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Abstract. The aim of this research is to examine a finite-source retrial
queueing system with two-way communication. The primary customers, who
arrive from a finite-source following an exponential distribution, either receive
service immediately if the service unit is available, or are redirected to the
orbit and try again to reach the server after a random period. The system
is unique in that when the server becomes idle, an outgoing call (secondary
customer) is performed from the orbit or the source with varying parame-
ters. Both primary and secondary customers have been serviced according
to an exponential distribution but with different rates. Customers exhibit
an impatience characteristic, which may lead to their departure before re-
ceiving service if they spend a certain amount of time waiting for the service
unit. This investigation conduct a sensitivity analysis on the system’s perfor-
mance measures by utilizing different distributions of the customers’ retrial
time in two separate cases. The findings of the analysis have been presented
graphically for comparison purposes.
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1. Introduction
Two-way communication is a popular research topic because it can be effectively
modeled using retrial queueing systems in many real-life situations. Call centers are
a prime example of this, where agents engage in various activities such as selling,
advertising, and promoting products when not handling customer calls. Utilization
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is one of the most crucial metrics in call center operations, and optimizing the
efficiency of service units or agents is always a critical concern, see for example
[1, 3, 7, 9, 13]. The distinctive feature of two-way communication is based on the
occurrence of calls both inside and outside the system when the server is idle. Two
types of outgoing calls can be identified:

• One type of outgoing call is when the server contacts a customer from the
source for service, which is referred to as a primary outgoing call,

• Another type of outgoing call occurs when the server contacts a customer
from the orbit, which is known as a secondary outgoing call.

In our model, we consider outgoing calls that can be made to either the source
or the orbit. Existing literature on queueing systems reveals different schemes,
where some models assume infinite queue size, causing incoming customers to wait
until they receive service, while in others, customers leave the system immediately
upon arrival if the service unit is fully occupied. However, in reality, there are
scenarios where customers do not leave the system but wait in a virtual waiting
room, known as an orbit, and attempt to connect with a server after some random
time. Retrial queues are a suitable modeling tool for systems that involve an orbit.
Queuing systems that utilize retrial queues are commonly used to model various
problems arising in telecommunications systems, such as call centers, telephone
switching systems, and computer networks like in [2, 6, 8]. Previously, scholars
have explored examples of retrial queueing systems with two-way communication
and infinite sources, some of which are listed below: [12, 14, 15].

Dragieva and Phung-Duc [5] examined a scenario in which secondary outgoing
calls return to the source after service, while this study is a natural extension of
[10], which considered a more realistic scenario. In this case, rather than returning
secondary outgoing customers to the source, they are sent back to the orbit where
they can retry their request for servicing the original incoming call. Investigating
finite-source retrial models with two-way communication is motivated by real-life
situations in which customers cannot receive immediate service upon arrival and
must go to another location before attempting to check the system again or wait
for the server to call for them when idle.

Some queuing models make the assumption that a consumer must wait in line
indefinitely before being serviced. When a customer enters and discovers the ser-
vice area is occupied, some additional models—known as loss models—have the
customer leave and lose it forever. However, there are countless situations in real
life where customers choose to give up the attempt to be served after an arbitrary
amount of time rather than waiting. In this scenario, the client waits in a virtual
waiting area called an orbit before making another attempt to contact the server.
Retrial queues can be used to represent models that have an orbit.

The originality of this work lies in the sensitivity analysis that was conducted to
examine how different retrial time distributions affect the key performance metrics.
Our stochastic simulation program, which is based on SimPack produces the results.
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To support discrete event simulation, continuous simulation, and combined (multi-
model) simulation, this is a collection of C/C++ libraries and executable programs.
Any sort of queueing system and simulation model can be freely modeled, and any
performance metric can be calculated using any random number generator for the
specified random variable. The comparison of the operating modes and various
distributions will be shown through graphical representations.

The system model

This section introduces the finite-source retrial queueing paradigm with a single
server under consideration (see Figure 1). The source contains a total of N re-

Figure 1. System model.

quests, each of which can produce a primary incoming call to the server. The
inter-request times are determined by exponentially distributed random variables
with the parameter λ1. When the server is idle, an incoming customer’s service
starts immediately and follows an exponential distribution with parameter µ1. Af-
ter receiving satisfactory service, clients return to the original provider. Customers
who arrive and find the service unit busy will not be lost; instead, they are trans-
ported to orbit. These are the secondary arriving jobs from the orbit that might
make another attempt to contact the service unit following an arbitrary waiting
period. Gamma, hyper-exponential, Pareto, and lognormal distributions are all
used to describe this period’s distribution, albeit they all have the same mean
value. But the idle server may also request calls from the orbit and the source. We
distinguish between two categories of outgoing calls:

• After an exponentially varying amount of time, the service unit may request
a primary outgoing call from the source to be served with parameter λ2,

• After an exponentially distributed period, the service unit may make a call
(secondary outgoing call) from orbit with parameter ν2.
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The outgoing customers’ service time is distributed exponentially with the pa-
rameter µ2. When an incoming call is received from the orbit, there are two distinct
scenarios:

• Operation mode number 1: After the outgoing service is complete, the call is
returned back to the orbit to have its incoming call served because it has an
unmet incoming request,

• Operation mode number 2: Here, the call also has an incoming request that
hasn’t been fulfilled, but as soon as the outgoing service is complete, the
service unit fulfills the incoming request. A two-phase service will result
from this, with the outgoing call being processed first and then the incoming
one. When both service phases have been completed, the call goes back to
the source.

Every primary customer has an impatience trait, and in our investigated model
a primary customer eventually departs the system after waiting in the orbit for
some time without obtaining the proper service, which is also an exponentially
distributed random variable with rate τ . The arrivals of primary incoming calls,
retrial intervals for secondary incoming calls, service times for incoming and outgo-
ing calls, and the amount of time needed to make outgoing calls are all considered
to be independent of one another.

Utilizing this model, our goal is to perform a sensitivity analysis on the main
performance measures using several distributions of retrial times. A number of
system properties are compared between various operating modes as well. We
developed a simulation program to get the results, which will be shown in a series
of graphs.

2. Simulation results

2.1. First scenario
We utilized SimPack as the foundation of our program and incorporated the neces-
sary functionalities. To estimate the desired performance measures, we employed a
statistical package that utilizes the popular batch means method. The simulation
period is divided into a set of batches, with s = R − M/T observations conducted
in each batch, where M represents the discarded warm-up period observations and
R is the simulation length. Once the initial phase is complete, the average of the
entire simulation is computed. It is crucial for the batches to be of sufficient length
and for each batch average to be independent for meaningful results. For additional
information about the process used, please refer to the following papers: [4, 11].

The input parameters used in the simulations are presented in Table 1. A
relative half-width of 0.00001 and a confidence level of 99.9% were employed to
halt the simulation sequence. To ensure the accuracy of the results, the size of a
batch during the initial transient period was set to 1000 and cannot be too small.
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Table 1. Numerical values of model parameters.

N µ1 µ2 λ2 ν2 τ

10 1 1 0.2 0.2 0.01;0.05;0.1

Table 2 lists the retrial time parameters of the customers, which were selected to
have the same mean and variance value for a valid comparison. Various parameter
values were tested in the simulation program, and the most significant results will
be discussed in this paper. As demonstrated in the table, the squared coefficient
of variation exceeds one in this case, enabling an investigation into the influence of
specific random variables. Additionally, we will present outcomes with a distinct
set of parameters when the squared coefficient of variation is less than one.

Table 2. Parameters of retrial time.

Distribution Gamma Hyper-exponential Pareto Lognormal
Parameters α = 0.02 p = 0.489 α = 2.01 m = −4.258

β = 0.2 λ1 = 9.798 k = 0.05 σ = 1.978
λ2 = 10.202

Mean 0.1
Variance 0.49

Squared coefficient of variation 49

Figure 2. Mean response time of an arbitrary primary customer
vs. arrival intensity.

The mean response time of an arbitrary primary customer is depicted in Figure 2
in the function of the arrival intensity. By comparing the impact of various dis-
tributions with the same first two moments, a noticeable discrepancy is observed.
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Customers spend relatively more time in the orbit when gamma distribution is
employed, but more or less the same amount of time when other distribution is
utilized. Additionally, the system’s intriguing maximum property is evident even
as the arrival intensity increases, which is a characteristic of a finite-source retrial
queueing system.

Figure 3. Comparison of the mean response times using different
operation modes.

Figure 4. Mean waiting time of a departed customer using the
different distributions of retrial times.

Figure 3 illustrates the impact of two operation modes on the mean response
time of a customer under gamma distribution of retrial times, as the arrival intensity
increases. It is interesting to observe that in case of lower λ values Operation mode
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number 2 performs better resulting in lower mean response time and this trend
changes after λ is greater than 2. However, the differences among operation modes
are not that significant in this parameter setting.

Figure 4 demonstrates the comparison of mean waiting time of a departed cus-
tomer beside various scenarios. Under this performance measure we refer to those
mean waiting times of customers who exit from the system due to impatience. De-
spite having the same mean and variance, there are significant differences between
the applied distributions, with increasing gaps observed as the arrival intensity
increases. The mean waiting time of an impatient customer also increases with
the arrival intensity, and the Pareto distribution consistently results in lower mean
waiting times compared to the other distributions, particularly in comparison to
the gamma distribution.

2.2. Second scenario
After observing the results of the first scenario, we became curious about the effects
of using different parameter values for each distribution while keeping the mean
constant. For the second scenario, we reduced the squared coefficient of variation
to less than 1 for each distribution, as shown in Table 3, while all other parameters
remained the same as in Table 2. To conduct a sensitivity analysis, we replaced
the hyper-exponential distribution with a hypo-exponential distribution.

Table 3. Parameters of retrial time.

Distribution Gamma Hypo-exponential Pareto Lognormal
Parameters α = 1.6 µ1 = 13.333 α = 2.612 m = −2.545

β = 16 µ2 = 40 k = 0.062 σ = 0.697
Mean 0.1

Variance 0.00625
Squared coefficient of variation 0.625

Figure 5 illustrates how the mean response time of an arbitrary primary cus-
tomer changes with increasing arrival intensity in a scenario where the mean value
remains constant but the variance value is significantly reduced. The difference
in average response time among the distributions is not very significant, it can
be stated that they overlap each other totally. This indicates that variance has a
considerable impact on performance measures, as larger variance values can result
in greater disparities in performance measures.

Figure 6 compares the mean waiting time of a departed customer across varying
arrival intensities. As expected from the previous figure, the differences in the
obtained values are relatively small, which is true for every utilized distribution.
Therefore, it can be concluded that in this parameter setting, the performance
measures do not exhibit significant differences among the distributions. Naturally,
the mean waiting time of a departed customer increases with the increment of the
arrival intensity of the primary customer.
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Figure 5. Mean response time of an arbitrary primary customer
vs. arrival intensity.

Figure 6. Mean waiting time of a departed customer using the
different distributions of retrial times.

Finally, Figure 7 depicts the impact of increasing arrival intensity on the mean
response times of the different operation modes. The values obtained in this sce-
nario are very close to each other compared to the previous scenario. In this
scenario, looking at the graphs, it can be said that there are no discrepancies in
terms of comparing different distributions of retrial times or different operation
modes.
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Figure 7. Comparison of the mean response times using different
operation modes.

3. Conclusion
We present a study on a two-way communication finite-source retrial queueing sys-
tem that utilizes different retrial time distributions. Our investigation includes
various scenarios with different parameters, focusing on the mean response time of
an arbitrary primary customer and the mean waiting time of a departed customer.
Through simulations and graphical figures, we demonstrate that choosing an ap-
propriate distribution is critical when the squared coefficient of variation is greater
than one. The figures also display the impact of outgoing calls and suggest that
Operation mode number 2 (keeping customers waiting inside the bank) may result
in smaller waiting and response times than Operation mode number 1.

For instance, in a banking setting, outgoing calls may be used to allocate signa-
tures both inside and outside the bank while customers wait for their transactions.
It is more advantageous for the bank to keep the customer waiting inside (Opera-
tion mode number 2) rather than turning them away or serving their initial request
after obtaining the signature (Operation mode number 1).

Future research may explore other types of two-way communication finite-source
retrial queuing systems or consider adding a backup service unit.
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