional case the quantum physical states are called the qumodes.

There is a distribution of states and physical quantities in the case of an ar-
bitrary quantum physical system which can only be determined by multiple mea-

123

Annal. Math. et Inf. A. Németh, T. Kozsik, Z. Zimborás

surements, so in fact every quantum computer is a physical implementation of the
sampling problem. In the countably infinite-dimensional case this is called boson
sampling [10].

Note that the physically feasible operators are all unitary, in the two-dimen-
sional case, for example, the well-known Pauli matrices, the Hadamard gate, or
the Controlled Not gate. The physical implementation of boson sampling can be
various, but the simplest is still the photonic solution. Quantum optical devices
act as unitary operators on the qumode(s). One can find a detailed description of
these in quantum optics. The theoretical formula of such devices used in practice
with the help of ladder operators is as follows [25].

P̂i(ϕ) = e−iϕâ†
i
âi (2.2)

D̂i(α) = eαâ†
i
−α∗âi (2.3)

Ŝi(ζ) = e
1
2 (ζ∗â2

i −ζâ†2
i

) (2.4)

B̂ij(θ) = eθ(â†
i
âj−âiâ†

j
) (2.5)

In order of appearance, the phase shifter, displacement and squeezing operators are
acting on one-qumode, and the beam-splitter operator is acting on two-qumodes.
These are simple devices from which any linear quantum optical circuit can be
assembled. Moreover, any unitary operator can be built using beam-splitters and
phase shifters, as an interferometer.

In fact, a pure qumode, i.e. |n⟩ states are technically difficult to produce. The
|1⟩ means one photon in a specific qumode. Producing exactly one photon is really
a big challenge. For this reason, several easier solutions have been developed to
achieve this heavy task [3]. The Gaussian version [12] is particularly important
for our research: here, coherent light, viz. a laser, is used as input. A coherent
light is nothing more than the sum of countably infinite states for each qumode.
For example, if the displacement operator is applied on the vacuum state (|0⟩), the
following holds.

|α⟩ = e
− 1

2

∑∞
n=0

αn√
n!

|n⟩ (2.6)

The operators (2.2), (2.3), (2.4) and (2.5) are also called Gaussian operators because
they transform coherent states into coherent states. The general coherent state
can be achieved starting with a vacuum state and transformed by any product of
Gaussian operators above.

The mathematical apparatus for qumodes requires different tools than that of
the one-photon states. Since such a system can be described with a Gaussian
distribution, the quantum simulator built in this way is called Gaussian boson
sampling [24, 25]. Although not used here, note that this can be further extended
to continuous-variable systems. More information on Gaussian states and this topic
can be found in many articles [11, 18].

124

Annal. Math. et Inf. Vibronic spectra of molecules . . .

2.2. Vibronic spectra of molecules
Besides the brief description of the vibration spectrum of molecules given here, more
detailed descriptions can be found in Huh’s thesis [13] and many other sources [15,
21, 27]. One of the main issues of spectroscopy is the examination of the electrical
transitions of atoms and molecules, whether they take place between states of the
same or different electrical charges. However, with the exception of the hydro-
gen atom, which can be solved exactly, the quantum mechanical equations become
exponentially more complex with the number of electrons, and their calculation be-
comes expensive or practically impossible. Therefore, approximate methods must
be found; here, for instance, the path leading to the method of calculating coherent
states with the help of operators acting on them is presented.

Figure 1. Transitions between molecular states. The curves repre-
sent different electronic potential energy surfaces (PES). Transitions
are possible between any two PES, however the picture takes into
account only the transitions for our interest, i.e. the states of q
molecule with different electronic charges. Here ωa is the angular
frequency of one-photon absorption, while ωe stands for the angular

frequency of one-photon emission.

A good approximation of enormously complex system of molecules, if the nuclear
and electron states are assumed to be independent, is called the Born-Oppenheimer
approximation [2]. Also, due to their mass, atomic nuclei react more slowly to
changes in the electron shell, so the nuclei can be considered as a constant back-
ground in Franck-Condon principle [6, 9].

125

Annal. Math. et Inf. A. Németh, T. Kozsik, Z. Zimborás

With approximating the vibration of electrons with simple quantum harmonic
oscillators, one can write the Hamiltonian operator of electrons as a function of the
reaction coordinates. Then the potential electron surface can already be described
by a parabola.

Ĥ = p̂2 + q̂2 (2.7)
Here q̂ are the mass-weighted normal coordinates and p̂ are the canonical moments.
Duschinsky [7] used another approximation, assuming a linear relationship between
the normal coordinates of the different electronic states.

q̂
′

= UDuschq̂ + d̂ (2.8)

This introduces the real UDusch mixing matrix, as well as the real d̂ displacement
operator.

Doktorov and et al. [8] showed that under these conditions, for the states of such
linearly connected quantum harmonic oscillators the relation between quantum
states |ϕ⟩ and |ϕ′⟩ of different PES can be given in the following way.

|ϕ′⟩ = UDokt|ϕ⟩ (2.9)

Here the so-called Doktorov-operator is defined as follows.

ÛDok = D̂(d̂)Ŝ†(Ω′)R̂(UDusch)Ŝ(Ω) (2.10)

That is, the Doktorov operator can be written as a product of unitary Gaussian
operators, with the help of one-mode squeezings Ŝ, the rotation R̂ and the displace-
ment operator D̂. The input parameter of the rotation operator is the Duschinsky
mixing matrix itself, and the argument of the displacement operator D̂ is the
Duschinsky displacement from equation (2.8).1 The squeezings are derived from
the physical characteristics of the molecule, specifically Ω and Ω′ are the harmonic
angular frequencies of the atoms within the molecule in pre- and post-transition
states.

The solution of the (2.7) eigenvalue problem is the coherent states in Fock-space.
The peculiarity of the Gaussian operators acting on them is that they transform a
coherent state to a coherent state.

The transition probabilities – the so-called Franck-Condon factors – between
the different electronic states can be approximated using the previous definitions
as follows.

FCFn′,n = |⟨ϕ′|ϕ⟩|2 = |⟨n′|UDokt|n⟩|2 (2.11)
The power of boson sampling is the implementation of a rotation matrix acting

on qumodes. In our case of calculating the vibonic spectra, the Doktorov operator
(2.10) is used, containing the R̂(UDusch) rotation operator. Thus, the transition
probabilities (2.11) can be obtained by passing a properly prepared coherent state
through a boson sampling device, and after applying another squeezing, the modes
and thus the factors can be measured.

1Note that the Duschinsky displacement added to the normal coordinates and the Gaussian
displacement acting on the quantum states are different concepts.

126

Annal. Math. et Inf. Vibronic spectra of molecules . . .

3. Implementation of the experiment
For a Gaussian boson sampling task, building a quantum computer operating on
such a principle is of course the most adequate approach. Although this is no longer
an impossible task, it is still difficult and expensive. Huh et al. [14] and Wang et
al. [22] implemented these measurements in hardware. The former group used a
photonic solution, where the rotation operation was provided by an interferometer,
but in a modified form, since the photons coming out of the interferometer could
be measured directly by the photon number detectors. The other group imple-
mented the calculation of (2.11) with trapped ions (also Shen et al. [20] created
such a device), so they could directly implement the resolution of the Doktorov
transformation by (2.10) Gaussian operators.

Another possible, albeit limited solution is to create a simulator based on bo-
son sampling which can be executed on a classic computer. In this experiment
Piquasso [5], an open-source photonic quantum computer simulator was used. Pi-
quasso provides a domain-specific programming language to describe quantum opti-
cal circuits. This language is embedded into Python, and the simulator front-end is
also implemented in Python. The back-end of the simulator can either be executed
in Python, or, in the case of Piquasso Boost, in C++.

Figure 2. Code snippet about circuit of Gaussian boson sampling
calculating vibronic spectra of molecules.

In Figure 2 the photonic quantum computer code for calculating vibronic spec-
tra can be seen in Piquasso. Here pq is the abbreviation of the Piquasso package,
and the operators provided by the package are easy and clear to interpret and use.
With the help of Piquasso, the circuit seems quite simple, but of course behind
the application of every Gaussian operator there is a multiplication of matrices
with exponentialized matrices, as one expects due to (2.2), (2.3), (2.4) and (2.5).
Because of the infinity power series of exponential, we need to introduce finite cut-
offs. The dimensionless arguments of the operators are derived from the physical
parameters of the given molecule. To determine the distribution more precisely,
several measurements are required, typically a few thousand runs.

The calculation of Franck-Condon factors (2.11) at temperature 0 K, i.e. |n⟩ =
|0⟩ is calculated on the pre-transition base state. This can be expanded to any

127

Annal. Math. et Inf. A. Németh, T. Kozsik, Z. Zimborás

|n⟩ also for pre-transition modes, using a new one-mode squeezing operator at the
beginning of the calculations, see [19, Equation 51].

4. Result
Now the calculations of transitions of three molecules, namely the formic acid
(Figure 3), ozone (Figure 4) and nitrogen dioxide (Figure 5) are presented. The
calculation of the Franck-Condon factors of the first molecule on a boson sampling-
based quantum simulator was performed by Huh et al. [14]. The calculation of the
Franck-Condon factors of the other two molecules was carried out by Wang et
al. [22], and in their case, simulation was also measured with single-bit extraction.
Furthermore, their article contains the values of transition probabilities calculated
classically and with master equation as well. These data can be found in the
Supplemental Material of their article on arXiv [23]. The physical parameters of
the molecules can be found in the above articles, and also in the Nist database [17].

Figure 3. Formic acid 11A
′ (n = 0, m = 0) −→ 12A

′′ transition.

The calculation time of transition probabilities with the Piquasso [5] boson
sampling-based simulator increases drastically (exponentially) with the increase of
the cutoff value. In the case of formic acid, it is sufficient to set the cutoff value for
the number of qumodes, but for the other two molecules it is worthwhile to choose
the total number of photons that can be measured on the output (two qumodes),
as found in the Supplemental Material [23].

In the case of ozone and nitrogen dioxide, which have C2v point group symmetry,
a negative anion emits an electron, and the molecule becomes neutral. The formic
acid molecule has Cs point group symmetry.

For the convergence of the sampling process, the formic acid case required 1 000
runs of the quantum program, but the other two molecules needed 10 000 runs. The

128

Annal. Math. et Inf. Vibronic spectra of molecules . . .

Figure 4. Spectrum of O−
3 (n = 0, m = 0) −→ O3 + e− transition.

Figure 5. Spectrum of NO−
2 (n = 0, m = 0) −→ NO2 + e− transi-

tion.

computations were performed with the Piquasso Python back-end on a standard
PC (i7 1.9 GHz with 16 GB memory), and required less then 1 hour.

5. Related work
The Strawberryfields application of Xanadu [26] is another boson sampling based
quantum simulator, also written in the Python programming language. This soft-
ware is a stepping stone for available photonic quantum computers developed by
Xanadu. Such a quantum hardware environment does not yet exist behind Pi-
quasso, therefore the latter relies on the resources of classical computers. More in-

129

Annal. Math. et Inf. A. Németh, T. Kozsik, Z. Zimborás

formation about the Xanadu Strawberryfields simulator can be found in the works
of Bromley et al. [4] and Killoran et al. [16].

Similar to the Piquasso simulator, a circuit simulating the vibration spectrum
of molecules can also be implemented in Xanadu’s simulator. The physical data
of formic acid, water and pyrrole molecules can also be found in Strawberryfields,
with which the Franck-Condon factors of these molecules can be easily calculated.
The simulation results for the formic acid in Piquasso and Strawberryfields per-
fectly match, but the Piquasso-based implementation is faster, especially with the
Piquasso Boost back-end. The difference in execution time was significant for the
experiments with 10 000 runs.

6. Conclusion
The circuit developed in the Piquasso photonic quantum computer simulator suc-
cessfully calculated the Franck-Condon factors of the vibrational spectra of three
molecules: formic acid, ozone and nitrogen dioxid, yielding similar results to those
found in Huh et al. [14] and Wang et al. [22]. The simulator executed the Gaus-
sian boson sampling algorithm on a classical computer. Although computations
for larger molecules would exceed the resources of classical computers, our results
show that smaller molecules can be handled with this technology. This makes it
possible to experiment with affordable devices in order to further improve the algo-
rithm and possibly the quantum chemical model. Another important consequence
of the presented experiment is that programs written for quantum computing de-
vices can be effectively tested in a simulator, hence facilitating the development of
such applications.

It is important to note that the disadvantage of a simulator based on Gaussian
boson sampling compared to a physically realized quantum computer built on a
similar principle is its finite calculation capacity, i.e. the application of a cutoff is
necessary to limit the maximum value of the qumodes in the case of the former,
while the latter is only hindered by the limitations of the detectors.

There are many open research possibilities in the topic: testing the existing
algorithm, extending it to calculate new transitions of existing molecules, but also
to extending it to additional molecules. Furthermore, the limits of the simulators
that can be run on classical computers can be measured, either depending on the
number or the maximum value of the qumodes. In the more distant future, an
automated search for suitable molecules with transitions optimized for a given task
is conceivable.

References
[1] S. Aaronson, A. Arkhipov: The Computational Complexity of Linear Optics, Proceedings

of the Forty-Third Annual ACM Symposium on Theory of Computing 24.10 (2011), pp. 333–
342, doi: 10.1145/1993636.1993682.

130

https://doi.org/10.1145/1993636.1993682

Annal. Math. et Inf. Vibronic spectra of molecules . . .

[2] M. Born, R. Oppenheimer: Zur Quantentheorie der Molekeln, Annalen der Physik 389.20
(1927), pp. 457–484, doi: 10.1002/andp.19273892002.

[3] D. J. Brod, E. F. Galvão, A. Crespi, R. Osellame, N. Spagnolo, F. Sciarrino: Photonic
implementation of boson sampling: a review, Advanced Photonics 1.3 (2019), p. 034001, doi:
10.1117/1.AP.1.3.034001.

[4] T. R. Bromley, J. M. Arrazola, S. Jahangiri, J. Izaac, N. Quesada, A. D. Gran,
M. Schuld, J. Swinarton, Z. Zabaneh, N. Killoran: Applications of near-term photonic
quantum computers: software and algorithms, Quantum Science and Technology 5.3 (May
2020), p. 034010, doi: 10.1088/2058-9565/ab8504.

[5] Budapest Quantum Computing Group: Piquasso, https://github.com/Budapest-Quant
um-Computing-Group/piquasso, 2022.

[6] E. Condon: A Theory of Intensity Distribution in Band Systems, Phys. Rev. 28 (6 Dec.
1926), pp. 1182–1201, doi: 10.1103/PhysRev.28.1182.

[7] F. Duschinsky: Acta Physicochim, URSS 7 (1937), pp. 551–566.
[8] D. E, M. I, M. V: Acta Physicochim, Journal of Physics B: Atomic and Molecular Physics

9 (1976), p. 507.
[9] J. Franck, E. G. Dymond: Elementary processes of photochemical reactions, Trans. Faraday

Soc. 21 (February 1926), pp. 536–542, doi: 10.1039/TF9262100536.
[10] B. T. Gard, K. R. Motes, J. P. Olson, P. P. Rohde, J. P. Dowling: An Introduction to

Boson-Sampling, in: From Atomic to Mesoscale, WORLD SCIENTIFIC, June 2015, pp. 167–
192, doi: 10.1142/9789814678704_0008.

[11] L. Hackl: Aspects of Gaussian States Entanglement, Squeezing and Complexity, in: 2018.
[12] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex: Gaussian

Boson Sampling, Physical Review Letters 119.17 (Oct. 2017), doi: 10.1103/physrevlett.1
19.170501.

[13] J. Huh: Unified description of vibronic transitions with coherent states, 2011, url: http://p
ublikationen.stub.unifrankfurt.de/frontdoor/index/index/docId/21033.

[14] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, A. Aspuru-Guzik: Boson
Sampling for Molecular Vibronic Spectra, Nature Photonics 9 (2014), pp. 615–620, doi: 10
.1038/nphoton.2015.153.

[15] J. Huh, M. Neff, G. Rauhut, R. Berger: Franck–Condon profiles in photodetachment-
photoelectron spectra of HS−

2 and DS−
2 based on vibrational configuration interaction wave-

functions, Molecular Physics 108.3-4 (2010), pp. 409–423, doi: 10.1080/00268970903521178.
[16] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, C. Weedbrook: Strawberry

Fields: A Software Platform for Photonic Quantum Computing, Quantum 3 (2019), p. 129,
issn: 2521-327X, doi: 10.22331/q-2019-03-11-129.

[17] National Institute of Standards and Technology: NIST Chemistry WebBook, SRD
69, url: https://webbook.nist.gov/.

[18] K. Parthasarathy: What is a Gaussian state?, Communications on Stochastic Analysis 4
(June 2010), doi: 10.31390/cosa.4.2.02.

[19] N. Quesada: Franck-Condon factors by counting perfect matchings of graphs with loops.
The Journal of chemical physics 150 16 (2018), p. 164113, doi: 10.1063/1.5086387.

[20] Y. Shen, Y. Lu, K. Zhang, J. Zhang, S. Zhang, J. Huh, K. Kim: Quantum optical emulation
of molecular vibronic spectroscopy using a trapped-ion device, Chem. Sci. 9 (4 2018), pp. 836–
840, doi: 10.1039/C7SC04602B.

[21] A. Toniolo, M. Persico: Efficient calculation of Franck–Condon factors and vibronic cou-
plings in polyatomics, Journal of Computational Chemistry 22.9 (2001), pp. 968–975, doi:
10.1002/jcc.1057.

131

https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1117/1.AP.1.3.034001
https://doi.org/10.1088/2058-9565/ab8504
https://github.com/Budapest-Quantum-Computing-Group/piquasso
https://github.com/Budapest-Quantum-Computing-Group/piquasso
https://doi.org/10.1103/PhysRev.28.1182
https://doi.org/10.1039/TF9262100536
https://doi.org/10.1142/9789814678704_0008
https://doi.org/10.1103/physrevlett.119.170501
https://doi.org/10.1103/physrevlett.119.170501
http://publikationen.stub.unifrankfurt.de/frontdoor/index/index/docId/21033
http://publikationen.stub.unifrankfurt.de/frontdoor/index/index/docId/21033
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1080/00268970903521178
https://doi.org/10.22331/q-2019-03-11-129
https://webbook.nist.gov/
https://doi.org/10.31390/cosa.4.2.02
https://doi.org/10.1063/1.5086387
https://doi.org/10.1039/C7SC04602B
https://doi.org/10.1002/jcc.1057

Annal. Math. et Inf. A. Németh, T. Kozsik, Z. Zimborás

[22] C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J. G. Freeze, V. S. Batista,
P. H. Vaccaro, I. L. Chuang, L. Frunzio, L. Jiang, S. M. Girvin, R. J. Schoelkopf:
Efficient Multiphoton Sampling of Molecular Vibronic Spectra on a Superconducting Bosonic
Processor, Physical Review X (2019), doi: 10.1103/PhysRevX.10.021060.

[23] C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J. G. Freeze, V. S. Batista,
P. H. Vaccaro, I. L. Chuang, L. Frunzio, L. Jiang, S. M. Girvin, R. J. Schoelkopf:
Efficient Multiphoton Sampling of Molecular Vibronic Spectra on a Superconducting Bosonic
Processor, https://arxiv.org/abs/1908.03598v2, 2019.

[24] X. Wang, T. Hiroshima, A. Tomita, M. Hayashi: Quantum information with Gaussian
states, Physics Reports 448.1-4 (Aug. 2007), pp. 1–111, doi: 10.1016/j.physrep.2007.04.0
05.

[25] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H.
Shapiro, S. Lloyd: Gaussian quantum information, Reviews of Modern Physics 84.2 (May
2012), pp. 621–669, doi: 10.1103/revmodphys.84.621.

[26] XanaduAI: Strawberryfields, https://github.com/XanaduAI/strawberryfields, 2018.
[27] Z.-l. Yang, Z. Zhang, S. Jiang, Y.-j. Feng, J. Liang, W. Huang: Calculation of Franck–

Condon factors and simulation of photoelectron spectra of the HCCl−anion: Including
Duschinsky effects, Journal of Electron Spectroscopy and Related Phenomena 211 (2016),
pp. 41–46, issn: 0368-2048, doi: 10.1016/j.elspec.2016.06.003, url: https://www.scienc
edirect.com/science/article/pii/S0368204816300718.

132

https://doi.org/10.1103/PhysRevX.10.021060
https://arxiv.org/abs/1908.03598v2
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1103/revmodphys.84.621
https://github.com/XanaduAI/strawberryfields
https://doi.org/10.1016/j.elspec.2016.06.003
https://www.sciencedirect.com/science/article/pii/S0368204816300718
https://www.sciencedirect.com/science/article/pii/S0368204816300718

Submitted: July 28, 2023
Accepted: August 7, 2023
Published online: September 9, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 133–146
DOI: 10.33039/ami.2023.08.014
URL: https://ami.uni-eszterhazy.hu

Three level benchmarking of Singularity
containers for scientific calculations

Péter Polgár, Tamás Menyhárt, Csanád Bátor Baksay,
Gergely Kocsis, Tibor Gábor Tajti, Zoltán Gál∗

University of Debrecen, Faculty of Informatics,
Debrecen, Hungary

kocsis.gergely@inf.unideb.hu
tajti.tibor@inf.unideb.hu

Abstract. In this work we present our results from benchmarking Singular-
ity containers running scientific calculations intended for HPC at three levels
of complexity, comparing them against native software environments. Our
investigations were run on up-to-date hardware and the latest available soft-
ware as of early 2023. To get a more detailed picture, we examined three
different system aspects: we ran separate benchmarks on CPU, memory, and
I/O intensive operations. These aspects were tested with microbenchmarks,
and at a high level – an HPC workload pipeline which intensely loaded each
aspect. As a result of our investigations we show that Singularity container-
ization continues to provide as good, or in some cases even better performance
indicators as in a native environment – with the substantial added benefits
of application flexibility and portability.

Keywords: Container benchmarking, Singularity, HPC

AMS Subject Classification: Computer Science 68U01, 68U99

1. Introduction
The tools and methods of scientific computing undergo continuous progress, pro-
viding opportunities for researchers to achieve more sophisticated and increasingly

∗This work has been supported by the project TKP2021-NKTA of the University of Debre-
cen. Project no. TKP2021-NKTA-34 has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-
NKTA funding scheme.

https://doi.org/10.33039/ami.2023.08.014
https://ami.uni-eszterhazy.hu
mailto:kocsis.gergely@inf.unideb.hu
mailto:tajti.tibor@inf.unideb.hu

Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

accurate results using better and better facilities. In the meantime, however, his-
tory has shown that following new trends in tools and methodologies very often
leads to software compatibility issues. It is also a common requirement to be able
to run calculations or simulations in differing hardware and software environments.
Today’s answer to these issues is the use of containerization [3]. By the use of con-
tainers, researchers can build uniform software environments, sealed in portable
disk images files, and run their simulations or calculations without any regard to
the details of the real host’s software setup. From this perspective, containers work
similar to virtual machines, however, most findings have shown that they operate
with much smaller overhead, increasing their efficiency. In the case of scientific cal-
culations, Singularity (nowadays known as Apptainer or SingularityCE – of which
we used the latter) is the most common containerization solution used to overcome
incompatibility issues between environments. To prove this evident and conven-
tionally accepted statement, we have checked the first 172 HPC providers from the
Top500 [15] list to find out what containerization technologies they support. As
one can see in Figure 1, 48 out of 172 observed providers published this informa-
tion on their homepages. Note that while 3/4 of them support only Singularity
and/or Apptainer, there are only about 10% which support other containerization
technologies, but not Singularity or Apptainer. However, the question continues
to arise in an ongoing manner, whether containerization has a performance impact
on calculations, and if yes, of what sort?

Figure 1. Containerization technologies supported by 48 Top500
HPC providers. Note the majority supports exclusively Singularity

and/or Apptainer.

The overall structure of this paper from here on is as follows: In Section 2 we
describe the details and the methodology of our investigations, first by presenting
the employed hardware and OS configurations (Subsection 2.1) and then by showing
the codes, tools and methodology on each level (Subsections 2.2, 2.3, 2.4 and 2.5).
Section 3 presents our results at these respective levels. Thus Subsection 3.1 is for
our results on level L1, subsection 3.2 is for level L2, while subsection 3.3 shows our
results on the topmost level L3. On level L1 and L2 we sort our results regarding
different computational resources into separate subsections. Finally, in Section 4
we conclude our results and in Section 5 we present our plans for our related future
work.

134

Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

2. Problem formulation and applied methodology
Since the rise of containerization technology, several investigations have been con-
ducted to describe it’s pros and cons. According to [1, 4, 6, 10] CPU and memory
performance of containers are about the same or slightly worse compared to the
performance of the underlying host system. While in most cases these investiga-
tions have shown that the use of containers does not have a significant impact on
performance (in some cases they can even beat performance measures of bare metal
environments) [2, 3], it is also clear that details change as new versions of underly-
ing hardware and software systems are released. For this reason, in this work we
compare scientific calculations of three levels of complexity on both bare metal and
in containerized environments, from three different aspects (CPU, memory, I/O) to
find out whether actual setups (in early 2023) changed the details of these results.

For the first level (L1), we do “micro-benchmarking” by repeatedly running
large amounts of simple calculations. On this level we can easily find the roots of
performance strengths or weaknesses of Singularity containers or native environ-
ments. The other benefit of this level is that it is very easy to scale these tests to
study the size-dependence of time overheads.

Our second level of benchmarking (L2) uses well-known benchmark tools [3,
16] (listed in Subsection 2.3). This level gives us a basis of comparison against
others’ results. In our current work we focus on CPU, memory, and I/O intensive
calculations and tools, since results from this are easy to compare to L1.

As our topmost level (L3) we run an existing pipeline of social-sciences-related
scientific calculations, intended for HPC. The exact results and purpose of these
calculations don’t concern us, but the run-times and other performance indicators
give us an understanding of how significantly the behavior of real computational
scenarios differs from microbenchmarks and well-known benchmarking tools.

Note that an infinite multitude of measurements can be run with any number
of results. Our point is not to declare a winner, but to establish that container
portability is not at the price of performance degradation.

2.1. Specification of the applied hardware
We chose one of the most modern available laptop computers, and an LTS Linux
version as the hardware and software environments for our tests, so we can say
that our results to be found are valid for systems of late 2022 or early 2023. For a
detailed description see Table 1 and Table 2.

2.2. About the used codes at level L1
The primary purpose of L1 measurements is to execute simple, often elementary
code, repeatedly, targeting a specific piece of hardware or part of it (e.g., an on-
processor cache) to measure performance. It is important to note that we cannot
speak of a pure processor-memory-storage or video card comparison, because usu-
ally a given resource cannot work without the others, but still the main resource

135

Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

Table 1. Specification of the used hardware.
Date of measurements: 2022–2023.

Hardware Type / Specifications
CPU Intel i7-12700H, 14 core, 20 threads, 5 GHz turbo
Memory 32 GB, DDR5, 4800 MHz
Storage 500 GB, Samsung 980 PRO, 7 GB/s, PCIe 4.0

Table 2. Specification of the used software.
Date of measurements: 2022–2023.

Software / property Native (host) Container
Userspace 22.10 UwUntu 22.04 Ubuntu
Kernel version 5.15.0.60-generic —
File system ext4, ext3 image can use host’s ext4, ext3 overlay
Free space ext4 host: ~200GB ext3 overlay: ~70GB
gcc / g++ version Ubuntu 11.3.0 Ubuntu 11.3.0

can be identified. In addition to the test codes, there are other processes running
on the system, and the operating system (although very well optimized), is still
running in the background. Because of this, all measurements were performed
several times to reduce the chance of measurement error.

The majority of the code is presented without optimization. When optimized,
the run time for computation- and memory-intensive processes is significantly re-
duced in both native and container contexts. Note also that both the container and
the native system used exactly the same kernel and compiler. In an HPC environ-
ment, it is not common to update these to the current release, so our code may not
work with the software installed on the HPC system, or may not compile, or run
much slower without certain switches. But, even if not optimized, computationally
intensive code will still run significantly faster with a newer gcc or g++ compiler.
It is worth using containers precisely because these problems can be completely
eliminated, and CPU time is our real time and money.

2.3. Used benchmark tools at L2
In order to have results that are comparable to the findings of other works, we used
existing benchmarking tools to test the performance of the native and containerized
jobs. We refer to these tools as the standard benchmark tools. The applied so-
called standard benchmark tools at L2 are the following:

CPU benchmarks: 7-Zip Compression 22.01 [4, 9, 11, 12]; XZ compression
5.2.4 [11]; CppPerformanceBenchmarks 9; LAME MP3 Encoding 3.100 [11]; FFTW
3.3.6; Geekbench 5.4.6 [7]; Glibc Benchmarks; Himeno Benchmark 3.0; Timed
MAFFT Alignment 7.471 [11]; ACES DGEMM 1.0; libjpeg-turbo tjbench 2.1.0

136

Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

Memory benchmarks: CacheBench [11]; MBW 2018-09-08 [9]; RAMspeed
SMP 3.5.0 [9, 11, 12]; STREAM 2013-01-17 [11]; sysbench 1.0.20 [1]; Tinymem-
bench 2018-05-28 [9]

Storage I/O benchmarks: Bonnie++ 2.00 [10]; fio 3.28 [5]; FS-Mark 3.3 [6];
IOzone 3.465 [4, 11, 13]; PostMark 1.51 [9, 14]; sysbench 1.0.20 [1]

Most of these benchmarks were run by the Phoronix Test Suite [11] (PTS),
with the exceptions of: Geekbench; sysbench; Bonnie++; and fio. PTS ran each
benchmark at least three times, and it’s showed result is the average of these results.

2.4. About the used storage I/O benchmarking methodology
Files can be stored in different ways both in native and container environments.
We examined three storage options for native environments:

1. using the native (host) filesystem (ext4);
2. using an ext3 image on the host filesystem;
3. using /dev/shm.

We found that in Singularity container environments, standard benchmark tools
for storage I/O can only be run with one of the following four filesystem options:

1. using the native (host) filesystem (ext4);
2. using an external ext3 image overlay;
3. using an ext3 overlay embedded in the SIF container image;
4. using /dev/shm.

/dev/shm is a tmpfs memory-backed filesystem, whose maximum size is usually the
half of the overall memory size.

For all storage I/O benchmarks there was enough free space on storage to
ensure that no significant performance degradation would occur due to insufficient
free space being available.

The above options are not all the possible options, however, some were left out,
e.g., directory overlay, or tmpfs overlay, due to technical requirements which may
not be satisfied on HPC systems, such as needing root permissions. We also didn’t
examine sandbox-type containers because sandboxes are intended for development
purposes.

2.5. About the used pipeline code at L3
For the top level of our investigation, we used a real pipeline of network science
C codes [8, 17]. The abstract structure of this pipeline is presented in Figure 2.
While the exact purpose of the code is not important, in our case the significance
is that load is applied to all of the resources of interest. For example, generating
and “attacking” the networks is a highly CPU and memory intensive task, and
between the pipeline stages, the network states are serialized to- and deserialized
from storage.

137

Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

Our example pipeline is just one possible scenario from those that were applied
in the referred research [8, 17]. We found it important to do these investigations
beside the other two levels in order to have a look how the somewhat artificial
benchmarking results are related to real-world applications.

Figure 2. The example social network analysis pipeline used to
test the performance of native and containerized jobs [8, 17].

3. Results

3.1. Custom microbenchmarking (L1)
The results of our investigations on the lowermost level L1 are summed up in
Table 3. In the following subsections we consider the three main system resources
and interpret the corresponding findings for both environments as presented in
the table. While at first sight it is clear that both the native and containerized
environments have strengths, it also has to be noted that the differences are small.

3.1.1. CPU intensive benchmarks (L1)

There are several measurements of a processor’s performance because there are
many ways to measure its speed, and the result depends on the type of measure-
ment. The measurements therefore are split into the following subcategories:

Processor threads: Single-threaded operation / Multi-threaded operation (with
dynamic and static allocation!).
Data structure perspective: Computing with primitives / We use complex data
structures.
Cache aspects: Level 1, 2 and 3.
Optimization: compiler flag O2, O3 / O3+ or Ofast / without optimization.

We mainly focus on binaries running on one thread without optimization. The
container performed better with operations on whole numbers. No difference was
observed for simpler data structures such as char arrays (strings). A Dijkstra
pathfinding algorithm was also created from our own implementation. It mostly
used the level 3 processor cache for data storage, and did not use non-integer
numbers. The native operating system seemed a bit faster in this case.

138

Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

Table 3. Benchmarking results on level L1. Colored cells mark
more than 1% difference.

Microbenchmarks:
(Elapsed Time)

Native
(s)

Container
(s)

Efficiency
(%)

Main Hardware
Component

file name

whole numbers 540,50 527,41 102,48% CPU whole.c

string formatting 473,43 472,92 100,11% CPU,
CPU CACHE

strformat.c

sqrt 413,95 433,72 95,44% CPU sqrt.c

sin, cos 378,36 374,84 100,94% CPU sincos.c

log 421,33 421,53 99,95% CPU log.c

matrix-Dijkstra
algorithm

7406,86 7418,63 99,84% CPU,
CPU CACHE

dijkstra.cpp

Memory handling
(large size)

299,08 298,95 100,05% RAM filereadmem.c

file writing
(on ext4 host)

105,73 107,03 98,78% SSD filewrite.c

file reading
(on ext4 host)

26,45 23,80 111,13% SSD fileread.c

file copy
(on ext4 host)

22,43 22,02 101,86% SSD filecopy.sh

file writing
(on ext3 overlay)

124,07 130,59 95,01% SSD filewrite.c

file reading
(on ext3 overlay)

26,75 25,94 103,09% SSD fileread.c

file copy
(on ext3 overlay)

33,20 22,31 148,79% SSD filecopy.sh

The real differences come in with floating point numbers. While one could do
an almost infinite number of measurements using various mathematical functions,
we preferred calculating square roots, means, sines, natural-based logarithms. In
the case of the square roots, the native performed better, while in the other cases
the two were considered equal, or the container was slightly better.

We found that an important thing is to increase optimization, because an opti-
mization of at least O3 can reduce a floating point computation by up to a quarter.
Note that when we optimize the root mean square, we found a difference of less
than 1%. If we used a 2 years older gcc version, the runtime deteriorated by about
20%. (Which is common, especially if you want to run it on another machine or
HPC where they do not update the compilers to the latest version.) So it is more
important to keep the software in the container as up to date as possible, because
that already has a significant impact on performance.

Summing up the results one can say that CPU usage produces results within

139

Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

5% error margin, which can become an overwhelming advantage for the container
if more advanced software is installed for it in terms of operations on one thread
at the L1 benchmark level.

3.1.2. Memory benchmarks (L1)

Since DDR5 memory is so performant, even if there is a large amount of it, it is
hard to measure with precision, thus large numbers of large memory allocations,
reads, copies and free instructions were performed. In practice, a large part of
the memory was allocated, overwritten and freed 256 times. The point was that
the amount of data should not fit into the cache of the processor, but also should
not be too big in order to avoid swapping. The difference was barely 0.05%, in
favour of the container. The conclusion is that, even from the worst perspective,
the container handles and uses memory as well as the native operating system at
the L1 benchmark level.

3.1.3. Storage I/O benchmarks (L1)

Background storage can also be measured in many ways. At the L1 benchmark
level, we look at sequential writes, reads and copies. The container can use the
host’s ext4 file system or its own custom ext3 (block size 4096kB) overlay file with a
removable .img extension. This overlay file can also be used by the host by creating
a folder and mounting it. An overlay is useful because you can, for example, install
programs into it that the container can use at runtime. The container can use both
the host and the overlay filesystem at the same time.

Note that the measurements were made using a PCIe 4.0 SSD drive, which is
an order of magnitude faster than a regular SATA III M.2 SSD or any HDD. We
performed sequential read, write and copy. (Of course, there is no regularity in the
file contents.) The file size was roughly 18 GB.

Generally speaking:
Write: the container is about 2–5% slower than the host
Read: the container is about 3–11% faster than the host
Copying: the container is about 0.5% faster than the host

The host, when it wanted to copy in the overlay, was significantly slower than
when the container performed the operation on its own file. For the container it
took 22.31 seconds to copy the data on its ext3 filesystem while the same took 22.43
seconds for the host to over its ext4 filesystem. This is only 0.5% of difference. The
root of this difference is that ext3 filesystem performs worse than on the ext4 and
not the fact that we are using a container.

Of course, there are many ways to read/write copy. Multiple files can be copied
in parallel, or many small files in succession, or many large files at once, etc. But
for us only writing performed worse in the L1 benchmarks for containers. Of all
the benchmarks, storage yielded the largest differences, but the differences are still

140

Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

small, not orders of magnitude. There are seven ways to manage files for the
container (many of these ways are presented in section 2.4), so you can choose the
most appropriate one depending on the intended use-case.

3.1.4. Conclusions (L1)

Summarizing our results on level L1, we found that the advantage of container
portability does not come at the cost of sacrificing performance, as most differences
were within measurement error. Regarding memory they are identical. Regarding
CPU, the host performs slightly better, but the difference is not radical. Compile-
time optimization, however, has a huge importance and the use of state-of-the-art
software and compilers in the container is recommended. A gcc or g++ that
is only 2 years old, for example, will cause a 20% performance degradation for
computationally intensive operations.

3.2. Standard microbenchmarking (L2)
On L2 we present our findings obtained through the well-known benchmarking
tools presented in Subsection 2.3. Since there is insufficient space to consider all
of our data, we excerpt here only the most interesting but still sufficiently detailed
portions. The full dataset can be found in the supplementary material of this work.

3.2.1. CPU intensive benchmarks (L2)

The portion of CPU benchmarks where the differences between native and con-
tainer environment results are less than or equal to 1% is 82.5% (in this context
the difference means how proportionally better one was compared to the other).
We consider these differences to be within a margin of error, and in 42.42% of the
benchmarks the container won. Where the differences between native and con-
tainer results were greater than 1%, the differences are these in ascending order:
1.33%, 1.33%, 2.08%, 2.17%, 3.43%, 4.54% and 14.33%. It can be seen that these
differences are less than 5% except one case which is 14.33%. The benchmarks
producing these deviations were rerun twice. These reruns showed less than 1%
differences between the environments in most cases, and the used benchmarks did
not consistently judge a given environment type as the faster one. The only excep-
tion to this being the 7-Zip decompression benchmark, which reliably showed the
native environment performing better, but by only 0.68% and 1.25% (the original
run was 3.43%).

Thus the conclusion is that all differences in these benchmark results are within
a margin of error, and our benchmarks could not significantly differentiate the two
environments.

3.2.2. Memory benchmarks (L2)

The portion of memory benchmarks where the differences between native and con-
tainer results are less than or equal to 1% is 86.36% (in this context the difference

141

Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

means how proportionally better one was compared to the other). These less than
or equal to 1% differences are considered within a margin of error, and in 52.63%
of the benchmarks the container won. Where the differences between native and
container results were greater than 1%, the differences are these in ascending or-
der: 1.17%, 1.21% and 1.45%. It can be seen that these differences are less than
2%. The benchmarks which produce these differences were rerun twice. These
reruns showed less than 1% differences in two of three benchmarks, and the used
benchmarks did not consistently judge a given environment type as the faster one.

The conclusion is that all differences in the results are within a margin of error,
and the portion of container wins was similar to the portion of native wins.

3.2.3. Storage I/O benchmarks (L2)

Based on our measurement results we can conclude the following:

1. Bonnie++ is unreliable for comparing native and container environments.
2. With Fio’s asynchronous non-buffered reading, ext3 container overlay (both

external and embedded) wins over host ext4 and native mounted ext3 image.
3. With Fio’s reading a file backward, ext3 overlay (both container and native)

wins over host ext4 filesystem (both container and native).
4. With FS-Mark sync, IOzone and PostMark benchmarks, host ext4 filesystem

is similar to or wins over ext3 overlay (both container and native).
5. With sysbench, host ext4 was definitely better than ext3 container overlays.
6. Except reading a file backward, in everything else native host ext4 was far

better than native mounted ext3 image.

Since there are many different filesystem options in both native and container
environments and each option has its own advantages, further research is needed
to determine which native or container filesystem options or a mix of these are the
best for the most common use cases, especially for HPC environments.

3.2.4. Conclusions (L2)

During our investigations we ran 25 different tools and got 103 different results
(together with all storage runs in fact 447). To get insight on the overall picture of
this large amount of results, we have plotted them on Figure 3. On the figure one
can see for all tests a percentage value showing whether containerized or native runs
performed better. Note that since in some cases a lower measure is better while
in other cases the bigger one, this value cannot be simply written as a fraction of
the results coming from native and containerized runs. Here we do not take into
account the exact type of the benchmarking, our aim is only to see how native and
containerized jobs behave typically. On the figure ”>100” means that the difference
between the results were more than 100% for either one or the other direction, but
the exact value has not been plotted here in order to keep the figure informative
for smaller results.

142

Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

Figure 3. A summary of (L2) benchmarking results. Blue means
native wins over containerized runs, orange means the opposite.

Note that in the case of memory related benchmarking we barely found any
differences in performance just as for L1. Some CPU related runs, however, resulted
in showing that there are cases where native (blue) or containerized (orange) runs
are better. The number of cases, however, on each side is almost equal. We
found the most diverse results in the case of storage I/O related benchmarking,
and here also we see instances on both sides, meaning that it depends highly on
the type of benchmark if containerization has a negative or positive effect on the
performance. The final message of these investigations should be that one has to
know well the required resources of their jobs in order to take the best advantages
of containerization – but generally we can say once again that container technology
by itself does not require more resources than running natively.

3.3. Benchmarking via a real scientific pipeline (L3)
The used L3 pipeline mostly consists of sequentially running C programs that use
each other’s inputs and outputs for calculations. These are mainly CPU intensive
operations, but they also use memory and storage I/O, e.g., writing out and read-
ing back the results of the steps. Here, along with comparing native and container
performance of the unoptimized pipeline binaries, we also compared against opti-
mized binaries, as well as comparing old and new versions of gcc. The results are
summed up on Figure 4.

Here, the container has a gcc version released in 2020, while the host has the
latest version of 2022. Note that the code ran longer in the older container when
not optimized, but the optimization almost completely eliminated the differences
(Figure 4 (left)). This means that it is worthwhile to install as much up-to-date
software as possible in the container to make the runtime sufficiently short and
to optimize the code, as this can reduce the runtime of the code by an order
of magnitude and almost completely eliminate the differences between the non-
matching gcc versions.

143

Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

Figure 4. Runtime ratios of a real scientific pipeline. (left) shows
the obvious profit of optimizing the code during compilation. (right)

shows how the use of the latest OS can affect the performance.

On Figure 4 (right) we ran the pipeline 2 program with the state-of-the-art
tools in both cases, but for comparison we also ran it using an older software setup
(’20). When we used the old gcc, the runtime increased by 22%. So again the
up-to-dateness of the software has more impact on runtime than whether we are
looking at a host or native case for L3 Pipeline benchmarks.

4. Conclusions
As the results of our studies we have shown that the use of Singularity containers
for providing uniformized, portable environments for scientific calculations does
not affect the running times of the calculations in an unaffordably negative way. In
some cases the use of containers can even beat the performance of native software
environments. We ran our measurements at three levels of complexity. On L1
and L2 we used separate benchmarks for CPU, memory and storage I/O intensive
testing. As a result of our findings we have shown with L1 and L2 that there is
almost no difference in performance of native and containerized runs of calculations
from the aspect of memory intensive tasks. In the case of CPU intensive tasks
we found some differences, but most cases showed less than a 5% difference in
performance. Storage I/O intensive runs proved to yield the most diverse results, so
applications must be careful in choosing solutions appropriate for their workloads.

5. Further work

We have plans for further investigations of the I/O subsytem, and in the direction of
parallelization, which we did not study deeply in this work, but is a key component
of HPC computations.

144

Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

Supplementary material
Supplementary material for this work can be found at the below link:
https://arato.inf.unideb.hu/kocsis.gergely/icai2023/

References
[1] S. Abraham, A. K. Paul, R. I. S. Khan, A. R. Butt: On the Use of Containers in High

Performance Computing Environments, in: 2020 IEEE 13th International Conference on
Cloud Computing (CLOUD), 2020, pp. 284–293, doi: 10.1109/CLOUD49709.2020.00048.

[2] C. Arango, R. Dernat, J. Sanabria: Performance Evaluation of Container-based Virtu-
alization for High Performance Computing Environments, Microsoft Research WA 98052
(2005).

[3] N. G. Bachiega, P. S. L. Souza, S. M. Bruschi, S. d. R. S. de Souza: Container-Based
Performance Evaluation: A Survey and Challenges, in: 2018 IEEE International Conference
on Cloud Engineering (IC2E), 2018, pp. 398–403, doi: 10.1109/IC2E.2018.00075.

[4] R. K. Barik, R. K. Lenka, K. R. Rao, D. Ghose: Performance analysis of virtual ma-
chines and containers in cloud computing, in: 2016 International Conference on Computing,
Communication and Automation (ICCCA), 2016, pp. 1204–1210, doi: 10.1109/CCAA.2016
.7813925.

[5] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pandurangan, V. Balakr-
ishnan: Understanding performance of I/O intensive containerized applications for NVMe
SSDs, in: 2016 IEEE 35th International Performance Computing and Communications Con-
ference (IPCCC), 2016, pp. 1–8, doi: 10.1109/PCCC.2016.7820650.

[6] T. A. Bodhanya: Comparing Cloud Orchestrated Container Platforms : Under the lenses of
Performance, Cost, Ease-of-Use, and Reliability, MA thesis, Uppsala University, Department
of Information Technology, 2022, p. 31.

[7] J. Hadley, Y. Elkhatib, G. Blair, U. Roedig: MultiBox: Lightweight Containers for
Vendor-Independent Multi-cloud Deployments, in: Embracing Global Computing in Emerg-
ing Economies, ed. by R. Horne, Cham: Springer International Publishing, 2015, pp. 79–90,
isbn: 978-3-319-25043-4.

[8] G. Kocsis, I. Varga: Investigating the effectiveness of advertising on declining social net-
works, Creative Mathematics and Informatics 23.5 (2014).

[9] M. Lindström: Containers & Virtual machines : A performance, resource & power con-
sumption comparison, 2022.

[10] P. E. N, F. J. P. Mulerickal, B. Paul, Y. Sastri: Evaluation of Docker containers based
on hardware utilization, in: 2015 International Conference on Control Communication &
Computing India (ICCC), 2015, pp. 697–700, doi: 10.1109/ICCC.2015.7432984.

[11] Y. Pan, I. Chen, F. Brasileiro, G. Jayaputera, R. Sinnott: A Performance Comparison
of Cloud-Based Container Orchestration Tools, in: 2019 IEEE International Conference on
Big Knowledge (ICBK), 2019, pp. 191–198, doi: 10.1109/ICBK.2019.00033.

[12] A. M. Potdar, N. D G, S. Kengond, M. M. Mulla: Performance Evaluation of Docker
Container and Virtual Machine, Procedia Computer Science 171 (2020), Third International
Conference on Computing and Network Communications (CoCoNet’19), pp. 1419–1428, issn:
1877-0509, doi: 10.1016/j.procs.2020.04.152, url: https://www.sciencedirect.com/sci
ence/article/pii/S1877050920311315.

145

https://arato.inf.unideb.hu/kocsis.gergely/icai2023/
https://doi.org/10.1109/CLOUD49709.2020.00048
https://doi.org/10.1109/IC2E.2018.00075
https://doi.org/10.1109/CCAA.2016.7813925
https://doi.org/10.1109/CCAA.2016.7813925
https://doi.org/10.1109/PCCC.2016.7820650
https://doi.org/10.1109/ICCC.2015.7432984
https://doi.org/10.1109/ICBK.2019.00033
https://doi.org/10.1016/j.procs.2020.04.152
https://www.sciencedirect.com/science/article/pii/S1877050920311315
https://www.sciencedirect.com/science/article/pii/S1877050920311315

Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

[13] A. Putri, R. Munadi, R. Negara: Performance analysis of multi services on container
Docker, LXC, and LXD, Bulletin of Electrical Engineering and Informatics 9.5 (2020),
pp. 2008–2011, issn: 2302-9285, doi: 10.11591/eei.v9i5.1953, url: https://beei.org
/index.php/EEI/article/view/1953.

[14] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Peterson: Container-Based Op-
erating System Virtualization: A Scalable, High-Performance Alternative to Hypervisors,
SIGOPS Oper. Syst. Rev. 41.3 (Mar. 2007), pp. 275–287, issn: 0163-5980, doi: 10.1145/127
2998.1273025.

[15] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer: The 500 most powerful commercially
available computer systems, 2022, url: https://www.top500.org/.

[16] A. Torrez, T. Randles, R. Priedhorsky: HPC Container Runtimes have Minimal or
No Performance Impact, in: 2019 IEEE/ACM International Workshop on Containers and
New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC), 2019,
pp. 37–42, doi: 10.1109/CANOPIE-HPC49598.2019.00010.

[17] I. Varga: Weighted multiplex network of air transportation, European Physical Journal B
89.6 (2016).

146

https://doi.org/10.11591/eei.v9i5.1953
https://beei.org/index.php/EEI/article/view/1953
https://beei.org/index.php/EEI/article/view/1953
https://doi.org/10.1145/1272998.1273025
https://doi.org/10.1145/1272998.1273025
https://www.top500.org/
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010

Submitted: July 30, 2023
Accepted: August 7, 2023
Published online: August 19, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 147–159
DOI: 10.33039/ami.2023.08.007
URL: https://ami.uni-eszterhazy.hu

An incremental algorithm for computing
the transversal hypergraph

Laszlo Szathmary

University of Debrecen, Faculty of Informatics
Debrecen, Hungary

szathmary.laszlo@inf.unideb.hu

Abstract. In this paper we present an incremental algorithm for computing
the transversal hypergraph. Our algorithm is an optimized version of Berge’s
algorithm [2] for solving the transversal hypergraph problem. The original
algorithm of Berge is the simplest and most direct scheme for generating all
minimal transversals of a hypergraph. Here we present an optimized version
of Berge’s algorithm that we call BergeOpt. We show that BergeOpt can
significantly reduce the number of expensive inclusion tests.

1. Basic concepts
Here we recall the basic notions of hypergraph theory, frequent itemset mining,
and we also point out the relation between itemsets and hypergraphs.

1.1. Hypergraphs
In this subsection we mainly rely on [3]. Hypergraph theory [2] is an important
field of discrete mathematics with many relevant applications in applied computer
science. A hypergraph is a generalization of a graph, where edges can connect
arbitrary number of vertices. Formally:

Definition 1.1 (hypergraph). A hypergraph is a pair (V, E) of a finite set V =
{v1, v2, . . . , vn} and a family E of subsets of V . The elements of V are called
vertices, the elements of E edges.

Note that some authors, e.g. [2], state that the edge-set as well as each edge must
be non-empty and that the union of all edges results in the vertex set.

https://doi.org/10.33039/ami.2023.08.007
https://ami.uni-eszterhazy.hu
mailto:szathmary.laszlo@inf.unideb.hu

Annal. Math. et Inf. L. Szathmary

Figure 1. A sample hypergraph H, where V = {a, b, c, d} and
E = {{a}, {b, c}, {a, c, d}}.

Definition 1.2 (partial hypergraph). Let H = {E1, E2, . . . , Em} be a hypergraph.
The partial hypergraph Hi of H (i = 1, . . . , n) is the hypergraph that contains the
first i edges of H, i.e. Hi = {E1, . . . , Ei}.

A hypergraph is simple if none of its edges is contained in any other of its edges.
Formally:

Definition 1.3 (simple hypergraph). A hypergraph is called simple if it satisfies
∀Ei, Ej ∈ E : Ei ⊆ Ej ⇒ i = j.

Example. The hypergraph H in Figure 1 is not simple because the edge {a} is
contained in the edge {a, c, d}.

Definition 1.4. Let H = (V, E) be a hypergraph. Then min(H) denotes the set
of minimal edges of H w.r.t. set inclusion, i.e. min(H) = {E ∈ E | ∄E′ ∈ E : E′ ⊂
E}, and max(H) denotes the set of maximal edges of H w.r.t. set inclusion, i.e.
max(H) = {E ∈ E | ∄E′ ∈ E : E′ ⊃ E}.

Clearly, for any hypergraphH, min(H) and max(H) are simple hypergraphs. More-
over, every partial hypergraph of a simple hypergraph is simple, too.
Example. In the case of hypergraph H in Figure 1, min(H) = {{a}, {b, c}} and
max(H) = {{b, c}, {a, c, d}}.

The problem that is of high interest for us concerns hypergraph transversals. A
transversal of a hypergraph H is a subset of the vertex set of H which intersects
each edge of H. A transversal is minimal if it does not contain any transversal as
proper subset. Formally:

Definition 1.5 (transversal). Let H = (V, E) be a hypergraph. A set T ⊆ V is
called a transversal of H if it meets all edges of H, i.e. ∀E ∈ E : T ∩ E ̸= ∅. A
transversal T is called minimal if no proper subset T ′ of T is a transversal.

Note that Pfaltz and Jamison call transversal (resp. minimal transversal) as blocker
(resp. minimal blocker) in [8]. Outside hypergraph theory, a transversal is usually
called a hitting set.

148

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

Example. The hypergraph H in Figure 1 has two minimal transversals: {a, b}
and {a, c}. For instance, the sets {a, b, c} and {a, c, d} are transversals but they
are not minimal.

Definition 1.6 (transversal hypergraph). The family of all minimal transversals
of H constitutes a simple hypergraph on V called the transversal hypergraph of H,
which is denoted by Tr(H).

Example. Considering the hypergraph H in Figure 1, Tr(H) = {{a, b}, {a, c}}.

The following propositions capture important relations between a hypergraph and
its transversal hypergraph (for proofs see [2]).

Proposition 1.7. Let H = (V, E) be a hypergraph. Then Tr(H) is a simple hy-
pergraph, and Tr(H) = Tr(min(H)).

Proposition 1.8. Let G and H be two simple hypergraphs. Then G = Tr(H) if
and only if H = Tr(G).

Corollary 1.9. Let G and H be two simple hypergraphs. Then Tr(G) = Tr(H) iff
G = H.

Corollary 1.10 (duality property). Let H be a simple hypergraph. Then
Tr(Tr(H)) = H.

Corollary 1.10 states that calculating the transversal hypergraph H′ of a simple
hypergraph H, and calculating once again the transversal hypergraph H′′ of H′,
we get back the original hypergraph H, i.e. H′′ = H.

Example. Consider the hypergraph H in Figure 1. Since H is not simple, let
G = min(H) = {{a}, {b, c}}. Then,

G′ = Tr(G) = Tr({{a}, {b, c}}) = {{a, b}, {a, c}}
G′′ = Tr(G′) = Tr({{a, b}, {a, c}}) = {{a}, {b, c}}.

That is, G′′ = G.

1.2. Frequent itemsets
Consider the following 5 × 5 sample dataset: D = {(1, ACDE), (2, ABCDE),
(3, AB), (4, D), (5, B)}. Throughout the paper, we will refer to this example as
“dataset D”.

Below we use standard definitions of data mining. We consider a set of objects or
transactions O = {o1, o2, . . . , om}, a set of attributes or items A = {a1, a2, . . . , an},
and a relationR ⊆ O×A, whereR(o, a) means that the object o has the attribute a.
In formal concept analysis [4] the triple (O,A,R) is called a formal context. A set
of items is called an itemset or a pattern. Each transaction has a unique identifier

149

Annal. Math. et Inf. L. Szathmary

(tid), and a set of transactions is called a tidset.1 The length of an itemset is the
cardinality of the itemset, i.e. the number of items included in the itemset. An
itemset of length i is called an i-long itemset, or simply an i-itemset2. An itemset
P is said to be larger (resp. smaller) than Q if |P | > |Q| (resp. |P | < |Q|). We say
that an itemset P ⊆ A is included in an object o ∈ O, if (o, p) ∈ R for all p ∈ P .
Let f be the function that assigns to each itemset P ⊆ A the set of all objects that
include P : f(P) = {o ∈ O | o includes P}. The set of objects including the itemset
is also known as the image of the itemset.3 The (absolute) support of an itemset
P indicates how many objects include the itemset, i.e. supp(P) = |f(P)|. The
support of an itemset P can also be defined in relative value, which corresponds
to the proportion of objects including P , with respect to the whole population of
objects. An itemset P is called frequent, if its support is not less than a given
minimum support (denoted by min_supp), i.e. supp(P) ≥ min_supp.
Definition 1.11 (generator). An itemset G is called generator if it has no proper
subset H (H ⊂ G) with the same support.
Definition 1.12 (closed itemset). An itemset X is called closed if it has no proper
superset Y (X ⊂ Y) with the same support.

The closure of an itemset X (denoted by γ(X)) is the largest superset of X
with the same support. Naturally, if X = γ(X), then X is closed. The task of
frequent (closed) itemset mining consists of generating all (closed) itemsets with
supports greater than or equal to a specified min_supp.

Equivalence classes. Two itemsets P, Q ⊆ A are said to be equivalent (P ∼= Q)
iff they belong to the same set of objects (i.e. γ(P) = γ(Q)). From this definition it
follows that equivalent itemsets have the same support values. The set of itemsets
that are equivalent to an itemset P (P ’s equivalence class) is denoted by [P] =
{Q ⊆ A | P ∼= Q}. Generators are minimal elements in their equivalence classes
(w.r.t. set inclusion), i.e. a generator G ∈ [G] has no proper subset in [G]. An
equivalence class has at least one generator. Closed itemsets are maximal elements
in their equivalence classes (w.r.t. set inclusion), i.e. a closed itemset X ∈ [X] has
no proper superset in [X]. An equivalence class has exactly one closed itemset,
which means that closed itemsets are unique elements in their equivalence classes.
If an equivalence class has only one element, then the equivalence class is called
singleton. The only element of a singleton equivalence class is closed as well as
generator.

1.3. Relation between itemsets and hypergraphs
Here we show that a family of itemsets can be treated as a hypergraph, and vice
versa. As seen in Def. 1.1, a hypergraph H is a pair (V, E), where V is a finite

1For convenience, we will use separator-free set notations throughout the paper, e.g. AB stands
for {A, B}, 13 stands for {1, 3}, etc.

2For instance, ABE is a 3-itemset.
3For instance, in dataset D, the image of AB is 23.

150

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

set {v1, v2, . . . , vn} and E is a family of subsets of V . The elements of V are
called vertices, the elements of E edges. In the previous subsection we saw that a
formal context is a triple (O,A,R), where O = {o1, o2, . . . , om} is a set of objects,
A = {a1, a2, . . . , an} is a set of items, and R ⊆ O×A is a relation between O and
A, where R(o, a) means that the object o has the item a. A set of items is called
an itemset.

The set A can be considered as a set of vertices V . An itemset corresponds to
an edge E ∈ E . From this it follows that a set of itemsets can be considered as a
family of edges E .
Example. Consider the hypergraph H in Figure 1, where V = {a, b, c, d} and E =
{{a}, {b, c}, {a, c, d}}. This hypergraph corresponds to the following set of itemsets:
{{a}, {b, c}, {a, c, d}}. For convenience, we will use separator-free set notations, and
we will indicate itemsets with capital letters. That is, the hypergraph H can be
considered as the following set of itemsets: {A, BC, ACD}. This holds in the
other direction too, i.e. the hypergraph representation of the family of itemsets
{A, BC, ACD} is depicted in Figure 1.

In the rest of the paper, we will treat a family of itemsets as a hypergraph
and vice-versa if there is no danger of ambiguity. Thus for a set of itemsets
{A, BC, ACD}, we write “the hypergraph {A, BC, ACD}”, etc.

2. The algorithm of Berge
In this section we review the basic algorithm of Berge [2], which is the most simple
and direct scheme for generating all minimal transversals of a hypergraph. First,
let us see two useful operations on hypergraphs:

Definition 2.1. Let H = {E1, . . . , En} and G = {E ′
1, . . . , E ′

n′} be two hypergraphs.
Then,

H ∪ G = {E1, . . . , En, E ′
1, . . . , E ′

n′}, and
H ∨ G = {Ei ∪ E ′

j , i = 1, . . . , n, j = 1, . . . , n′}.

The first operation is the union of H and G, i.e. the hypergraph whose edges
are the edges of both hypergraphs. The second operation is very similar to the
Cartesian product, i.e. the union of all possible pairs of edges, where one element
of a pair is from the first hypergraph, and the other element is from the second
hypergraph.

Proposition 2.2 ([2]). Let H and G be two simple hypergraphs. Then,

Tr(H ∪ G) = min(Tr(H) ∨ Tr(G)).

Let Hi = {E1, . . . , Ei}, i = 1, . . . , n be the partial hypergraph of the hypergraph
H. It holds that Hi = Hi−1 ∪ {Ei}, for all i = 2, . . . , n, where H1 = {E1} and
Hn = H. Thus, Tr(Hi) = Tr(Hi−1 ∪ {Ei}), and by Prop. 2.2,

151

Annal. Math. et Inf. L. Szathmary

Equation 2.3.

Tr(Hi) = min(Tr(Hi−1) ∨ Tr({Ei}))
= min(Tr(Hi−1) ∨ {{v}, v ∈ Ei}).

The algorithm of Berge is based on this equation. The algorithm computes
all minimal transversals of a given hypergraph H in two steps. First, it computes
the minimal transversals of the partial hypergraph Hi−1 and then it calculates the
Cartesian product of the set Tr(Hi−1) by the ith edge Ei ofH. Finally, non-minimal
elements are removed. Thus, the algorithm starts with the computation of Tr(H1),
which is a trivial case (H1 has one edge only, E1, whose minimal transversals are
its vertices). Then, the algorithm adds one by one the rest of the edges, computing
at each step the set of minimal transversals of the new partial hypergraph. The
algorithm terminates when the last edge En is added. The algorithm of Berge
outputs at the end all minimal transversals of the input hypergraph H [2].

3. An optimized version of Berge’s algorithm
In the previous section we reviewed the algorithm of Berge, which implements
the most simple and direct approach for calculating the minimal transversals of a
hypergraph. Here we present an optimized version of Berge’s algorithm that we
call BergeOpt.

In [7], Le Floc’h et al. presented an algorithm called JEN whose goal is to effi-
ciently extract generators from a concept lattice [4] for mining exact and approxi-
mate association rules [1]. As part of JEN, the aforementioned authors presented
a simple algorithm without a name for calculating all the minimal transversals of a
hypergraph. In the rest of this section we present this algorithm in an extended and
completed way. In addition to [7], (i) we show that this algorithm is actually an
optimization of Berge’s original algorithm (hence the name BergeOpt), and (ii) we
provide a proposition (see Prop. 3.1) and its proof.

Optimization idea. One drawback of Berge’s algorithm is that after calculat-
ing the Cartesian product of the set Tr(Hi−1) by the ith edge Ei of H (see Equa-
tion 2.3), it stores the resulting elements together in the same set, i.e. it has no
information whether an element is minimal or not. As a consequence, the filtering
of non-minimal elements can be quite expensive when the resulting set has a large
number of elements because the algorithm must test the minimality of all elements,
including also such elements that are actually minimal.

Our optimization is based on the idea to separate minimal and potentially
minimal transversals in two different lists L1 and L2, respectively. This way, our
optimized algorithm only has to check the minimality of the potentially minimal
elements in L2. As a result, the number of expensive subset checks can be reduced.

The BergeOpt algorithm exploits the following proposition:

152

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

Proposition 3.1. In the BergeOpt algorithm, the potentially minimal transversals
stored in the list L2 form a simple hypergraph, i.e. L2 has no two elements ei and
ej such that ei ⊆ ej.

Proof. Assume X, Y ⊆ V are two distinct subsets in Tr(Hi−1)−Tr(Hi), i.e., they
are minimal transversals ofHi−1 that lost this status in the i-th partial hypergraph.
Assume also that X ∪{a} and Y ∪{b} are two candidates for Tr(Hi) produced by
the algorithm (i.e., {a, b} ⊆ Ei whereby a ̸∈ X and b ̸∈ Y).

Notice that any element of the L2 list will have the form X ∪ {a} for some X
and a.

Now, without loss of generality we can hypothesize X ∪ {a} ⊆ Y ∪ {b}, and
show this leads to a contradiction. First, notice that a ̸̸= b, otherwise we would
have X ⊆ Y hence a contradiction with the minimal transversal status. Next, we
deduce that Y = X̄ ∪ Ȳ where X̄ = X − {b} hence X = X̄ ∪ {b}. Yet this means
that b ∈ X ∩ Ei which contradicts X ̸∈ Tr(Hi).

Pseudo code. The pseudo code of the algorithm is given in Algorithm 1. Let
Hi = {E1, . . . , Ei}, i = 1, . . . , n be the partial hypergraph of the hypergraph H. It
holds that Hi = Hi−1 ∪ {Ei}, for all i = 2, . . . , n, where H1 = {E1} and Hn = H.
LetMT Hi

denote the set of all minimal transversals of the partial hypergraph Hi.
As input, we have a set of itemsets that we treat as a hypergraph (see Sec-

tion 1.3). The goal is to compute all the minimal transversals of this hypergraph.
The algorithm performs this task in an incremental way. First, the algorithm takes
the first itemset E1 of the input and it calculates its minimal transversals. This
is a trivial case; we only have to decompose the itemset into its 1-long subsets.
For instance, the itemset ABC has three minimal transversals namely A, B, and
C. Then, the algorithm takes the next itemset Ei of the input and it updates the
list of minimal transversals MT Hi−1 if necessary. This is done the following way.
Each minimal transversal m found so far, i.e. each element of MT Hi−1 , is tested
if it has a common part with the current itemset Ei. If it has, then m is a minimal
transversal of Hi too, thus m is added to the list L1. In the list L1 we collect
those itemsets that are minimal transversals of the partial hypergraph processed
so far, including the current itemset Ei too. Prop. 1.7 guarantees that L1 has no
two elements e1 and e2 such that e1 ⊆ e2. If the test was negative, i.e. m has no
common part with the current itemset Ei, then it means that m is not a transversal
of Ei, thus m must be extended to have an intersection with Ei (in other words,
m is a transversal of Hi−1, but not a transversal of Hi). This can be done by
decomposing Ei, and generating the one-size larger supersets of m using the 1-long
subsets of Ei (Cartesian product of m with the vertices of Ei). For instance, if
Ei = BCH, and the minimal transversal to be updated is AD, then the following
potentially minimal transversals are generated: ABD, ACD, and ADH. We call
these itemsets “potentially minimal transversals”, because with this extension it is
guaranteed that they became transversals of Hi, but it is not sure that they are
minimal, thus they are put in another list L2. It can be possible that they have

153

Annal. Math. et Inf. L. Szathmary

Algorithm 1 (“getMinTransversals” function):

Description: BergeOpt algorithm
Input: a hypergraph (H)
Output: all minimal transversals of H (MT)

1) MT ← ∅; // initialisation; no minimal transversals are found yet
2) loop over the elements of H (Ei) // an element of H is an edge (an itemset)
3) {
4) if (Ei is the first element of H) {
5) MT ← {vertices of Ei}; // decomposition (1-itemsets of Ei)
6) }
7) else
8) {
9) L1 ← ∅; L2 ← ∅; // two empty lists

10) loop over the elements of MT (m)
11) {
12) if (m ∩ Ei ̸= ∅) { // m has a common vertex with Ei

13) L1 ← L1 ∪m; // m is a minimal transversal of Ei

14) }
15) else {
16) S ← {one-size larger supersets of m using

the vertices of Ei};
17) L2 ← L2 ∪ S;
18) }
19) }
20) if (L1 ̸= ∅ and L2 ̸= ∅) {
21) cleanSupersets(L1, L2); // removing non-minimal . . .
22) } // . . . transversals from L2

23) MT ← L1 ∪ L2;
24) }
25) }
26)
27) return MT ;

subsets among the minimal transversals in L1. When all elements of MT Hi−1 are
tested against the current itemset Ei, the lists L1 and L2 are filled. At this point,
there are three possibilities (lines 20–23 of Algorithm 1): (1) L1 is non-empty and
L2 is empty, or (2) L1 is empty and L2 is non-empty, or (3) both L1 and L2
are non-empty. In the first case, L1 contains all the minimal transversals of Hi.
By Prop. 1.7, L1 is a simple hypergraph. In the second case, L2 contains all the
minimal transversals of Hi. Since L1 is empty, all elements in L2 are minimal.
Moreover, from Prop. 3.1 it follows that L2 is a simple hypergraph. In the third
case, the list L2 must be cleaned first, i.e. if an element e1 in L1 is a subset of an
element e2 in L2, then e2 must be removed because e2 is not minimal. Prop. 3.1

154

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

guarantees that the elements of L2 are not comparable w.r.t. set inclusion. Then,
taking the union of the lists L1 and L2, we have all the minimal transversals of Hi.

The algorithm continues by taking the next itemset of the input set (next cur-
rent itemset) and it updates again the list of minimal transversals. The algorithm
terminates when all elements of the input set are processed. At this point, the
algorithm collected all the minimal transversals of the input set, i.e. it calculated
the transversal hypergraph of the input hypergraph.

cleanSupersets procedure: this method removes non-minimal transversals
from the list L2, i.e. itemsets that have subsets in L1. The procedure works as
follows. It enumerates all elements of L2. If the current element e2 in L2 has a
subset in L1, then e2 is removed from L2. When the procedure terminates, L2 only
contains minimal transversals.

Running example. Consider the following hypergraphH = {ACD, ACH, BCD,
DF, FH}. Let Ei denote the ith element (edge) of the hypergraph, i.e. E1 =
ACD, E2 = ACH, . . . , E5 = FH. Let Hi denote the partial hypergraph that con-
tains the first i elements of H, i.e. H1 = {ACD}, H2 = {ACD, ACH}, . . . ,
H5 = {ACD, ACH, BCD, DF, FH} = H. The notation MT Hi

denotes the set of
all minimal transversals of the partial hypergraph Hi.

Table 1. Incremental computation of the transversal hypergraph of
H = {ACD, ACH, BCD, DF , F H} with the BergeOpt algorithm.

E1 = ACD MT H1 = {A, C, D}
E2 = ACH L1 = {A, C}

L2 = {AD,CD,DH}
MT H2 = {A, C, DH}

E3 = BCD L1 = {C, DH}
L2 = {AB,AC,AD}
MT H3 = {C, DH, AB, AD}

E4 = DF L1 = {DH, AD}
L2 = {CD, CF,ABD,ABF}
MT H4 = {DH, AD, CD, CF, ABF}

E5 = FH L1 = {DH, CF, ABF}
L2 = {ADF,ADH,CDF ,CDH}
MT H5 = {DH, CF, ABF, ADF} =MT H = Tr(H)

The execution of the algorithm is depicted in Table 1. First, the algorithm
takes E1 (ACD) and computes its minimal transversals that are A, C, and D. The
algorithm continues with processing E2 (ACH). Each time when a new element of
H is handled, the already found minimal transversals are tested. The itemsets A
and C have common parts with E2, thus they are minimal transversals of ACH,
so they are added to the list L1. However, D has no common part with E2, which
means that D is a minimal transversal of H1, but not a transversal of H2. In
order to make D a transversal of H2, D is extended with the 1-long subsets of

155

Annal. Math. et Inf. L. Szathmary

ACH, thus the following candidates are generated: AD, CD, and DH. These
three itemsets are put in the list L2. Then, the algorithm removes itemsets from
L2 that have subsets in L1 since they are not minimal transversals (AD and CD).
The union of L1 and L2, which is stored in the list MT H2 , gives all the minimal
transversals of H2. The same steps are repeated with the other elements of H
(E3, E4, and E5). When the algorithm terminates, all minimal transversals of the
hypergraph H are discovered. In this example, the transversal hypergraph of H is
Tr(H) = {DH, CF, ABF, ADF}.

4. Experimental results
The BergeOpt algorithm was implemented in Java in the Coron data mining plat-
form [9].4 The experiments were carried out on an Intel Core i7 3.5 GHz machine
with 16 GB RAM running under Manjaro GNU/Linux. All times reported are real,
wall clock times.

Our algorithm BergeOpt was used as part of another algorithm called Snow
that we presented in [10]. In [10] we just mentioned BergeOpt without giving any
details. A detailed presentation of Snow is out of the scope of this paper, but we
give a short summary. Frequent closures (FCIs) and frequent generators (FGs)
as well as the precedence relation on FCIs are key components in the definition
of a variety of association rule bases (see [6] for a survey). The goal of the Snow
algorithm is to extract the precedence relation from a more common mining output,
i.e. closures and generators. Thus, the idea is the following. First, we extract
FCIs and their associated generators, i.e. we get the frequent equivalence classes
(see Section 1.2). In each equivalence class, we consider the set of FGs to be a
simple hypergraph. Using BergeOpt, we calculate the transversal hypergraph of
the generators. With this result, the order among the FCIs can be obtained very
efficiently. For a detailed description of the Snow algorithm, please refer to [10].
To conclude, in our experiments BergeOpt was used to calculate the transversal
hypergraph of the generators in each equivalence class in a dataset.

For the experiments, we used several real and synthetic dataset benchmarks.
Database characteristics are shown in Table 2 (top). The chess and connect datasets
are derived from their respective game steps. The Mushrooms database describes
mushrooms characteristics. These three datasets can be found in the UC Irvine
Machine Learning Database Repository.5 The pumsb, C20D10K, and C73D10K
datasets contain census data from the PUMS sample file. The synthetic datasets
T20I6D100K and T25I10D10K, using the IBM Almaden generator, are constructed
according to the properties of market basket data. Typically, real datasets are very
dense, while synthetic data are usually sparse.

Table 2 (bottom left and right) provides a summary of the experimental results.
The first column specifies the various minimum support values for each of the
datasets (low for the sparse dataset, higher for dense ones). The second and third

4http://coron.loria.fr
5https://archive.ics.uci.edu

156

http://coron.loria.fr
https://archive.ics.uci.edu

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

Table 2. Top: database characteristics. Bottom: response times
of BergeOpt.

database # records # non-empty # attributes largest
name attributes (in average) attribute

T20I6D100K 100,000 893 20 1,000
T25I10D10K 10,000 929 25 1,000

chess 3,196 75 37 75
connect 67,557 129 43 129
pumsb 49,046 2,113 74 7,116

Mushrooms 8,416 119 23 128
C20D10K 10,000 192 20 385
C73D10K 10,000 1,592 73 2,177

min_supp # concepts BergeOpt
(including top) (seconds)

T20I6D100K
0.75% 4,711 0.03
0.50% 26,209 0.21
0.25% 149,218 1.10

T25I10D10K
0.40% 83,063 0.56
0.30% 122,582 0.86
0.20% 184,301 1.33
chess
65% 49,241 0.34
60% 98,393 0.68
55% 192,864 1.28

connect
65% 49,707 0.29
60% 68,350 0.46
55% 94,917 0.56

min_supp # concepts BergeOpt
(including top) (seconds)

pumsb
80% 33,296 0.57
78% 53,418 0.99
76% 82,539 2.04

Mushrooms
20% 1,169 0.01
10% 4,850 0.04
5% 12,789 0.15

C20D10K
0.50% 132,952 1.12
0.40% 151,394 1.18
0.30% 177,195 1.45

C73D10K
65% 47,491 0.53
60% 108,428 1.26
55% 222,253 2.70

columns comprise the number of FCIs and the execution time of BergeOpt (given
in seconds). The CPU time does not include the cost of computing FCIs and FGs
since they are assumed as given.

As can be seen, BergeOpt is able to calculate the transversal hypergraph of
the generators in the equivalence classes very efficiently in both sparse and dense
datasets. To find out why the algorithm BergeOpt performs so well, we investi-
gated the size of its input data. Figure 2 shows the distribution of hypergraph
sizes in the datasets T20I6D100K, Mushrooms, chess, and C20D10K.6 Note that
we obtained similar hypergraph-size distributions in the other four datasets too.
Figure 2 indicates that most hypergraphs only have 1 edge, which is a trivial case,
whereas large hypergraphs are relatively rare. As a consequence, BergeOpt can
perform very efficiently.

We interpret the above results as an indication that the good performance of
BergeOpt is independent of the density of the dataset. In other terms, provided

6For instance, the dataset T20I6D100K by min_supp = 0.25% contains 149,019 1-edged
hypergraphs, 171 2-edged hypergraphs, 25 3-edged hypergraphs, 0 4-edged hypergraphs, 1 5-
edged hypergraph, and 1 6-edged hypergraph.

157

Annal. Math. et Inf. L. Szathmary

Figure 2. Distribution of hypergraph sizes.

that the input hypergraphs do not contain too many edges, i.e. there are only few
FGs per FCIs, the computation is very fast. A natural question arises with this
observation: does the modest number of FGs in each class hold for all realistic
datasets in the literature? If not, could one profile those datasets which meet this
condition?

5. Conclusion
In this paper we presented an optimization of Berge’s original algorithm [2] called
BergeOpt that can significantly reduce the number of expensive inclusion tests.
Since Berge’s algorithm several other, more efficient algorithms have been intro-
duced. As pointed out in [5] for instance, the simple method of Berge needs ex-
ponential many steps to produce the whole output. It generates the first minimal
transversal near the end of the procedure and its high memory requirements make
it suitable only for small problem cases. However, as we pointed out in the previous
section, our hypergraphs are usually very small, thus we did not have to face these

158

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

efficiency problems. Experimental results show that BergeOpt provides a very effi-
cient solution for the problem instance that we had to deal with, i.e. when we used
BergeOpt as part of the Snow algorithm [10] to discover the precedence relation
among FCIs.

References
[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo: Fast discovery of as-

sociation rules, in: Advances in knowledge discovery and data mining, American Association
for Artificial Intelligence, 1996, pp. 307–328, isbn: 0-262-56097-6.

[2] C. Berge: Hypergraphs: Combinatorics of Finite Sets, Amsterdam: North Holland, 1989.
[3] T. Eiter, G. Gottlob: Identifying the Minimal Transversals of a Hypergraph and Related

Problems, SIAM Journal on Computing 24.6 (1995), pp. 1278–1304, issn: 0097-5397, doi:
10.1137/S0097539793250299.

[4] B. Ganter, R. Wille: Formal concept analysis: mathematical foundations, Berlin/Heidel-
berg: Springer, 1999, p. 284, isbn: 3540627715.

[5] D. J. Kavvadias, E. C. Stavropoulos: An Efficient Algorithm for the Transversal Hy-
pergraph Generation, Journal of Graph Algorithms and Applications 9.2 (2005), pp. 239–
264.

[6] M. Kryszkiewicz: Concise Representations of Association Rules, in: Proc. of the ESF Ex-
ploratory Workshop on Pattern Detection and Discovery, 2002, pp. 92–109.

[7] A. Le Floc’h, C. Fisette, R. Missaoui, P. Valtchev, R. Godin: JEN : un algorithme
efficace de construction de générateurs pour l’identification des règles d’association, Spec.
num. of Revue des Nouvelles Technologies de l’Information 1.1 (2003), pp. 135–146.

[8] J. L. Pfaltz, R. E. Jamison: Closure Systems and their Structure, Information Sciences
139.3–4 (2001), pp. 275–286.

[9] L. Szathmary: Symbolic Data Mining Methods with the Coron Platform, PhD Thesis in
Computer Science, Univ. Henri Poincaré – Nancy 1, France, Nov. 2006.

[10] L. Szathmary, P. Valtchev, A. Napoli, R. Godin, A. Boc, V. Makarenkov: A fast
compound algorithm for mining generators, closed itemsets, and computing links between
equivalence classes, Annals of Mathematics and Artificial Intelligence (AMAI) 70.1–2 (2014),
pp. 81–105, issn: 1012-2443, doi: 10.1007/s10472-013-9372-8.

159

https://doi.org/10.1137/S0097539793250299
https://doi.org/10.1007/s10472-013-9372-8

Submitted: July 25, 2023
Accepted: August 9, 2023
Published online: September 13, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 160–169
DOI: 10.33039/ami.2023.08.015
URL: https://ami.uni-eszterhazy.hu

Analysis of retrial queueing systems with
two-way communication and impatient

customers using simulation

Ádám Tóth, János Sztrik

University of Debrecen, University Square 1, Debrecen H-4032, Hungary
{toth.adam|sztrik.janos}@inf.unideb.hu

Abstract. The aim of this research is to examine a finite-source retrial
queueing system with two-way communication. The primary customers, who
arrive from a finite-source following an exponential distribution, either receive
service immediately if the service unit is available, or are redirected to the
orbit and try again to reach the server after a random period. The system
is unique in that when the server becomes idle, an outgoing call (secondary
customer) is performed from the orbit or the source with varying parame-
ters. Both primary and secondary customers have been serviced according
to an exponential distribution but with different rates. Customers exhibit
an impatience characteristic, which may lead to their departure before re-
ceiving service if they spend a certain amount of time waiting for the service
unit. This investigation conduct a sensitivity analysis on the system’s perfor-
mance measures by utilizing different distributions of the customers’ retrial
time in two separate cases. The findings of the analysis have been presented
graphically for comparison purposes.
Keywords: Finite-source queuing system, retrial queues, two-way communi-
cation, sensitivity analysis, simulation
AMS Subject Classification: 60K25

1. Introduction
Two-way communication is a popular research topic because it can be effectively
modeled using retrial queueing systems in many real-life situations. Call centers are
a prime example of this, where agents engage in various activities such as selling,
advertising, and promoting products when not handling customer calls. Utilization

https://doi.org/10.33039/ami.2023.08.015
https://ami.uni-eszterhazy.hu
mailto:{toth.adam|sztrik.janos}@inf.unideb.hu

Annal. Math. et Inf. Analysis of retrial queueing systems with two-way communication . . .

is one of the most crucial metrics in call center operations, and optimizing the
efficiency of service units or agents is always a critical concern, see for example
[1, 3, 7, 9, 13]. The distinctive feature of two-way communication is based on the
occurrence of calls both inside and outside the system when the server is idle. Two
types of outgoing calls can be identified:

• One type of outgoing call is when the server contacts a customer from the
source for service, which is referred to as a primary outgoing call,

• Another type of outgoing call occurs when the server contacts a customer
from the orbit, which is known as a secondary outgoing call.

In our model, we consider outgoing calls that can be made to either the source
or the orbit. Existing literature on queueing systems reveals different schemes,
where some models assume infinite queue size, causing incoming customers to wait
until they receive service, while in others, customers leave the system immediately
upon arrival if the service unit is fully occupied. However, in reality, there are
scenarios where customers do not leave the system but wait in a virtual waiting
room, known as an orbit, and attempt to connect with a server after some random
time. Retrial queues are a suitable modeling tool for systems that involve an orbit.
Queuing systems that utilize retrial queues are commonly used to model various
problems arising in telecommunications systems, such as call centers, telephone
switching systems, and computer networks like in [2, 6, 8]. Previously, scholars
have explored examples of retrial queueing systems with two-way communication
and infinite sources, some of which are listed below: [12, 14, 15].

Dragieva and Phung-Duc [5] examined a scenario in which secondary outgoing
calls return to the source after service, while this study is a natural extension of
[10], which considered a more realistic scenario. In this case, rather than returning
secondary outgoing customers to the source, they are sent back to the orbit where
they can retry their request for servicing the original incoming call. Investigating
finite-source retrial models with two-way communication is motivated by real-life
situations in which customers cannot receive immediate service upon arrival and
must go to another location before attempting to check the system again or wait
for the server to call for them when idle.

Some queuing models make the assumption that a consumer must wait in line
indefinitely before being serviced. When a customer enters and discovers the ser-
vice area is occupied, some additional models—known as loss models—have the
customer leave and lose it forever. However, there are countless situations in real
life where customers choose to give up the attempt to be served after an arbitrary
amount of time rather than waiting. In this scenario, the client waits in a virtual
waiting area called an orbit before making another attempt to contact the server.
Retrial queues can be used to represent models that have an orbit.

The originality of this work lies in the sensitivity analysis that was conducted to
examine how different retrial time distributions affect the key performance metrics.
Our stochastic simulation program, which is based on SimPack produces the results.

161

Annal. Math. et Inf. Á. Tóth, J. Sztrik

To support discrete event simulation, continuous simulation, and combined (multi-
model) simulation, this is a collection of C/C++ libraries and executable programs.
Any sort of queueing system and simulation model can be freely modeled, and any
performance metric can be calculated using any random number generator for the
specified random variable. The comparison of the operating modes and various
distributions will be shown through graphical representations.

The system model
This section introduces the finite-source retrial queueing paradigm with a single
server under consideration (see Figure 1). The source contains a total of N re-

Figure 1. System model.

quests, each of which can produce a primary incoming call to the server. The
inter-request times are determined by exponentially distributed random variables
with the parameter λ1. When the server is idle, an incoming customer’s service
starts immediately and follows an exponential distribution with parameter µ1. Af-
ter receiving satisfactory service, clients return to the original provider. Customers
who arrive and find the service unit busy will not be lost; instead, they are trans-
ported to orbit. These are the secondary arriving jobs from the orbit that might
make another attempt to contact the service unit following an arbitrary waiting
period. Gamma, hyper-exponential, Pareto, and lognormal distributions are all
used to describe this period’s distribution, albeit they all have the same mean
value. But the idle server may also request calls from the orbit and the source. We
distinguish between two categories of outgoing calls:

• After an exponentially varying amount of time, the service unit may request
a primary outgoing call from the source to be served with parameter λ2,

• After an exponentially distributed period, the service unit may make a call
(secondary outgoing call) from orbit with parameter ν2.

162

Annal. Math. et Inf. Analysis of retrial queueing systems with two-way communication . . .

The outgoing customers’ service time is distributed exponentially with the pa-
rameter µ2. When an incoming call is received from the orbit, there are two distinct
scenarios:

• Operation mode number 1: After the outgoing service is complete, the call is
returned back to the orbit to have its incoming call served because it has an
unmet incoming request,

• Operation mode number 2: Here, the call also has an incoming request that
hasn’t been fulfilled, but as soon as the outgoing service is complete, the
service unit fulfills the incoming request. A two-phase service will result
from this, with the outgoing call being processed first and then the incoming
one. When both service phases have been completed, the call goes back to
the source.

Every primary customer has an impatience trait, and in our investigated model
a primary customer eventually departs the system after waiting in the orbit for
some time without obtaining the proper service, which is also an exponentially
distributed random variable with rate τ . The arrivals of primary incoming calls,
retrial intervals for secondary incoming calls, service times for incoming and outgo-
ing calls, and the amount of time needed to make outgoing calls are all considered
to be independent of one another.

Utilizing this model, our goal is to perform a sensitivity analysis on the main
performance measures using several distributions of retrial times. A number of
system properties are compared between various operating modes as well. We
developed a simulation program to get the results, which will be shown in a series
of graphs.

2. Simulation results

2.1. First scenario
We utilized SimPack as the foundation of our program and incorporated the neces-
sary functionalities. To estimate the desired performance measures, we employed a
statistical package that utilizes the popular batch means method. The simulation
period is divided into a set of batches, with s = R − M/T observations conducted
in each batch, where M represents the discarded warm-up period observations and
R is the simulation length. Once the initial phase is complete, the average of the
entire simulation is computed. It is crucial for the batches to be of sufficient length
and for each batch average to be independent for meaningful results. For additional
information about the process used, please refer to the following papers: [4, 11].

The input parameters used in the simulations are presented in Table 1. A
relative half-width of 0.00001 and a confidence level of 99.9% were employed to
halt the simulation sequence. To ensure the accuracy of the results, the size of a
batch during the initial transient period was set to 1000 and cannot be too small.

163

Annal. Math. et Inf. Á. Tóth, J. Sztrik

Table 1. Numerical values of model parameters.

N µ1 µ2 λ2 ν2 τ

10 1 1 0.2 0.2 0.01;0.05;0.1

Table 2 lists the retrial time parameters of the customers, which were selected to
have the same mean and variance value for a valid comparison. Various parameter
values were tested in the simulation program, and the most significant results will
be discussed in this paper. As demonstrated in the table, the squared coefficient
of variation exceeds one in this case, enabling an investigation into the influence of
specific random variables. Additionally, we will present outcomes with a distinct
set of parameters when the squared coefficient of variation is less than one.

Table 2. Parameters of retrial time.

Distribution Gamma Hyper-exponential Pareto Lognormal
Parameters α = 0.02 p = 0.489 α = 2.01 m = −4.258

β = 0.2 λ1 = 9.798 k = 0.05 σ = 1.978
λ2 = 10.202

Mean 0.1
Variance 0.49

Squared coefficient of variation 49

Figure 2. Mean response time of an arbitrary primary customer
vs. arrival intensity.

The mean response time of an arbitrary primary customer is depicted in Figure 2
in the function of the arrival intensity. By comparing the impact of various dis-
tributions with the same first two moments, a noticeable discrepancy is observed.

164

Annal. Math. et Inf. Analysis of retrial queueing systems with two-way communication . . .

Customers spend relatively more time in the orbit when gamma distribution is
employed, but more or less the same amount of time when other distribution is
utilized. Additionally, the system’s intriguing maximum property is evident even
as the arrival intensity increases, which is a characteristic of a finite-source retrial
queueing system.

Figure 3. Comparison of the mean response times using different
operation modes.

Figure 4. Mean waiting time of a departed customer using the
different distributions of retrial times.

Figure 3 illustrates the impact of two operation modes on the mean response
time of a customer under gamma distribution of retrial times, as the arrival intensity
increases. It is interesting to observe that in case of lower λ values Operation mode

165

Annal. Math. et Inf. Á. Tóth, J. Sztrik

number 2 performs better resulting in lower mean response time and this trend
changes after λ is greater than 2. However, the differences among operation modes
are not that significant in this parameter setting.

Figure 4 demonstrates the comparison of mean waiting time of a departed cus-
tomer beside various scenarios. Under this performance measure we refer to those
mean waiting times of customers who exit from the system due to impatience. De-
spite having the same mean and variance, there are significant differences between
the applied distributions, with increasing gaps observed as the arrival intensity
increases. The mean waiting time of an impatient customer also increases with
the arrival intensity, and the Pareto distribution consistently results in lower mean
waiting times compared to the other distributions, particularly in comparison to
the gamma distribution.

2.2. Second scenario
After observing the results of the first scenario, we became curious about the effects
of using different parameter values for each distribution while keeping the mean
constant. For the second scenario, we reduced the squared coefficient of variation
to less than 1 for each distribution, as shown in Table 3, while all other parameters
remained the same as in Table 2. To conduct a sensitivity analysis, we replaced
the hyper-exponential distribution with a hypo-exponential distribution.

Table 3. Parameters of retrial time.

Distribution Gamma Hypo-exponential Pareto Lognormal
Parameters α = 1.6 µ1 = 13.333 α = 2.612 m = −2.545

β = 16 µ2 = 40 k = 0.062 σ = 0.697
Mean 0.1

Variance 0.00625
Squared coefficient of variation 0.625

Figure 5 illustrates how the mean response time of an arbitrary primary cus-
tomer changes with increasing arrival intensity in a scenario where the mean value
remains constant but the variance value is significantly reduced. The difference
in average response time among the distributions is not very significant, it can
be stated that they overlap each other totally. This indicates that variance has a
considerable impact on performance measures, as larger variance values can result
in greater disparities in performance measures.

Figure 6 compares the mean waiting time of a departed customer across varying
arrival intensities. As expected from the previous figure, the differences in the
obtained values are relatively small, which is true for every utilized distribution.
Therefore, it can be concluded that in this parameter setting, the performance
measures do not exhibit significant differences among the distributions. Naturally,
the mean waiting time of a departed customer increases with the increment of the
arrival intensity of the primary customer.

166

Annal. Math. et Inf. Analysis of retrial queueing systems with two-way communication . . .

Figure 5. Mean response time of an arbitrary primary customer
vs. arrival intensity.

Figure 6. Mean waiting time of a departed customer using the
different distributions of retrial times.

Finally, Figure 7 depicts the impact of increasing arrival intensity on the mean
response times of the different operation modes. The values obtained in this sce-
nario are very close to each other compared to the previous scenario. In this
scenario, looking at the graphs, it can be said that there are no discrepancies in
terms of comparing different distributions of retrial times or different operation
modes.

167

Annal. Math. et Inf. Á. Tóth, J. Sztrik

Figure 7. Comparison of the mean response times using different
operation modes.

3. Conclusion
We present a study on a two-way communication finite-source retrial queueing sys-
tem that utilizes different retrial time distributions. Our investigation includes
various scenarios with different parameters, focusing on the mean response time of
an arbitrary primary customer and the mean waiting time of a departed customer.
Through simulations and graphical figures, we demonstrate that choosing an ap-
propriate distribution is critical when the squared coefficient of variation is greater
than one. The figures also display the impact of outgoing calls and suggest that
Operation mode number 2 (keeping customers waiting inside the bank) may result
in smaller waiting and response times than Operation mode number 1.

For instance, in a banking setting, outgoing calls may be used to allocate signa-
tures both inside and outside the bank while customers wait for their transactions.
It is more advantageous for the bank to keep the customer waiting inside (Opera-
tion mode number 2) rather than turning them away or serving their initial request
after obtaining the signature (Operation mode number 1).

Future research may explore other types of two-way communication finite-source
retrial queuing systems or consider adding a backup service unit.

References
[1] S. Aguir, F. Karaesmen, O. Z. Akşin, F. Chauvet: The impact of retrials on call center

performance, OR Spectrum 26.3 (2004), pp. 353–376.
[2] Z. Aksin, M. Armony, V. Mehrotra: The modern call center: A multi-disciplinary per-

spective on operations management research, Production and operations management 16.6
(2007), pp. 665–688.

168

Annal. Math. et Inf. Analysis of retrial queueing systems with two-way communication . . .

[3] J. Artalejo, A. G. Corral: Retrial Queueing Systems: A Computational Approach, Sprin-
ger, 2008.

[4] E. J. Chen, W. D. Kelton: A Procedure for Generating Batch-Means Confidence Intervals
for Simulation: Checking Independence and Normality, SIMULATION 83.10 (2007), pp. 683–
694.

[5] V. Dragieva, T. Phung-Duc: Two-Way Communication M/M/1//N Retrial Queue, in:
International Conference on Analytical and Stochastic Modeling Techniques and Applica-
tions, Springer, 2017, pp. 81–94.

[6] G. Falin, J. Artalejo: A finite source retrial queue, European Journal of Operational
Research 108 (1998), pp. 409–424.

[7] D. Fiems, T. Phung-Duc: Light-traffic analysis of random access systems without collisions,
Annals of Operations Research 277.2 (2019), pp. 311–327, doi: 10.1007/s10479-017-2636-7.

[8] A. Gómez-Corral, T. Phung-Duc: Retrial queues and related models, Annals of Operations
Research 247.1 (2016), pp. 1–2, issn: 1572-9338, doi: 10.1007/s10479-016-2305-2.

[9] J. Kim, B. Kim: A survey of retrial queueing systems, Annals of Operations Research 247.1
(2016), pp. 3–36, issn: 1572-9338, doi: 10.1007/s10479-015-2038-7.

[10] A. Kuki, J. Sztrik, Á. Tóth, T. Bérczes: A Contribution to Modeling Two-Way Com-
munication with Retrial Queueing Systems, in: Information Technologies and Mathematical
Modelling. Queueing Theory and Applications, Springer, 2018, pp. 236–247, doi: 10.1007/9
78-3-319-97595-5_19.

[11] A. M. Law, W. D. Kelton: Simulation Modeling and Analysis, McGraw-Hill Education,
1991, isbn: 0-07-100803-9.

[12] A. Nazarov, T. Phung-Duc, S. Paul: Heavy outgoing call asymptotics for MMP P/M/1/1
retrial queue with two-way communication, in: Information Technologies and Mathematical
Modelling. Queueing Theory and Applications, ed. by A. Dudin, A. Nazarov, A. Kirpich-
nikov, vol. 800, Cham: Springer International Publishing, 2017, pp. 28–41, doi: 10.1007/97
8-3-319-68069-9_3.

[13] S. Pustova: Investigation of call centers as retrial queuing systems, Cybernetics and Systems
Analysis 46.3 (2010), pp. 494–499.

[14] H. Sakurai, T. Phung-Duc: Scaling limits for single server retrial queues with two-way
communication, Ann. Oper. Res. 247.1 (2016), pp. 229–256.

[15] H. Sakurai, T. Phung-Duc: Two-way communication retrial queues with multiple types of
outgoing calls, Top 23.2 (2015), pp. 466–492.

169

https://doi.org/10.1007/s10479-017-2636-7
https://doi.org/10.1007/s10479-016-2305-2
https://doi.org/10.1007/s10479-015-2038-7
https://doi.org/10.1007/978-3-319-97595-5_19
https://doi.org/10.1007/978-3-319-97595-5_19
https://doi.org/10.1007/978-3-319-68069-9_3
https://doi.org/10.1007/978-3-319-68069-9_3

Submitted: July 22, 2023
Accepted: November 7, 2023
Published online: November 9, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 170–181
DOI: 10.33039/ami.2023.11.001
URL: https://ami.uni-eszterhazy.hu

The educational challenges of ChatGPT∗

Geoffrey Vaughana, Ádám Kovácsab, Zoltán Szűtsa

aEszterházy Károly Catholic University
geoffrey.vaughan@uni-eszterhazy.hu

kovacs2.adam@uni-eszterhazy.hu
szuts.zoltan@uni-eszterhazy.hu

bUniversity of Debrecen, Doctoral School of Informatics

Abstract. In 2023, ChatGPT exploded onto the educational scene and star-
ted fostering a myriad of research endeavors exploring the utilization of ar-
tificial intelligence in education [8, 38]. Many scholars argue that discerning
between AI-generated and original academic work has become increasingly
challenging, a testament to AI’s evolving capability [16]. This paper focuses
on the pivotal role of education professionals in mediating the integration
of such digital technologies, a key aspect as AI becomes a standard in edu-
cation. It provides a thoughtful analysis of the prospective advantages and
challenges of employing ChatGPT from a techno-realist perspective and for-
mulates precise research questions to evaluate its impact on learning. Our
goal is to critically explore whether ChatGPT and related AI technologies
serve as assets or disadvantages in education, shedding light on the unavoid-
able challenges encountered during their incorporation.
Keywords: ChatGPT, artificial intelligence, learning, digital pedagogy

1. Introduction
ChatGPT, an innovation by OpenAI, is a representation of generative artificial
intelligence technology, responding to user queries by leveraging Large Language
Models (LLM). The rapid assimilation of this technology since its debut has set
records in the domain of technological advancements. As reported by Reuters in
February 2023, ChatGPT achieved an estimated 100 million active monthly users
in January, establishing itself as the fastest proliferating customer application to

∗This paper was supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

https://doi.org/10.33039/ami.2023.11.001
https://ami.uni-eszterhazy.hu
mailto:geoffrey.vaughan@uni-eszterhazy.hu
mailto:kovacs2.adam@uni-eszterhazy.hu
mailto:szuts.zoltan@uni-eszterhazy.hu

Annal. Math. et Inf. The educational challenges of ChatGPT

date [24, p. 1].
The advent of this technology, alongside comparable developments like Mi-

crosoft’s Bing and Google’s Bard, has ignited extensive discussions and concerns
in the educational sector, given the profound implications of these AI-driven tools
on learning methodologies and environments.

With the inception of LLMs, the landscape of global education at various levels
has undergone significant transformations. Clark elucidates:

AI is not just a learning technology, it is a technology that learns. AI is
transforming the way we live and work, and as it continues to evolve, its
impact on learning is only going to become more profound [10, p. 227].

Given the transformative nature of AI, it is crucial to align research focus on
pragmatic and evidence-based evaluations of the potential merits and challenges
posed by AI-driven technologies like ChatGPT in the learning domain. Our re-
search philosophy adheres to a techno-realist perspective, emphasizing the necessity
for an empirical approach to digital pedagogy practices beneficial for the education
sector [38].

The fast-paced evolution in this field has prompted an influx of commentary,
speculations, and discussions, predominantly in the form of media articles and
opinion pieces. Several academic papers, including this one, are in the exploratory
phase, deliberating the prospective benefits and challenges, such as [4, 8, 15, 25,
26, 35, 39, 42]. A handful of them [13, 22, 40] have adopted an empirical approach
to study learner behavior using ChatGPT, while others have concentrated on the
ethical considerations and the impacts on assessment and professional development
in higher education [1, 2, 12, 19, 23, 28, 30–32, 35, 41].

This research provides insights and prompts further exploration into the poten-
tials and implications of generative AI technology, emphasizing its significance as
knowledge of such innovations becomes widespread.

2. Exploring the dimensions of AI in education

2.1. Advantages
Zhai introduces the positive benefits of using ChatGPT for learning:

The potent functions of interaction, reasoning, questioning, and feed-
back showcased by ChatGPT offer novel opportunities for educational
transformation [39, p. 1].

Zhou et al. in their investigation of ChatGPT 3.5 against previous versions (3
and InstructGPT) raise a number of potential advantages of ChatGPT, headlined
as “Generalization”, “Correction”, “Safety” and “Creativity” [42, p. 2]. In their
other conclusions, the authors emphasise one distinct advantage: “we believe that

171

Annal. Math. et Inf. G. Vaughan, Á. Kovács, Z. Szűts

ChatGPT is changing the usage of traditional search engines and causes a deep
impact on this field” [42, p. 5].

Deng and Lin, whilst focusing on the business benefits and dangers of ChatGPT,
also recognise similar advantages: “Increased efficiency”, “Improved accuracy” and
“Cost savings” [15, p. 82]. Rudolph et al. provide a wealth of evidence both for
and against the use of such technology in higher education, especially concerning
assessment. In reflecting on the general capacity of ChatGPT for higher education
use the author’s state, “in the rapidly expanding field of education technology,
AIEd represents an opportunity to demonstrate a broad spectrum of tools and
applications at an entirely new level” [35, p. 9]. Chen et al. come to a similar
conclusion:

AI systems are likely to be used more widely, which is expected to thrive
on all aspects of students, i.e., personal skill, knowledge mastery, learn-
ing ability, and career development, instead of just assisting students
in understanding specific knowledge [8, p. 14].

2.2. Challenges
The challenges facing education with regards to using ChatGPT are significant,
so some schools and districts in the US have reacted with surprising speed and
have banned the algorithm [3]. Banning ChatGPT may be because schools do not
want students to use ChatGPT to circumvent learning or to share information from
dubious sources with others. Indeed, ChatGPT can also write an essay or solve a
maths problem on demand. In addition, schools may feel that using ChatGPT can
affect students’ writing skills and human communication.

Cheating and plagiarism stand out as the most distinctive educational chal-
lenges. Cotton et al., in outlining these challenges and providing suggestions for
combating them in higher education, conclude that:

These tools also raise a number of challenges and concerns, particularly
in relation to academic honesty and plagiarism. ChatAPIs and GPT-3
can be used to facilitate cheating, and it can be difficult to distinguish
between human and machine-generated writing [12, p. 6].

Neumann et al. in their analysis of pre-print (grey) academic literature high-
light 5 challenges (C1–5) that ChatGPT poses for education. These are summarised
as: “C1: Unknown handling by students, C2: Heterogeneous evaluation C3: Ac-
ceptable/unacceptable use of ChatGPT C4: More time-consuming assessments C5:
Unknown potential” [31, p. 3]. By analysing from the “grey” literature the authors
identify what could be seen as more valid, live concerns at this stage of ChatGPT
use.

2.3. Ethical considerations
Ethical considerations of the use of AI generative applications are becoming in-
creasingly significant. Already, many international educational establishments and

172

Annal. Math. et Inf. The educational challenges of ChatGPT

organisations have drawn up ethical guidelines for the use of Artificial Intelligence
in regions, countries, and organisations. The 2021 EU AI Act seeks to regulate the
use of AI across Europe. The European Trade Union Committee for Education
position paper states five “key demands of education trade unions on the impact
of ChatGPT and other generative artificial intelligence on the teaching profession”
[17]. The European Universities Association Learning and Teaching Steering Com-
mittee [18] released an initial position statement with regard to the use of ChatGPT
and similar technologies.

Our research work is informed by local, national, and international ethical and
legal developments pertaining to this field and the research team will also act as a
partner in the development of organisational, local, national, and international AI
policy. These considerations provide the initial focus domains for the research of
generative AI technology such as ChatGPT for learning which are proposed below.

3. Research design and methods
Four initial domains frame our research stage with accompanying questions: Teach-
ing, Learning, Assessment, and Evaluation.

Domain 1: Teaching Teachers across all education sectors are under increasing
time pressure. Many of the administrative and resource production tasks that
currently overburden teachers across all educational phases can be offloaded to AI
generative tools. Clark recognises the advantages that teachers can possibly benefit
from:

It is not the case of dispensing with teachers, but reducing workload,
giving them support, and raising their game. Teachers should welcome
something that takes away the administration and pain, so let us em-
brace possible solutions [9, p. 75].

Academics and teachers need as many ways to reduce the ineffective administra-
tive burdens to concentrate on the essential nature of pedagogy: helping students
learn.

Learning curation is essential to learning. With careful prompting, sophisticated
learning content and resources can be produced and curated in a fraction of the
time that they would normally have taken teachers to create. Fitzpatrick [20] has
called this the “PREP prompting method”. Intelligent prompting produces output
that can then be checked for accuracy by the expert teacher, curated through
the learning management system, and delivered in the classroom saving hours of
preparation time. Specific applications that combine text with image and video are
already aligning with ChatGPT and other generative chat tools across the major
platforms. We are seeing the real-life integration of tested e-learning theory with
regards to “multimedia presentation” [11, p. 70].

173

Annal. Math. et Inf. G. Vaughan, Á. Kovács, Z. Szűts

In addition, where learning occurs is an important factor. With the prolif-
eration of personal smartphones, the mobility of learning has elevated to an un-
precedented level, allowing for continuous access to knowledge 24/7, both within
and beyond traditional educational environments. In this evolving technological
paradigm, parental expertise and guidance become paramount, especially in rela-
tion to the application of generative AI tools for educational purposes at home.

Teachers across all sectors need to be provided with effective training and ongo-
ing professional development in using this new technology efficiently and effectively.
Academic guides are beginning to be published that address the professional de-
velopment needs of educators using this technology. Atlas [2] provides a thorough
academic guide that would serve academia well in terms of initial professional de-
velopment training. In England, there has been a flourishing of evidence-informed
and research-aligned teacher professional development. Figure 1 shows Sherrington
and Goodwin’s [37] professional development “Five Ways To. . . ” series, which has
seen huge take up from the teaching profession. Training and ongoing professional
development about ChatGPT and generative technology must develop teachers’
ability to understand and use the technology in a practical, rational manner that
supports their professional practice.

Comparison & analysis
A common form of analysis and
schema-building is to compare,
contrast and categorise.
Students often benefit from
prompts that support this kind of response.
On one hand... but on the other hand…
An advantage is... ; a disadvantage is...
In the past ... but now...
Both, however, whereas

The essence of scaffolding is
that students are elevated to a
level of performance and
thinking they would struggle to
achieve unaided. Supported
practice extends their
knowledge and develops new
habits. As the teacher gradually
withdraws their support,
students learn to use their

Sequence the ideas
Presenting and organising more than one idea into a
sequence can be challenging. These scaffolds help
students do that. For example, ask students to describe
a series of events, use Think Pair Share for rehearsal and
then ask them to give their response in the specific form
of the scaffold.

Express an opinion
Several simple scaffolds
can be used to support
students to express
opinions in formal
manner, helping them to
explore their ideas and
distinguish between facts
and opinions in general.

Step-up the vocab
Students naturally gravitate to using words they are
already comfortable using, avoiding newer words,
worried they are wrong or because they’re not yet
confident enough to use them. Use specific target
words, write them on the board, or refer to them in a text
and then ask students to reframe answers including
these words.

Full Sentences
Students often offer
half-formed minimal
answers. Asking
them to reframe
responses in
complete sentences
makes them practise
a broader range of
vocabulary,
consolidating their
understanding and
building fluency with
formal speech.

���������������
������������������
��������
������

������	���

��		�����������
���
�������������������

����	������
����
���	��

����
����
�������������
�������
�����
����
������	��
����
���	������
���������������
����
���	��

����������������������
���
�����
���������������
�������������

��������������������	�����
���	������
�������������
����� �������������������
�����		������������­������
����������������������������
���������������������

�����������

��������
������������������������
����
���������������������
����������������
�����
��

��������������
����
�	��	��

����	����������
����������
������
�	��������
	��

������������������������������
�������������������
�	��

������������
�����������������������������		������������
��
�������������
��������������������

�����������������	�����	��������	���������������������	��
��	���������
��������������������

��������
��

#4 of series. Created by: TOM SHERRINGTON & DAVID GOODWIN | @teacherhead | @MrGoodwin23 | www.teacherhead.com | www.organiseideas.com

���
���������
������������������
����
����
�������������
���������������
����
����������	�
���	���������������
��������������

�����
����
�����

���������
����������������

�������
�����������
�����
����
�������������
��������
����������

Full Sentences Step-up the
vocab

Sequence the
ideas

Express an
opinion

Comparison and
analysis

Five Ways
To: Scaffold
Classroom
Dialogue

knowledge independently.
Teachers commonly use
scaffolding to support students'
written responses, but it can be
equally effective at assisting
student talk. Scaffolds help
students organise their ideas
during discussions and
questions, eliciting more
sophisticated responses.

Figure 1. Five Ways to: Scaffold Classroom Dialogue.

Research focus 1: Teaching

• How can generative AI technology such as ChatGPT reduce teacher work-
load?

• How can generative AI technology such as ChatGPT improve teaching con-
tent quality and curation to ensure maximum impact for learning?

Domain 2: Learning At the heart of learning is the learner’s ability to interact
with content. This functionality is starting to appear across the major learning
platforms. The new KhanAcademy adaptive technology, Khanmigo and the initial

174

Annal. Math. et Inf. The educational challenges of ChatGPT

release of Microsoft’s CoPilot, which introduces the intelligent tutor into everyday
software are obvious examples. Adaptation through the use of AI generative tools
and applications is likely to be at the forefront of AI for learning.

ChatGPT can engage each learner at the dialogic level that they are at, and,
with the addition of voice activation, the dialogue will be increasingly conversa-
tional and realistic. Borkowsky stresses the importance of this dialogic approach
to teaching and learning: “it’s a very effective way to engage children and focus
them on thinking and expressing themselves” [6, p. 59].

This return to a dialogic interaction with knowledge brings the learner far closer
to their personal, individualised learning cognitive processes than has been able to
be realised previously.

Generative AI technology such as ChatGPT also has the potential to deliver
learning to those who have been economically the most difficult to reach, at po-
tentially a minimal cost (a smartphone and an internet connection). Globally, the
Organisation for Economic Co-operation and Development [33] reports that: “total
public spending on education (from primary to tertiary level) averages 10.6% of
total government expenditure across OECD countries”. The implications for learn-
ing and for a drastically reduced economic investment for helping to support those
who face more severe economic disadvantages are huge.

The importance of feedback in learning is crucial for student success. Black and
Wiliam make it clear that “formative assessment can be a powerful weapon if it is
communicated in the right way” [5, p. 8]. With ChatGPT learner feedback, in the
form of formative assessment is immediate, personalised, and relevant, allowing
for the learner to immediately see areas that they can improve upon. All these
factors are hugely significant to the future of learning; promising to provide truly
individual and adaptive learning content to all students.

Research focus 2: Learning

• How can generative AI technology such as ChatGPT be used to improve
dialogic learning?

• How can access to generative and adaptive AI tools such as ChatGPT improve
personalised learning for specific groups of learners (low socioeconomic status,
special educational needs, high ability, EFL/ESL)?

• How can generative AI technology such as ChatGPT improve the quality and
personalisation of learner feedback?

Domain 3: Assessment Changing approaches to assessment is a significant
consideration in this new era of generative AI technology. Cheating and plagiarism
are at the forefront of academic concerns with the adoption and adaptation of this
new technology and they are going to remain so as the educational system develops
its policies and practices to reflect this new reality. Dehouche details the concerns of
plagiarism using the technology and in the conclusion of the opinion piece states:

175

Annal. Math. et Inf. G. Vaughan, Á. Kovács, Z. Szűts

“the advent of this powerful NLP technology calls for an urgent update of our
concepts of plagiarism” [14, p. 22]. Cassidy [7] reports on the measures being taken
by Australian universities to ban ChatGPT for assessment and Roose [34] reports
on New York City public schools blocking access and Seattle schools restricting
access to ChatGPT.

Several countries are now reconsidering a return to oral or pen/paper exam-
inations to negate the possibility of plagiarised student submissions. Sankara-
narayanan [36] poses the question, “Is there a place for oral exams in today’s
fast-paced, hi-tech world?” and refers to European models of oral assessment (the
French baccalaureate and Norwegian oral assessment practices). Indeed, the Eu-
ropean model of oral assessment and, more locally, the strong Hungarian tradition
of oral examination assessment could be poised for an assessment renaissance. Ini-
tial research work will look at whether the benefits of more traditional forms of
personal examination assessment that have been an important element of the Hun-
garian education system are a model that could influence international approaches
to assessment in the new era of concerns about the use of ChatGPT and assessment.

Ultimately, there may need to be a fundamental reconfiguring of what skills are
needed to be assessed, particularly in the domain of written subject content. As
Zhai emphasises:

To meet societal demands and evolving educational objectives, educa-
tors must consider innovative assessment tasks and evaluation forms
that assess and improve these skills [39, p. 75].

Research focus 3: Assessment

• What are the issues, concerns, and possible solutions for assessment in the
era of generative AI tools and applications?

• What, specifically, can the Hungarian education assessment model provide to
international assessment research and development to influence assessment
practice and policy?

Domain 4: Evaluation The field of education has often suffered from being
unable to measure the effectiveness of a new technology or a new intervention.
Indeed, it is often the cause of both scepticism and hostility within the profession
to any new programme, strategy, or tool. These are valid concerns but they should
be addressed through applied research that gives teachers increasing confidence
about the use and effectiveness of new technological advances focused on learning
outcomes.

Can evaluation of learning become more focused on learning and are there
ways to capture learning data in the form of learning analytics that reflect this? A
systematic review of empirical studies on learning analytics dashboards proposes
a model, MULAS, with the core objective of optimizing learning. The MULAS
model aims “to guide developers, researchers, evaluators, and practitioners in their

176

Annal. Math. et Inf. The educational challenges of ChatGPT

endeavors that aim to understand and optimize learning and environments in which
learning occurs” [29, p. 16]. This model to evaluate learning is one that may have
real benefits when it comes to evaluating learning improvement through the use of
generative AI tools and applications such as ChatGPT.

Education needs to improve its ability to collect realistic and worthwhile data
that relates to learning. That data capture may actually be more effective, es-
pecially in the initial stage of evaluating new technology, by being collected and
analyzed on a smaller scale. Clark states that:

It is far better to focus on the use of data in adaptive learning or small-
scale teaching and learning projects where relatively small amounts of
data can be put to good use [9, p. 195].

Data analysis needs to show initial trends that can be analyzed, discussed, and
shared by professionals in the education sector who will then be far more actively
involved in the process of analysis to inform future pedagogical approaches.

Research focus 4: Evaluation

• How can the use of generative AI technology such as ChatGPT for learning
be measured, disseminated, implemented, and evaluated?

This initial research overview has set out an outline of the specific pedagogic
advantages and challenges of new generative AI technology such as ChatGPT and
how these may be addressed through a research focus. The goal has to be to see if
this new technology, which is with us here and now, truly has the ability to improve
learning.

4. Results
In our theoretical exploration of the implications and effectiveness of AI generative
tools like ChatGPT in education, we sought to answer several pertinent questions
regarding their capability to transform educational practices and learning experi-
ences. Our findings propose that tools like ChatGPT can significantly alleviate
teacher workload by automating numerous administrative tasks and content cura-
tion, allowing educators more time to focus on instructional strategies and student
interactions, thus potentially enhancing the efficacy and impact of teaching content.

Additionally, the investigation provided insights into the use of ChatGPT in
enhancing dialogic learning, fostering environments where enriched and dynamic
dialogues can occur, potentially aiding in the development of a more reflective and
cooperative learning environment. By generating nuanced and diverse responses, it
can facilitate meaningful interactions between students and between students and
educators. Our scrutiny also highlighted the potential of such generative AI tech-
nology in creating more personalized and adaptable learning experiences for various
groups of learners, such as those with special educational needs, high ability, and

177

Annal. Math. et Inf. G. Vaughan, Á. Kovács, Z. Szűts

EFL/ESL learners. By addressing individual learning needs and preferences, it of-
fers tailored content and feedback, which is especially crucial for ensuring equitable
access to quality education for learners from low socioeconomic backgrounds.

In response to concerns over assessment, our research suggests a critical exam-
ination of the validity and fairness of AI-mediated assessments is paramount, with
the Hungarian educational assessment model emerging as a potential influencer
in international assessment research, offering novel insights and solutions to shape
assessment practices and policies in an AI-driven educational landscape.

Furthermore, the analysis underscored the need for a structured approach to
measuring, disseminating, implementing, and evaluating the integration of AI tools
in learning environments, with emphasis on continual assessment of their efficacy,
reliability, and inclusivity. Comparing our theoretical insights with existing studies
reveals a shared acknowledgment of the transformative potential and the inherent
challenges of incorporating AI generative tools in education, and emphasizes the ur-
gency for studies to unravel the complexities of AI integration in varied educational
scenarios.

These assertions, grounded in theoretical analysis and literature, echo the neces-
sity for nuanced discussions and rigorous empirical studies to validate the proposed
benefits and to address the challenges of integrating AI tools in education, paving
the way for informed implementations and ethical practices in AI-driven educa-
tional interventions.

5. Conclusion
The exploration and theoretical analysis of newly introduced AI technologies, par-
ticularly exemplified by ChatGPT, illuminate their transformative potential in the
realm of education, whilst also bringing forth substantial challenges. The nuances of
this technological evolution have sparked varied perspectives and dialogues within
the academic and tech communities. Marcus [27] has vociferously critiqued the
swift proliferation of generative AI chat applications by tech giants since the unveil-
ing of ChatGPT in November 2022, emphasizing the urgent need for transparency
and ethical considerations in their deployment. Conversely, Gates [21] envisions a
future where AI-driven software significantly revolutionizes teaching and learning
methodologies within the next decade.

The detailed theoretical exploration conducted in this paper has aimed to
bridge the gap between optimistic projections and critical viewpoints, offering a
balanced, techno-realist perspective on the opportunities and impediments pre-
sented by ChatGPT and similar innovations. It has underlined the imperative for
the education sector to engage in informed, evidence-based discussions and strate-
gies to navigate the intricate landscape of AInlightenment effectively. Our findings,
grounded in theoretical conjectures and existing literature, serve as a precursor to
more rigorous empirical research required to validate the implications and chal-
lenges of integrating AI in diverse educational settings. The highlighted potential
benefits and challenges necessitate extensive, focused, and meticulous research en-

178

Annal. Math. et Inf. The educational challenges of ChatGPT

deavors to foster a comprehensive and nuanced understanding of the implications
of intertwining AI with education.

In conclusion, this paper’s theoretical discourse seeks to contribute to the on-
going dialogue on AI’s role in education, emphasizing the need for empirical vali-
dations and robust academic discussions to refine the understanding of the multi-
faceted impacts of AI tools in educational environments.

References
[1] J. K. M. Ali, M. A. A. Shamsan, T. A. Hezam, A. A. Q. Mohammed: Impact of ChatGPT

on Learning Motivation: Teachers and Students’ Voices, Journal of English Studies in Arabia
Felix 2.1 (Mar. 2023), pp. 41–49, doi: 10.56540/jesaf.v2i1.51.

[2] S. Atlas: ChatGPT for Higher Education and Professional Development: A Guide to Con-
versational AI (Jan. 2023), url: https://digitalcommons.uri.edu/cba_facpubs/548.

[3] D. Avery: New York City Schools Ban ChatGPT Amid Cheating Worries, Jan. 2023, url:
https://www.cnet.com/tech/computing/new-york-city-schools-ban-chatgpt-amid-che
ating-worries/?fbclid=IwAR1IoRK6yvLuD86cBylf8JHNjdJUM-5nhm_Bx00Hd2jLsolPdIUSqv2
DTMw (visited on 03/31/2023).

[4] Ö. Aydin, E. Karaarslan: Is ChatGPT Leading Generative AI? What is Beyond Expecta-
tions? (Jan. 2023), doi: 10.2139/ssrn.4341500.

[5] P. Black, D. Wiliam: Inside the Black Box: Raising Standards through Classroom Assess-
ment, Phi Delta Kappan 92 (Sept. 2010), pp. 81–90, doi: 10.1177/003172171009200119.

[6] F. Borkowsky: “If Only I Would Have Known. . . ”: What I wish the Pediatrician would have
told me about Language, Literacy, and Dyslexia, New York: High Five Literacy Publishing,
2019, isbn: 9781734068801.

[7] C. Cassidy: Australian universities to return to ’pen and paper’ exams after students caught
using AI to write essays, Jan. 2023, url: https://www.theguardian.com/australia-news
/2023/jan/10/universities-to-return-to-pen-and-paper-exams-after-students-caug
ht-using-ai-to-write-essays (visited on 03/31/2023).

[8] L. Chen, P. Chen, Z. Lin: Artificial Intelligence in Education: A Review, IEEE Access 8
(2020), pp. 75264–75278, doi: 10.1109/ACCESS.2020.2988510.

[9] D. Clark: Artificial Intelligence for Learning: How to use AI to Support Employee De-
velopment, London, New York, Daryaganj: Kogan Page, 2020, isbn: 9781789660821, url:
https://books.google.hu/books?id=bhn0DwAAQBAJ.

[10] D. Clark: Learning Technology (1st ed.) London, New York, Daryaganj: Kogan Page, 2023,
isbn: 9781398608764, url: https://books.google.hu/books?id=7IChEAAAQBAJ.

[11] R. C. Clark, R. E. Mayer: e-Learning and the Science of Instruction (4th ed.) Hoboken:
John Wiley & Sons, Ltd, 2016, chap. 4, pp. 67–87, isbn: 9781119239086, doi: 10.1002/9781
119239086.ch4.

[12] D. R. E. Cotton, P. A. C. Cotton, J. R. Shipway: Chatting and cheating: Ensuring aca-
demic integrity in the era of ChatGPT, Innovations in Education and Teaching International
0.0 (Mar. 2023), pp. 1–12, doi: 10.1080/14703297.2023.2190148.

[13] J. Crawford, M. Cowling, K.-A. Allen: Leadership is needed for ethical ChatGPT:
Character, assessment, and learning using artificial intelligence (AI), Journal of Univer-
sity Teaching and Learning Practice (JUTLP) 20 (2023), doi: 10.53761/1.20.3.02.

[14] N. Dehouche: Plagiarism in the age of massive Generative Pre-trained Transformers (GPT-
3), Ethics in Science and Environmental Politics 21 (Mar. 2021), pp. 17–23, doi: 10.3354/e
sep00195.

179

https://doi.org/10.56540/jesaf.v2i1.51
https://digitalcommons.uri.edu/cba_facpubs/548
https://www.cnet.com/tech/computing/new-york-city-schools-ban-chatgpt-amid-cheating-worries/?fbclid=IwAR1IoRK6yvLuD86cBylf8JHNjdJUM-5nhm_Bx00Hd2jLsolPdIUSqv2DTMw
https://www.cnet.com/tech/computing/new-york-city-schools-ban-chatgpt-amid-cheating-worries/?fbclid=IwAR1IoRK6yvLuD86cBylf8JHNjdJUM-5nhm_Bx00Hd2jLsolPdIUSqv2DTMw
https://www.cnet.com/tech/computing/new-york-city-schools-ban-chatgpt-amid-cheating-worries/?fbclid=IwAR1IoRK6yvLuD86cBylf8JHNjdJUM-5nhm_Bx00Hd2jLsolPdIUSqv2DTMw
https://doi.org/10.2139/ssrn.4341500
https://doi.org/10.1177/003172171009200119
https://www.theguardian.com/australia-news/2023/jan/10/universities-to-return-to-pen-and-paper-exams-after-students-caught-using-ai-to-write-essays
https://www.theguardian.com/australia-news/2023/jan/10/universities-to-return-to-pen-and-paper-exams-after-students-caught-using-ai-to-write-essays
https://www.theguardian.com/australia-news/2023/jan/10/universities-to-return-to-pen-and-paper-exams-after-students-caught-using-ai-to-write-essays
https://doi.org/10.1109/ACCESS.2020.2988510
https://books.google.hu/books?id=bhn0DwAAQBAJ
https://books.google.hu/books?id=7IChEAAAQBAJ
https://doi.org/10.1002/9781119239086.ch4
https://doi.org/10.1002/9781119239086.ch4
https://doi.org/10.1080/14703297.2023.2190148
https://doi.org/10.53761/1.20.3.02
https://doi.org/10.3354/esep00195
https://doi.org/10.3354/esep00195

Annal. Math. et Inf. G. Vaughan, Á. Kovács, Z. Szűts

[15] J. Deng, Y. Lin: The Benefits and Challenges of ChatGPT: An Overview, Frontiers in
Computing and Intelligent Systems 2.2 (Jan. 2023), pp. 81–83, doi: 10.54097/fcis.v2i2.4
465.

[16] H. Else: Abstracts written by ChatGPT fool scientists, Nature 613.7944 (2023), p. 423, doi:
10.1038/d41586-023-00056-7.

[17] European Trade Union Committee: The impact of ChatGPT on the teaching profession,
Mar. 2023, url: https://www.csee-etuce.org/en/news/etuce/5128-the-impact-of-chatg
pt-on-the-teaching-profession (visited on 03/31/2023).

[18] European University Association’s Learning and Teaching Steering Committee: Ar-
tificial intelligence tools and their responsible use in higher education learning and teaching,
Feb. 2023, url: https://eua.eu/resources/publications/1059:artificial-intelligence
-tools-and-their-responsible-use-in-higher-education-learning-and-teaching.htm
l (visited on 03/31/2023).

[19] R. Firaina, D. Sulisworo: Exploring the Usage of ChatGPT in Higher Education: Fre-
quency and Impact on Productivity, Buletin Edukasi Indonesia 2.1 (Mar. 2023), pp. 67–74,
doi: 10.56741/bei.v2i01.310.

[20] D. Fitzpatrick: AI Won’t Replace Teachers, but it will replace teachers who don’t use AI.
Feb. 2023, url: https://www.linkedin.com/pulse/ai-wont-replace-teachers-who-dont-
use-dan-fitzpatrick/?trk=pulse-article (visited on 03/31/2023).

[21] B. Gates: The Age of AI has begun, Mar. 2023, url: https://www.gatesnotes.com/The-Ag
e-of-AI-Has-Begun (visited on 03/31/2023).

[22] D. Gruda, J. A. Schermer: C-H-A-T-G-P-T, Find Out What it Means To Me: ChatGPT,
Artificial Intelligence, and the Study of Individual Differences (Mar. 2023), doi: 10.31234
/osf.io/5ctfq.

[23] M. Halaweh: ChatGPT in education: Strategies for responsible implementation, Contem-
porary Educational Technology 15 (Mar. 2023), doi: 10.30935/cedtech/13036.

[24] K. Hu: ChatGPT sets record for fastest-growing user base - analyst note, Feb. 2023, url:
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-bas
e-analyst-note-2023-02-01/#:~:text=Feb%5C%201%5C%20(Reuters)%5C%20%5C%2D%5C%20
ChatGPT,a%5C%20UBS%5C%20study%5C%20on%5C%20Wednesday. (visited on 03/31/2023).

[25] C. Karthikeyan: Literature Review on Pros and Cons of ChatGPT Implications in Edu-
cation, International Journal of Science and Research (IJSR) 12 (Mar. 2023), pp. 283–291,
doi: 10.21275/SR23219122412.

[26] E. Kasneci et al.: ChatGPT for good? On opportunities and challenges of large language
models for education, Learning and Individual Differences 103 (Jan. 2023), p. 102274, doi:
10.35542/osf.io/5er8f.

[27] G. Marcus: The Sparks of AGI? Or the End of Science?, Mar. 2023, url: https://garymarc
us.substack.com/p/the-sparks-of-agi-or-the-end-of-science (visited on 03/31/2023).

[28] R. Marusenko: New challenges in assessing students’ knowledge: chatbot ChatGPT and
real-time deepfakes (Feb. 2023), doi: 10.13140/RG.2.2.21715.25120.

[29] W. Matcha, N. A. Uzir, D. Gašević, A. Pardo: A Systematic Review of Empirical Studies
on Learning Analytics Dashboards: A Self-Regulated Learning Perspective, IEEE Transac-
tions on Learning Technologies 13.2 (2020), pp. 226–245, doi: 10.1109/TLT.2019.2916802.

[30] D. Mhlanga: Open AI in Education, the Responsible and Ethical Use of ChatGPT Towards
Lifelong Learning, SSRN Electronic Journal (Feb. 2023), doi: 10.2139/ssrn.4354422.

[31] M. Neumann, M. Rauschenberger, E.-M. Schön: “We Need To Talk About ChatGPT”:
The Future of AI and Higher Education (Mar. 2023), p. 4, doi: 10.25968/opus-2467.

[32] E. C. Opara, A. M.-E. Theresa, C. A. Tolorunleke: ChatGPT for Teaching, Learning
and Research: Prospects and Challenges, Glob Acad J Humanit Soc Sci 5 (Mar. 2023),
pp. 33–40, doi: 10.36348/gajhss.2023.v05i02.001.

180

https://doi.org/10.54097/fcis.v2i2.4465
https://doi.org/10.54097/fcis.v2i2.4465
https://doi.org/10.1038/d41586-023-00056-7
https://www.csee-etuce.org/en/news/etuce/5128-the-impact-of-chatgpt-on-the-teaching-profession
https://www.csee-etuce.org/en/news/etuce/5128-the-impact-of-chatgpt-on-the-teaching-profession
https://eua.eu/resources/publications/1059:artificial-intelligence-tools-and-their-responsible-use-in-higher-education-learning-and-teaching.html
https://eua.eu/resources/publications/1059:artificial-intelligence-tools-and-their-responsible-use-in-higher-education-learning-and-teaching.html
https://eua.eu/resources/publications/1059:artificial-intelligence-tools-and-their-responsible-use-in-higher-education-learning-and-teaching.html
https://doi.org/10.56741/bei.v2i01.310
https://www.linkedin.com/pulse/ai-wont-replace-teachers-who-dont-use-dan-fitzpatrick/?trk=pulse-article
https://www.linkedin.com/pulse/ai-wont-replace-teachers-who-dont-use-dan-fitzpatrick/?trk=pulse-article
https://www.gatesnotes.com/The-Age-of-AI-Has-Begun
https://www.gatesnotes.com/The-Age-of-AI-Has-Begun
https://doi.org/10.31234/osf.io/5ctfq
https://doi.org/10.31234/osf.io/5ctfq
https://doi.org/10.30935/cedtech/13036
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/#:~:text=Feb%5C%201%5C%20(Reuters)%5C%20%5C%2D%5C%20ChatGPT,a%5C%20UBS%5C%20study%5C%20on%5C%20Wednesday.
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/#:~:text=Feb%5C%201%5C%20(Reuters)%5C%20%5C%2D%5C%20ChatGPT,a%5C%20UBS%5C%20study%5C%20on%5C%20Wednesday.
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/#:~:text=Feb%5C%201%5C%20(Reuters)%5C%20%5C%2D%5C%20ChatGPT,a%5C%20UBS%5C%20study%5C%20on%5C%20Wednesday.
https://doi.org/10.21275/SR23219122412
https://doi.org/10.35542/osf.io/5er8f
https://garymarcus.substack.com/p/the-sparks-of-agi-or-the-end-of-science
https://garymarcus.substack.com/p/the-sparks-of-agi-or-the-end-of-science
https://doi.org/10.13140/RG.2.2.21715.25120
https://doi.org/10.1109/TLT.2019.2916802
https://doi.org/10.2139/ssrn.4354422
https://doi.org/10.25968/opus-2467
https://doi.org/10.36348/gajhss.2023.v05i02.001

Annal. Math. et Inf. The educational challenges of ChatGPT

[33] Organisation for Economic Co-operation and Development: Education at a Glance
2022: OECD Indicators, Paris: OECD Publishing, 2022, isbn: 9789264341647, doi: 10.1787
/3197152b-en.

[34] K. Roose: Don’t Ban ChatGPT in Schools. Teach With It. Jan. 2023, url: https://ww
w.nytimes.com/2023/01/12/technology/chatgpt- schools- teachers.html (visited on
03/31/2023).

[35] J. Rudolph, S. Tan, S. Tan: ChatGPT: Bullshit spewer or the end of traditional assessments
in higher education?, Frontiers of Information Technology & Electronic Engineering (Jan.
2023), doi: 10.37074/jalt.2023.6.1.9.

[36] A. Sankaranarayanan: Should we have more oral exams?, Feb. 2023, url: https://www.t
hehindu.com/education/should-we-have-more-oral-exams/article66461975.ece (visited
on 03/31/2023).

[37] T. Sherrington, D. Goodwin: Five Ways to: Scaffold Classroom Dialogue, Dec. 2021, url:
https://teacherhead.com/2021/12/01/five-ways- to-scaffold-classroom-dialogue/
(visited on 03/31/2023).

[38] Z. Szűts: A digitális pedagógia elmélete, Budapest: Akadémiai Kiadó, 2020.
[39] X. Zhai: ChatGPT and AI: The Game Changer for Education (Mar. 2023), doi: 10.13140

/RG.2.2.31107.37923.
[40] X. Zhai: ChatGPT User Experience: Implications for Education (Dec. 2022), doi: 10.2139

/ssrn.4312418.
[41] B. Zhang: Preparing Educators and Students for ChatGPT and AI Technology in Higher

Education:Benefits, Limitations, Strategies, and Implications of ChatGPT & AI Technolo-
gies (Jan. 2023), doi: 10.13140/RG.2.2.32105.98404.

[42] J. Zhou, P. Ke, X. Qiu, M. Huang, J. Zhang: ChatGPT: potential, prospects, and lim-
itations, Frontiers of Information Technology & Electronic Engineering (Feb. 2023), doi:
10.1631/FITEE.2300089.

181

https://doi.org/10.1787/3197152b-en
https://doi.org/10.1787/3197152b-en
https://www.nytimes.com/2023/01/12/technology/chatgpt-schools-teachers.html
https://www.nytimes.com/2023/01/12/technology/chatgpt-schools-teachers.html
https://doi.org/10.37074/jalt.2023.6.1.9
https://www.thehindu.com/education/should-we-have-more-oral-exams/article66461975.ece
https://www.thehindu.com/education/should-we-have-more-oral-exams/article66461975.ece
https://teacherhead.com/2021/12/01/five-ways-to-scaffold-classroom-dialogue/
https://doi.org/10.13140/RG.2.2.31107.37923
https://doi.org/10.13140/RG.2.2.31107.37923
https://doi.org/10.2139/ssrn.4312418
https://doi.org/10.2139/ssrn.4312418
https://doi.org/10.13140/RG.2.2.32105.98404
https://doi.org/10.1631/FITEE.2300089

Submitted: July 27, 2023
Accepted: August 7, 2023
Published online: August 19, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 182–190
DOI: 10.33039/ami.2023.08.008
URL: https://ami.uni-eszterhazy.hu

Enhancing machine translation with
quality estimation and reinforcement

learning

Zijian Győző Yang, László János Laki

Hungarian Research Centre for Linguistics
{yang.zijian.gyozo,laki.laszlo}@nytud.hu

Abstract. In recent times, our research has focused on training large lan-
guage models and exploring their potential. With the emergence of Chat-
GPT, it has been demonstrated that it is possible to fine-tune language mod-
els in a task-agnostic way. The success of ChatGPT is attributed to the
reinforcement learning method, which integrates human feedback into the
language model fine-tuning process. As a part of our research, we initially
adapted the method of reinforcement learning for a specific task, which is ma-
chine translation, respectively. In this paper, we propose a novel approach to
enhance machine translation with reinforcement learning and quality estima-
tion methods. Our proposed approach uses reinforcement learning to learn
to adjust the machine translation output based on quality estimation feed-
back, with the goal of improving the overall translation quality. We evaluated
our approach on the WMT09 dataset for English-Hungarian language pair.
We conducted an analysis to show how our approach improves the quality of
machine translation output. Our approach offers a promising avenue for en-
hancing the quality of machine translation and demonstrates the potential of
utilizing reinforcement learning to improve other natural language processing
tasks.
Keywords: machine translation, reinforcement learning, quality estimation,
mT5
AMS Subject Classification: 68T07, 68T50

1. Introduction
In recent years, significant progress in artificial intelligence and deep learning has
resulted in notable enhancements in the quality of machine translation. Quality

https://doi.org/10.33039/ami.2023.08.008
https://ami.uni-eszterhazy.hu
mailto:{yang.zijian.gyozo, laki.laszlo}@nytud.hu

Annal. Math. et Inf. Enhancing machine translation with quality estimation . . .

estimation has become an important task in the field, involving predicting the
quality of machine-translated text without having access to a reference translation.
Incorporating a real-time quality estimation system is a crucial step in the ma-
chine translation pipeline, as it enables the system to determine the most accurate
translation and select the best one to present to the user. In the past month,
reinforcement learning has been adopted into natural language processing tasks,
marking a significant advancement in this field. In the context of machine trans-
lation, reinforcement learning has been applied to fine-tune machine translation
models and integrate human feedback into the training process. By combining
reinforcement learning and quality estimation, machine translation systems can
deliver higher-quality translations.

The success of ChatGPT1 has demonstrated that reinforcement learning can
be effectively adopted in human language technology. ChatGPT suggests that lan-
guage models can be fine-tuned in a task-agnostic manner. This not only stabilizes
the non-deterministic behavior of the models but also brings to light their vast
knowledge about the world. The ChatGPT system is fine-tuned from a model
in the GPT-3.5 series2. The GPT-3.5 series belongs to Large Language Models
(LLM) [1], which has garnered significant attention and popularity in the field of
research in recent times. The enormous success of ChatGPT can be attributed to
the utilization of reinforcement learning (RL), a technique that incorporates human
feedback into the language modeling process.

Following the popular trend, we have also started training the Hungarian Chat-
GPT, although this process is extremely time-consuming. Therefore, as a prelimi-
nary step, we experimented with the RL in the field of machine translation (MT).
In our current research, we have successfully incorporated a neural quality estima-
tion (QE) model and the RL method into the MT training process to enhance its
quality.

2. Related works
The OpenAI was the first, who successfully integrated the RL approach to the
natural language processing training process [14, 22]. The first experiments were
done with the summarization task. Thereafter, the RL was adapted to Instruct-
GPT [11], which is the basis of ChatGPT. There are many algorithms in modern
RL, but in natural language processing currently the Proximal Policy Optimization
(PPO) [13] algorithm became decisive.

Reinforcement learning experiments is still in its early stages in machine transla-
tion task. There are studies [18] that show RL is an effective approach for improving
the performance of neural machine translation. There have been some studies with
skepticism in the field as well [2, 7]. For English-Hungarian language pair, Laki
and Yang [8] conducted comprehensive research on machine translation, however
reinforcement learning method has not been applied yet.

1https://chat.openai.com
2https://openai.com/blog/chatgpt

183

https://chat.openai.com
https://openai.com/blog/chatgpt

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

The reward model in the reinforcement learning method can be trained as a
QE model in the MT task. Quality estimation is a prediction task, where differ-
ent quality indicators are extracted from the source and the machine translated
segments. The QE model is built with machine learning methods based on these
quality indicators. Then the QE model is used to predict the quality of unseen
translations [20]. In the recent years, instead of human feature extraction, neural
based deep learning methods are used for this task. Since the QE compares two
texts from different languages, pretrained multilingual neural language models [12,
15] or dual encoders [6] are used for this task. The pretrained language models
can be combined with Multitask Learning architectures [5, 9], or additional custom
extracted features can be added to the model [17, 21].

3. Methods and experiments
OpenAI showed in its research [10] that using reinforcement learning, we can en-
hance the performance of a neural language model. Based on research (see Fig-
ure 1) by OpenAI, our implementation steps for using reinforcement learning in
fine-tuning language models are as follows:

1. Fine-tuning language model with supervised learning: In our experiment, we
used a mT5 small model3 [8], that fine-tuned for English-Hungarian transla-
tion task (supervised fine-tuned model - SFT).

2. Collect human feedback and training a reward model: For this task, we trained
a QE model as reward model for English-Hungarian translation.

3. Fine-tuning language model with reward model and reinforcement learning
method: We further fine-tuned the SFT-mT5 model with reward model and
reinforcement learning method (RL).

In the first step, we utilized an already fine-tuned language model, hence we
did not train a new model specifically for this task.

In the second step, we conducted experiments using five different models to
train QE models:

• mT5 models: Following the research conducted by OpenAI, we initially per-
formed fine-tuned our SFT-mT5 model. Then, conducted experiments using
the original mT5-small and mT5-base [19] models.

• mBERT: the BERT multilingual base [4] model was fine-tuned.

• XLM-R: the XLM-RoBERTa-base [3] model was fine-tuned.

To train the QE models we used the HuQ [20] corpus that contains 1500 manual
evaluated English-Hungarian sentence pairs. All the 1500 sentences were evaluated

3https://huggingface.co/NYTK/translation-mt5-small-128-en-hu

184

https://huggingface.co/NYTK/translation-mt5-small-128-en-hu

Annal. Math. et Inf. Enhancing machine translation with quality estimation . . .

Figure 1. Using reinforcement learning in fine-tuning language
models. [10]

by 3 human annotators. provided quality scores ranging from 1 to 5, considering
adequacy and fluency aspects. For the experiments, we randomly shuffled the
segments and divided them into 80% for the train sub-corpus and 20% for the test
sub-corpus.

In the third step, we employed the CarperAI implementation4 to fine-tune our
SFT model using reinforcement learning (see Figure 2).

Figure 2. Training process for policy. [23]

We used our fine-tuned QE model as the reward model. For training and testing
purposes, we used the official sub-corpora of Hunglish [16] corpus from Shared
Task of WMT 20095. In the case of reinforcement learning, a smaller amount
of training data is sufficient, thus we used the development set as the training

4https://github.com/CarperAI/trlx
5https://www.statmt.org/wmt09/translation-task.html

185

https://github.com/CarperAI/trlx
https://www.statmt.org/wmt09/translation-task.html

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

corpus. To ensure a fair comparison, we also conducted a fine-tuning experiment
where we further fine-tuned the SFT model (SFT-mT5 FFT) using traditional
methods without reinforcement learning on the same development set with the same
hyperparameters. The main hyperparameters used in our fine-tuning experiments
(both RL and FFT) are as follows: learning rate: 2e-5; sequence length: 256;
epoch: 10;

4. Results
In Table 1, you can see the results of our QE experiments. The mT5 models were
unable to effectively perform the regression task, which means that a regression task
may not be well-suited for a sequence-to-sequence approach. However the encoder-
only multilingual models could solve this task with high performance. The XLM-R
model could gain the highest correlation result. To provide a better comparison
with previous research in this field, we conducted a 10-fold cross-validation with
the XLM-R model and compared it with the baseline model (as shown in Table 2)
from the research of Yang et. al [20]. Our XLM-R model achieved state-of-the-art
results in the English-Hungarian QE task. In our test set, XLM-R achieved an
83.8% correlation. Refer to Figure 3 (left side) for the correlation diagram.

Table 1. Results of the quality estimation task.

Correlation MAE RMSE
ChatGPT -0.0150 1.3072 1.5698
mT5-small 0.3422 1.0794 1.5059
SFT-mT5-small 0.3809 1.0156 1.4339
mT5-base 0.4579 0.9294 1.3016
mBERT 0.7358 0.64836 0.8950
XLM-R 0.8382 0.5785 0.8184

We conducted an experiment to test the ChatGPT (gpt-3.5-turbo) model [1].
The prompt template we used in this experiment is as follows:

• role: system

• content: You are a quality estimator system, which rate a given translation
how good it is based on the original source sentence. Rate the translation
quality between 0 to 5, where 5 is a perfect translation.

• role: user

• content: Source sentence: {src} \n Translation: {trans} \n Score:

In the prompt template above, {src} represents the source sentence, and {trans}
represents the translated sentence.

186

Annal. Math. et Inf. Enhancing machine translation with quality estimation . . .

Figure 3. Correlation diagrams.

As we can see from the results, the text-davinci-003 model could not solve this
problem. However, more prompt experiments could have been conducted.

Table 2. Results of the quality estimation task with 10-fold cross
validation.

Correlation MAE RMSE
baseline 0.6100 0.7459 0.9775
XLM-R 0.7948 0.6451 0.8898

In Figure 3 (right side), you can see the correlation between the estimated
quality score and the input text length. The correlation is -0.4478, which means
they are not correlated. The length of input does not affect the quality.

In Table 3, the results of SFT-mT5 and ’SFT-mT5 FFT’ and ’SFT-mT5 RL’
MT models are presented. Our ’SFT-mT5 RL’ model could significantly outper-
form the SFT-mT5 model (>5 BLEU score). To provide a better comparision, we
also fine-tuned the SFT-mT5 model using the traditional method. Fine-tuning a
model on an out-of-domain corpus result in decreased performance on the original
corpus. In Table 4, you can see the expected lower performance of the fine-tuned
(FFT and RL) models. As you can see in Table 3 and Table 4, the RL model
outperformed the FFT model in both the original corpus and the WMT09 corpus.
It means that the RL model was able to adapt the new WMT09 corpus with higher
performance, achieving the highest results on the new WMT09 corpus while while
only slightly decreasing in performance on the original corpus.

The original ’SFT-mT5’ model faced challenges such as generating outputs that
were longer than the source text and containing incorrect repeated phrases (as
demonstrated in Table 5): ’a hétvégén, a hétvégén’ (this weekend, this weekend)).
This led to high recall results but low precision. However by utilizing a human-
based reward model and reinforcement learning method, we were able to correct
these issues (as evidenced in Table 5) with the ’SFT-mT5 RL’ model. Additionally,
the ’SFT-mT5 FFT’ model suffered from information loss (’She has good instincts

187

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

nonetheles’) during translation.

Table 3. Results of FFT and RL models on WMT09.

BLEU chrF-3 chrF-6
SFT-mT5 7.34 45.60 38.62
SFT-mT5 FFT 12.59 46.17 39.65
SFT-mT5 RL 12.91 47.02 40.39

Table 4. Results of FFT and RL models on the original test set.

BLEU chrF-3 chrF-6
SFT-mT5 27.69 53.73 48.57
SFT-mT5 FFT 25.85 52.61 47.42
SFT-mT5 RL 26.72 53.32 48.20

Table 5. A translation sample of the different models.

Source She has good instincts nonetheless, warned Bill Clinton this
weekend.

Reference Bill Clinton azonban így figyelmeztetett a hétvégén: Hiba
lenne Palint alulbecsülni.

SFT-mT5 Ennek ellenére jó ösztönei vannak – figyelmeztette Bill Clinton
a hétvégén, a hétvégén.

SFT-mT5 FFT A hétvégén Bill Clinton is figyelmeztette.
SFT-mT5 RL Azonban jó ösztönei vannak – figyelmeztette Bill Clin-

ton a hétvégén.

5. Conclusion
In our research, we have successfully adapted the reinforcement learning method
to the machine translation task. We trained a neural quality estimation model
as a reward model. Using the XLM-RoBERTa multilingual model, we achieved
state-of-the-art results in Hungarian quality estimation task. For fine-tuning a
language model with reinforcement learning approach, we have used an already
fine-tuned mT5 model that trained for English-Hungarian machine translation task.
In our experiments, we have demonstrated that reinforcement learning method can
effectively enhance the performance of machine translation task by correcting the
subtle errors and mistakes.

For future work, we would like to explore machine translation experiments using
multilingual large language models, further extending our research in this area.

188

Annal. Math. et Inf. Enhancing machine translation with quality estimation . . .

References
[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T.
Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E.
Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Rad-
ford, I. Sutskever, D. Amodei: Language Models are Few-Shot Learners, in: Advances in
Neural Information Processing Systems, ed. by H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, H. Lin, vol. 33, Curran Associates, Inc., 2020, pp. 1877–1901.

[2] L. Choshen, L. Fox, Z. Aizenbud, O. Abend: On the Weaknesses of Reinforcement Learn-
ing for Neural Machine Translation, in: International Conference on Learning Representa-
tions, 2020.

[3] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E.
Grave, M. Ott, L. Zettlemoyer, V. Stoyanov: Unsupervised Cross-lingual Representa-
tion Learning at Scale, in: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online: Association for Computational Linguistics, July 2020,
pp. 8440–8451, doi: 10.18653/v1/2020.acl-main.747.

[4] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova: BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, in: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Associ-
ation for Computational Linguistics, June 2019, pp. 4171–4186, doi: 10.18653/v1/N19-1423,
url: https://aclanthology.org/N19-1423.

[5] X. Geng, Y. Zhang, S. Huang, S. Tao, H. Yang, J. Chen: NJUNLP’s Participation for
the WMT2022 Quality Estimation Shared Task, in: Proceedings of the Seventh Conference
on Machine Translation (WMT), Abu Dhabi, United Arab Emirates (Hybrid): Association
for Computational Linguistics, Dec. 2022, pp. 615–620.

[6] D. Heo, W. Lee, B. Jung, J.-H. Lee: Quality Estimation Using Dual Encoders with Transfer
Learning, in: Proceedings of the Sixth Conference on Machine Translation, Online: Associa-
tion for Computational Linguistics, Nov. 2021, pp. 920–927.

[7] S. Kiegeland, J. Kreutzer: Revisiting the Weaknesses of Reinforcement Learning for Neu-
ral Machine Translation, in: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Online: Association for Computational Linguistics, June 2021, pp. 1673–1681, doi: 10.1865
3/v1/2021.naacl-main.133.

[8] L. J. Laki, Z. G. Yang: Neural machine translation for Hungarian, Acta Linguistica Aca-
demica 69.4 (2022), pp. 501–520, doi: 10.1556/2062.2022.00576.

[9] S. Lim, H. Kim, H. Kim: Papago’s Submission for the WMT21 Quality Estimation Shared
Task, in: Proceedings of the Sixth Conference on Machine Translation, Online: Association
for Computational Linguistics, Nov. 2021, pp. 935–940.

[10] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S.
Agarwal, K. Slama, A. Gray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,
A. Askell, P. Welinder, P. Christiano, J. Leike, R. Lowe: Training language models
to follow instructions with human feedback, in: Advances in Neural Information Processing
Systems, ed. by A. H. Oh, A. Agarwal, D. Belgrave, K. Cho, 2022.

[11] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S.
Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,
A. Askell, P. Welinder, P. F. Christiano, J. Leike, R. Lowe: Training language models
to follow instructions with human feedback, in: Advances in Neural Information Processing
Systems, ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh,
vol. 35, Curran Associates, Inc., 2022, pp. 27730–27744.

189

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.1556/2062.2022.00576

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

[12] R. Rei, M. Treviso, N. M. Guerreiro, C. Zerva, A. C. Farinha, C. Maroti, J. G. C. de
Souza, T. Glushkova, D. Alves, L. Coheur, A. Lavie, A. F. T. Martins: CometKiwi:
IST-Unbabel 2022 Submission for the Quality Estimation Shared Task, in: Proceedings of
the Seventh Conference on Machine Translation (WMT), Abu Dhabi, United Arab Emirates
(Hybrid): Association for Computational Linguistics, Dec. 2022, pp. 634–645.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov: Proximal Policy Opti-
mization Algorithms, CoRR abs/1707.06347 (2017), arXiv: 1707.06347.

[14] N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei,
P. F. Christiano: Learning to summarize with human feedback, in: Advances in Neural
Information Processing Systems, ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.
Balcan, H. Lin, vol. 33, Curran Associates, Inc., 2020, pp. 3008–3021.

[15] S. Tao, S. Chang, M. Miaomiao, H. Yang, X. Geng, S. Huang, M. Zhang, J. Guo,
M. Wang, Y. Li: CrossQE: HW-TSC 2022 Submission for the Quality Estimation Shared
Task, in: Proceedings of the Seventh Conference on Machine Translation (WMT), Abu
Dhabi, United Arab Emirates (Hybrid): Association for Computational Linguistics, Dec.
2022, pp. 646–652.

[16] D. Varga, P. Halacsy, A. Kornai, V. Nagy, L. Nemeth, V. Tron: Parallel corpora for
medium density languages, in: Recent Advances in Natural Language Processing IV. Selected
papers from RANLP-05, ed. by N. Nicolov, K. Bontcheva, G. Angelova, R. Mitkov,
Amsterdam: Benjamins, 2007, pp. 247–258.

[17] J. Wang, K. Wang, B. Chen, Y. Zhao, W. Luo, Y. Zhang: QEMind: Alibaba’s Submission
to the WMT21 Quality Estimation Shared Task, in: Proceedings of the Sixth Conference on
Machine Translation, Online: Association for Computational Linguistics, Nov. 2021, pp. 948–
954.

[18] L. Wu, F. Tian, T. Qin, J. Lai, T.-Y. Liu: A Study of Reinforcement Learning for Neu-
ral Machine Translation, in: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium: Association for Computational Linguistics,
Oct. 2018, pp. 3612–3621, doi: 10.18653/v1/D18-1397.

[19] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, C.
Raffel: mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer, in: Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Online: Association for Computational
Linguistics, June 2021, pp. 483–498, doi: 10.18653/v1/2021.naacl-main.41, url: https:
//aclanthology.org/2021.naacl-main.41.

[20] Z. G. Yang, J. L. Laki, B. Siklósi: HuQ: An English-Hungarian Corpus for Quality Esti-
mation, in: Proceedings of the LREC 2016 Workshop - Translation Evaluation: From Frag-
mented Tools and Data Sets to an Integrated Ecosystem (Portorož, Slovenia, May 24, 2016),
2016.

[21] C. Zerva, D. van Stigt, R. Rei, A. C. Farinha, P. Ramos, J. G. C. de Souza, T.
Glushkova, M. Vera, F. Kepler, A. F. T. Martins: IST-Unbabel 2021 Submission for
the Quality Estimation Shared Task, in: Proceedings of the Sixth Conference on Machine
Translation, Online: Association for Computational Linguistics, Nov. 2021, pp. 961–972.

[22] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Chris-
tiano, G. Irving: Fine-Tuning Language Models from Human Preferences, arXiv preprint
arXiv:1909.08593 (2019).

[23] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Chris-
tiano, G. Irving: Fine-Tuning Language Models from Human Preferences, 2020, arXiv:
1909.08593 [cs.CL].

190

https://arxiv.org/abs/1707.06347
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41
https://arxiv.org/abs/1909.08593

